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The periodic Anderson model is used as a simple niodel describing intermediate-valence compounds. 
I n  that model a strong electron-electron correlation is taken into account. The correlation term 
is decoupled using the alloy-analogy approximation. Then the energy-dependent conductivity 
u(o) is obtained from the Kubo-Greenwood formula. Using a(o) the thermopower and the thermal 
conductivity can be calculated. For the absolute value of the thermopower a rapid increase with 
increasing tempcrature is found in the low-temperature regime with a broad maximum a t  mean 
tcmperaturcs, whereas a weak decrease occurs in the high-temperahre regime. The thermal 
conductivity increases very rapidly with the temperature. 

Das periodischc Anderson-Mode11 wird als einfaches Modell zur Beschreibung von ,,Intermediate- 
Valence"-Verbindungen benutzt. I n  diesem Modell wird eine starke Elektron-Elektron-Korre- 
liltion beriicksichtigt. Der Korrelationsterm wird unter Verwendung der ,,Legierungsanalogie" ent- 
koppelt. Danach gewinnt man die energieabhangige Leitfahigkeit n(o) aus der Kubo-Greenwood- 
Formel. Aus n(o) konnen Thermokraft und thermische Leitfahigkeit berechnet werden. Der 
Betrag der Thermolrraft steigt bei niedrigen Temperaturen steil an mit einem breiten Maximum 
bei mittleren Temperaturen, wahrend sie bei hoheren Temperaturen wieder schwach abnimmt. 
Die thermische Leitfahigkeit steigt sehr stark mit der Temperatur an. 

1. Introduction 

In  the last few years a series of papers has been concerned with various models de- 
scribing intermediate-valence compounds. Within these models the electronic conduc- 
tivity (T was often considered, whereas only in some papers the thermopower S and the 
thermal conductivity ~t is calculated starting with the energy-dependent conductivity 
a(o). If the electronic conductivity a(w) of the model is known, it is possible to define 
a distribution function 

L(o) is connected with the electrical conductivity (T by 
+m 

(T == I dw L ( o ) .  (2) 
-cc 

Now the momenta L, of this distribution can be evaluated [l], according to 
+co 

-co 

l) PSI? 103, DDR-8072 Dresden, GDR. 
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Then the thermopower X is given by 

and the thermal conductivity ~t follows from 

I n  the present paper the periodic Anderson model is used to get a reasonable expression 
for o(w) ,  since in that model the influence of the electron correlation being of impor- 
tance in real intermediate-valence compounds can be studied [ Z ,  31. 

2. Modal and Approximations 
The Hamiltonian of the periodic Anderson model is given by 

H = Hd + Hf + Hfd 
with 

Hd = C &kdk+odko 7 
ko 

Hf = c (EOftUfib + f u f t o f i 0 f L f i - o )  , 
i0 

The notation is the same as in [31. H d  describes the d-electron band in the nearly-free- 
electron approximation, Hf is the Hamiltonian of the localized f-electrons, and Hfd 
contains the hybridization. For more detailed information and discussion see [ 2  to 51. 

Since the model includes the electron-electron interaction U ,  approximations are 
necessary. Here the alloy analogy [6] is used, which is particularly appropriate [ Z ] .  
Within this method a stochastic potential Ei, approximates the electron-electron 
scattering of an f-electron with spin r~ due to an electron with spin -0. Ei, assunies 
two values, (E,, + U )  with the probability nf_, and E, with the probability (1 - ny,), 
according to the fact, whether a (-@)-electron is situated a t  the lattice site Rt or not. 
n: is defined by 

n,f = ( f t U f i U >  (10) 
and has to be calculated self-consistently. 

an effective CPA one-particle Green function for the d- and f-electrons: 
Now the Hamiltonian (6) is treated using a generalized CPA [6, 3, 51, which results 

d w - &k 
G,cdpdA(k, W )  = 

(w - & $ ) ( w  - WE) - v 2 ,  ' 
w - w,' 

(w - &i) (W - W,') - P' 
G;$*(k, W )  = 

where WE is the energy-dependent effective complex potential, fulfilling the equation 

where Gg:*(co) is defined in (16). 
W i  = E, + nf_,U + (E ,  - W:) Gg:*(w) ( W i  - E, - 77) , (13) 

The CPA equation (13) can be solved by an iterative procedure, used already in [3]. 
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Thereby, the electron densities nt and nt are given by 

223 

-a 
t o o  

Equations (11) to (18) form a self-consistent set. 
After replacing the correlation term in (8) by the coherent potential Wf, the resulting 

bilinear form of the effective Hamiltonian allows to compute the energy-dependent 
conductivity ~ ( o )  using the Kubo-Greenwood formula. Due to the k-independence 
of the hybridization and the strong localization of f-electrons only d-electrons contri- 
bute to the electical current. Therefore, a(w) is given by 

For simplifaction of the numerical calculation some additional approximations are 
introduced. For the density of states Do(w) of the unperturbed d-electron band 
a simple semielliptical shape is used, 

Thereby, the half d-bandwidth wd chosen as unity scales the energy. Xurthermore the 
velocity function in (19) is approximated by [7, 81 

