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In a previous paper the thermopower S and the thermal conductivity ae of the 
periodic Anderson model, describing mixed valence compounds, was inves- 
tigated neglecting the influence of phonons / l / .  Now phonons a r e  introduced 
using a modified version of the model of Chen, Weisz, and Sher /2, 3/ de- 
scribing the electron-phonon scattering by a temperature dependent stochastic 
potential. The Hamiltonian is given by 

H = HpAM +Hews ' (1 1 

whereas HpAM is the same operator as used in /3/, i.e. 

> (ei"i&lu+ h.c.) . 
+fi iku 

HpAM takes into account the contribution of the d-electrons in a nearly free 
electron approximation, the localised f-electrons, the interaction between 
f-electrons with different spins at the lattice si te i, and the hybridisation 
between f- and d-electrons. The notation is in agreement with /3, I / .  

HCWS is given by 

and includes the stochastically fluctuating term Qi simulating the potential de- 
formations due to  phonons ("thermal disorder"). Of course this is a rather 
crude approximation of the electron-phonon scattering. However, this model 

1 ) Friedrich-List-Platz 1 ,  DDR-8010 Dresden, GDR. 
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produces a fairly good description of disordered alloys /4/ - a problem, which 
is analogous in some sense especially i f  the alloy analogy is explicitly used. 
Since the stochastic potential parameters ei in (3) should simulate thermal 
fluctuations a continuous distribution P(8) is assumed. Chen et al. /2/ dis- 
cuss  a Gaussian distribution, which can be verified starting from the FriSNich 
Hamiltonian. Since we believe the detailed shape of the distribution to  be of 
weak influence, what is reasonable fo r  the case  where the chemical potential 

JJ is centered in the d-band, a Lorentzian distribution is assumed for  mathe- 
matical advantages /3,  4/: 

In (3)  the phonons act  on the f-electrons, whereas the phonon-d-electron inter-  
action is neglected, what is reasonable i f  A is much smaller  than the width of 
the d -band. 

The phonon independent part of the Hamiltonian Hpm is replaced by a 
non-interacting hybridized two-band system by using the alloy analogy to de- 

couple the electron-electron correlation. The remaining Hamiltonian together 
with HCWS can be solved by a generalized CPA procedure /5, 6/. Fo r  this a 
coherent potential W6 is introduced to  form the effective Hamiltonian 

Here go(%) are the Fourier t ransforms of the f';6(fia) . 

averaged C PA equation 
In a single site approximation Wd is to  evaluate from the "thermal" 

+oo E 0 + 8 + U - W a  
. 5i = *p(e) (nfG 

-00 1 - ( E o + 8  + U-Wa &:(a) + 
E +S-W, 

+(I - "fa) l-(Eo+S-W,)G:(w) 0 
) = o  7 

ff 
d 2 

with G (0) being the Green function 

f f  - & %  

2 .  G ( w ) =  '2 d i; ( w  - +)(W - Wa) -v 

Furthermore we have 
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d 2 '  
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(8 

F rom (7) and (8) we get the density of states in the usual way by 

(9) 
D (w)=Dd(~)+D$~)=--Im(Gb(w)+Gd(~)). d f 1 ff  dd 
d 7c 

f To solve (6) the particle density nf is needed. It is available from Dd( 0)  by d 

L where p is the chemical potential. p can be calculated from the implicit 
equation 

The 8-integration in (6) can b e  carried out, i f  

is valid. Lloyd /7/ has proved this relation for  a one-band model. A general- 

isation of his ideas shows that this condition is fulfilled also for  the here  con- 
sidered two-band model /8/. Making use of this fact the @-integration in (6) 

becomes 

) 
E '+ U +  iA-Wd E + i A - W ,  f 0 + (1 -nf 0 

0 1 -(Eo+ U+iA-Wa@:(w) -'1 - (Eo+ ia-Wu)Gz(w) '(13) 
O= n- 

Adding Wd on both sides Wa can be  calculated by a fast iteration procedure 

i f  nf 
d 

states of the d-electrons a semielliptical shape is assumed. .In that way the 

k-sums in (7) and (8) can be  changed into an e -integration /3/. 

