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Various transformations of the Hubbard interaction to quadratic forms used for functional integral techniques are discussed. A
generalised quadratic form in terms of both spins and quasispins is given which contains one free parameter.

Starting with Hubbard’s famous paper [1] func-
tional integral techniques have developed to a pow-
erful tool for handling many-particle systems in
condensed matter physics. Especially in dealing with
the Hubbard model and its generalisations great
progress has been achieved during the last 20 years
[2] culminating in the so-called ‘“‘unified picture of
magnetism” [3]. Nevertheless, some points are not
completely clarified, since for different functional
integral techniques arising from the possibility of re-
writing the Hubbard interaction by means of the fer-
mion annihilation and creation operator
commutation rules different answers to the same
physical questions result. Macedo et al. [4] have in
particular solved some of the problems by starting
from a generalised quadratic form in terms of spin
and charge densities. Although the transformation
introduced in ref. [4] includes almost all biqua-
dratic forms of the interaction used in the literature
until now it is not the most general form, since it is
restricted to the spin algebra only. The most general
form has to be constructed from combinations of
nonvanishing single-particle fermion operators. There
are only six such operators:

. + . + . + . .
ctey cfey cfes cfes efel; e (1)

' On leave from Hochschule fiir Verkehrswesen “Friedrich List”,
WB Physik, Dresden 8072, PF 103, GDR.

2 On leave from Central Institute for Nuclear Research, Acad-
emy of Sciences of the GDR, Rossendorf, Dresden 8051, PF
19, GDR.

202

This set together with the unity operator has the
structure of two isomorphic SU(2) algebras. The
spins are as usual

Sx=%(crci+chT) H

1
Sy= 2i (cifc,—cley),

S.=4(n,—n,), (2)
with

5.8, =}iS.

i[Sy,S,]_=—S. and cycl. perm. (3)

Furthermore the quasispins are

Ry=j(cf el +eier),

1
R,= 2% (cfe,—acr),

R.=i(n,+n,—-1), (4)
with

R.R,=}iR;,

i[Ry, R,]_=—R, andcycl. perm. (5)

Spins and quasispins are connected by a canonical
transformation [5] and commute with each other,
because of

R;S;=S;R;=0 for i, j=x,y,z. (6)

Whereas a lot of authors employed the spin algebra
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to rewrite n,n,, only few authors [5,6] treat quasi-
spin algebra descriptions but not in the context of
the functional integration procedure. There is no a
priori reason preferring one algebra. The most gen-
eral ansatz for a quadratic form both in spin and
quasispin is

6
nn, =c+ z )vijSiSj, (7)

ij=1

where S....S; stands for R, ...R;. By means of egs. (3),
(5), and (6) and using S2=S;=52=82/3,R}=
R2=R2=R?/3 it can be shown that without loss of
generality eq. (7) reduces to

nn, =c+a.S,+a,S,+a.S.+AS?
+b.R.+b,R,+b.R.+BR*. (8)

Comparing the r.h.s. of eq. (8) with the Lh.s. it can
be immediately seen that eq. (8) holds for the coef-
ficients a;, b;, 4 and B determined as follows:

a.=a,=a.; b.=b,=0; b.=1;
A=—4a,; B=-4a,+1%. 9)

So, at least, the most general expression contains only
one free parameter. With o= —4a,+ 4 it is designed
as

mn =}—3a+R. +(a-4)S*+ (a+1)R*. (10)
From this expression with ao=0 one finds

”1n¢=%+R:—§S2+%R2, (1)

which would lead via the Hubbard-Stratonovic tech-
nique to two vector fields. One couples to the spin
vector § and the other to the quasispin vector R pro-
ducing a six-component order parameter. To our
knowledge such a scheme has not been reported for
the Hubbard model yet, but with {R?=R_and keep-
ing in mind 4+ R. + R2 = (n, +n,)? one obtains the
form

mn, =§(n +n)~48%. (12)

It results in a four-component order parameter due
to one scalar field coupling to the charge density and
a vector field coupled to the spin. This scheme was
extensively studied among others by Moriya and
Hasegawa [7] with the result of a quite unified pic-
ture of magnetism including both the localised and
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the itinerant limits. Using $2/3=S, Hamann [8]
obtained the two-field scheme

non, =4(n+n)’—4(n,—n)*, (13)

studied well by a lot of authors, e.g. in ref. [9]. For
= —} follows immediately from eq. (10)

n.n, =4(n+n)—3%8%. (14)

From this Heisenberg-like form studied by Moriya
[10] one can get an Ising-like expression by substi-
tuting the spin vector by its z-component only. The
resulting expression was first introduced by Wang,
Evenson and Schrieffer [11]:

nn =4(n +n)—4(n,-n)? (15)

and produces a one-field scheme. The choice

=—1 finally gives the representation used by
Gomes and Lederer [12], so that all schemes de-
veloped so far are contained in the generalised rep-
resentation (10). At this point we mention that with
o=} the interaction is represented in terms of quasi-
spins alone:

n.n, =R, +3iR*. (16)
Again R? may be replaced by 3R? resulting in
n.n,=R.+2RZ. (17)

The identities (16) and (17) may be useful in deal-
ing with superconducting or charge ordered phases
of models with a Hubbard interaction. From the rep-
resentation (17) it becomes clear that a contribution
to the free energy arises only if R,#0, i.e. if n, +
n, # 1, which characterizes the *“charged model”. The
latter case may be of interest if one tries to explain
high T, superconductivity within models containing
Hubbard-like interactions, which may be attractive
as in the BCS theory or repulsive as in the theory of
magnetism. Both cases are included since the above
discussion is valid for arbitrary prefactors of n.n,.
We mention that Hubbard introduced a represen-
tation with a local anisotropy, i.e. he replaced S, in
€q. (13) by e-S with e being an arbitrary unit vector,
and restored rotational symmetry by a final integra-
tion over all directions. This idea may be generalised
by using e-R instead of R,in eq. (17). From eq. (10)
one has to calculate the thermodynamical potential
in a more or less comprehensive approximation. The
appropriate value of « has to be determined by min-
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imizing with respect to «. If one starts from an a
priori value the approximations used in the litera-
ture are known to destroy operator identities in an
uncontrolled manner. Furthermore regarding ther-
modynamics it seems hard to justify that phases pro-
duced by quasispin operators should be avoided. This
is automatically done if one restricts the considera-
tions to a pure spin representation. A more detailed
discussion of eq. (10) is in preparation.
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