1 
m* 

(gy =- (1 - &p) e(1 - I&:() ,= 

where m* is the effective mass of the d-electrons. If only the paramagnetic case is 
considered, the closed expression 

follows by analytical integration [9, 31. 
The thermopower S and the thermal conductivity 1c can be obtained now from (I) ,  

(3) to (5)  using ~ ( w )  from (22). It should be mentioned that to calculate a(@) the self- 
consistent computation of wf, p, and nf has to be carried out ((13)) (14)) and (18)). 
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3. Numerical Results and Discussion 

The numerical computations are based on the calculations described in [3]. For the 
numerical procedure reasonable values of parameters Eo, U ,  V )  and n are needed. The 
energy scale is defined by the choice of the half bandwidth wd, as mentioned above. 
Due to the electron-electron correlation U the f-band splits into two subbands. The 
typical mixed-valence situation is reached if one of these f-split bands is placed near 
the centre of the d-band. Tn the calculations presented here the lower f-band is con- 
sidered to overlap with the d-band. If n is chosen in such manner that the cheinical 
potential p is situated near the position of the f-level, a strong temperature dependence 
of the electronic transport coefficients has to be expected due to the temperature shift 
of the chemical potential p through a rather quickly changing value of the density of 
states Db(u) .  This situation occurs if n = 1 or n = 2 connected with E,, < 0 or n = 2 
or n = 3 with Eo > 0 is chosen, whereas the strength of the correlation energy U is 
assumed as 3 or 2 .  For the Ic-independent hybridization matrix element V the value 
0.1 is used, since at  higher values of V the localized character of the f-electrons vanishes. 
On the other hand, V should not be too small to get essential effects from the f-scat- 
tering on the transport quantities. 

The densities of states Dn(o) resulting from the used sets of parameters are extensive- 
lydiscussed in [3]. There interesting gap structures were observed caused by the com- 
binedinfluence of the densities of states on n:. It should be noticed that the same struc- 
tures are obtained by Schweitzer and Graham [lo], although they considered the case 
of infinite U ,  which is an additional argument for the rather weak U dependence of the 
electronic properties of the used model (if U > wd) claimed in [3]. On the other hand, 
Czycholl and Leder [5] got results for D,(o) which differ from [3]. A possible reason for 
this disagreement could be that in [5] the self-consistency in computing n: is not taken 
into account carefully, since in [5] the upper f-level is considered to overlap with the 
d-band, so the occupation of the lower f-level depending on n: is of importance, whereas 
in [3] this difficulty is avoided because the upper f-level is empty. 

The influence of the detailed gap structure on the general behaviour of the thermo- 
power S and the thermal conductivitya is of less importance, if the chemical potential 
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Fig. 1. Thermopower X vs. temperature T for 
= (1) (0.0 13.0 10.1 12), (2) (0.0 12.0 10.1 I2), 
(5) (-0.25 [ 3.0 10.1 I l), (6) (-0.5 13.0 10.1 11) 

Fig. 2. Thermal conductivity x vs. temperature 
= (1) (0.1 [ 3.0 I 0.1 [ 2), (2) (-0.1 13.0 10.1 I 1) 

Fig. 2 
different sets of parameters. ( E ,  [ U I V [ n)= 
(3) (0.0 [ 3.0 10.1 I l),  (4) (-0.1 13.0 10.1 I I), 

T for two sets of parameters (E ,  I U I V I n) = 
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pis  situated outside the gap region, which results for the parameters used in the present- 
ed calculations and also for the case considered by Czycholl and Leder [5 ] .  

I n  Fig. 1 the thermopower X is plotted versus the temperature T for various sets 
of parameters. The two curves with n = 2, E, = 0, V = 0.1 and U = 3, U = 2, 
respectively, support the weak U-dependence mentioned above. The curves with 
n = 1, U = 3, Y = 0.1, and different E, demonstrate, that the maximum becomes 
sharper and tends to lower temperatures T if E,, decreases. By decreasing E, the chem- 
ical potential p shifts to the lower split peak and, therefore, the sign of the thermopower 
will be changed. Unfortunately, the numerical accuracy of the curves with E, = 
= -0.25, -0.5 is not very high due to the difficulties to reach convergence of the self- 
consistent procedure for W:, n:, and p. The behaviour of the calculated thermopower S 
agrees qualitatively with experimental results for some Ce compounds (simulated by 
n = 1) [ l l ]  and Yb compounds (simulated by n = 2) [12]. 

The thermal conductivity x increases very rapidly with increasing temperatures, 
as demonstrated in Fig. 2. For temperatures T with kBT/wd > 0.10 the computed 
values of x are proportional to Tu with a = 2.3 for E, = -0.1 (curve 2) and a x 3.0 
for E, = 0.1 (curve l) ,  respectively. The Wiedemann-Franz law is not fulfilled. 

The qualitative behaviour of the thermopower X versus the temperature T for the 
considered model shows the same tendency for all sets of parameters used here. The 
shapes of the curves are not strongly dependent on the fine structure of the gap region 
in the chosen cases, since the chemical potential p is outside the gap region. 
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