is calculated self-consistently from (10). Fo r  the unperturbed density of 

-P 

Equations (13), (7), (8), (lo), and (11) form a difficult self-consistent 
problem. It was solved for the paramagnetic case  with the same  numerical 

procedures employed in /3, l/. Then the energy dependent conductivity U( E ) 

can be calculated from the density of states using the Kubo-Greenwood formula 

/3/ .  The thermopower S and the thermal conductivity Y can be  obtained from 
the energy moments of the distribution function L( E ) including 6(  E ) and the 
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Fig. 1. Thermopower S versus distribution 
parameter A (a = 1) for different sets  of parameters 
(E,lUlVI n) = (1) (0.0~2.010.111), 

(2 ) (0 .0  12.0 I 0.03 I 21, (3) (0.01 2.0 I 0.03 I 1 ), 
(4) (0.013.010.11 11, (5) (0.013.010.0312), 
(6) (0.0l3.0l0.03l l), (7) (0.013.010.11 2 )  

@Id ---+ 

derivative of the Fermi function. The moments Ln are defined by 
+oo 

L = +  $ d s L ( ~ ) ( ~ - p ) ~  
e -00 

with 
6 1 

and U (  c )  being 

The thermopower S and the thermal conductivity n a re  given by 
s = -  1 5  

eT To 
and 

1 2 
% = (3 - L1/Lo) . 

(15) 

A s  a first  step the thermopower was calculated in dependence of the dis- 

tribution parameter A in (4). The deformation of the Fermi function due to 
temperature was neglected in order to study purely the influence of thermal 
disorder. Furthermore the temperature was assumed a s  linearly dependent 
on the distribution parameter A, i .  e. 



Short Notes K187 

2 
3 

I I 
2O am ML 003 

k81/wd - 
fig.3 

I 

Fig. 2. Thermopower S versus temperature T for different values of 
a r = T / A ( E o U V n ) o c = ( l ) ( 0 . 0 3 . 0 0 . 1  2)1,(2)(0.03.00.1 2)10, 

(6) (0.0 3.0 0.1 1) 100 

Fig. 3. Thermal conductivity at versus temperature T for the same sets  of 
parameters a s  in Fig. 2 

(3) (0.0 3.0 0.1 2) 100, (4) (0.0 3.0 0.1 1) 1, (5) (0.0 3.0 0.1 1) 10, 

, T = o c A ,  (19) 

Then the thermopower S can be obtained from Mott’ s formula 

In Fig. 1 the thermopower S versus the dietribution parameter is plotted fbr 
different sets of parameters. The thermopower shows a similar dependence 
on A as in /1/ on the temperature since the shift of E~ due to  an increase of 
A produces the same effect as the shift of p by increasing temperature. 
This fact can be understood, since the effective Hamiltonian (5) is a sum over 
one-particle Hamiltonians with f-potentials at different sites i fluctuating . 

around Eo, that means the f-electron states a re  distributed according to P(8 ) 
with the centre at Eo. Therefore the top of the peak in the f-electron density 
of states will be lowered and the flank states will get higher weight i f  the dis- 
tribution pafameter A will be increased. 
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This A-induced broadening of the peak in the f-density of states shifts a 

part of the f-states into the region below E F.  These new f-states will be oc- 
f f cupied by  d-electrons. In this way n grows whereas E 

changes also in the same direction as it happens in /1/ and /3/ due to temper- 

ature. 

decreases. n 

In additional calculations the influence of the temperature on the Fermi 

function is fully taken into account. In Fig. 2 the thermopower S of different 

sets of parameters is plotted with different values of a. Since both the 
phonons and the temperature act in the same direction qualitatively new 

curves were not to expect. In Fig. 3 the thermal conductivity at is plotted for 
the same parameter sets as in Fig. 2 .  

The author is indebted to Prof. Dr. K. Elk and Dr.  J. Richter for helpful 

hints and discussion. 
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