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To avoid the arbitrariness of the functional integral method, originating from the numerous different ways to rewrite the Hub-
bard interaction, a self-consistent procedure is given based on a generalized quadratic form in terms of spins and quasispins.

The Hamiltonian

H=Y ¥ &ciscrotUY nymyy, (1)
k o i

with ¢, and c; being creation operators of fermions in 2 Bloch and Wannier state respectively, is usually called
the Hubbard model [1], if one assumes U to be positive, since it is the on-site matrix element of the electron—
electron interaction. Otherwise, if U is thought to describe a kind of effective attraction of electrons like in the
simplest version of a model of superconductivity, it can be negative. Unfortunately the two cases, i.e. u>0 and
u<0, are usually treated differently, due to the differing goals of describing magnetism and superconductivity
[2,3]. In the following it will be shown, that by generalization of the functional integral method worked out
mainly for magnetic purposes, it is possible to handle both the attractive and the repulsive version of the model
(1) on the same footing.

The functional integral technique starts with rewriting the interaction term of the Hamiltonian as quadratic
form. There are several different transformations known up to now within the context of magnetism, which
are all operator identities and formally equivalent, when approximations are introduced. However, employing
a special approximation scheme usually destroys this equivalence resulting in different results to the same phys-
ical questions. Due to the lack of criterion which transformation is to be preferred the method is often called
arbitrary, since the choice of the quadratic form predetermines the results. To avoid this disadvantage the au-
thors argued, that dealing with the model (1) one should not restrict the various possibilities to break sym-
metries, what is usually done by adopting a special quadratic form, rather the model should “have the choice”
by minimizing its thermodynamical potential [4]. Working out this idea we start by rewriting the interaction
term

npny =4 (1—a;)+R;;+4(a;—1)S7+4(a; +1)R?, (2)
with §; being the spin vector

1
Su=4(chc,teien), Sy= 5 (ehen—ciicn), Se=4(ny—ny), (3)
and R, being the quasispin vector
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1
Rz’x=%(citci41- +Cilcz'1') > Rl’y= z (c,-’?c,j'—cucﬁ) 5 R:‘z=%(ni1 +ni1 —1) . (4)

This transformation was shown to be a generalization of almost all quadratic forms used in the context of mag-
netism [4]. However, due to the containment of both spins and quasispins in (2) it is possible to look for
magnetism ( {S;> #0), charge ordering ((R;,> #0), or superconduction ( {R;.> #0) in a unified manner. In-
serting eq. (2) into eq. (1) and applying the time ordering trick the partition sum becomes

Q"a=exp(—£ﬂUZ_ (1+ai))tr{T,exp(—ﬂ%) exp(—ﬂjdtHl(r))} ; (5)
with

Hy= ; Y (ex—pu+iU—0he )N, (6)
H(()==4UY (1-a)S}(1)+iU Y (1+a)Ri(7), (7)
A(t)=exp(1fg) Aexp(—164) , (8)

and A, the external magnetic field applied in the z-direction and measured in energy units. One can imme-
diately see that the chemical potential x which is known to be U/2 when neutrality and electron hole symmetry
is assumed, acts as symmetry breaking field with respect to R, in the same manner as k., does with respect to
S.. The latter may be of interest when (1) is applied to describe substitution effects in magnets or supercon-
ductors. Now, the Hubbard-Stratonovic transformation

exp(ad?) = j dx exp(— mx?—2,/ma x4) 9)

is used at every lattice site and at each instant of “imaginary time” to rewrite the partition sum as functional
integral,

Z, = J f[l@3x,-(‘r)@3 (1) exp{ — Qu[..x:(7)..., .7:(7)...1}, (10)

- o0

with @, being the functional

Qp=ny Jdr [x2()+y2(7))+In Z,[..x:(1)..., .pi(T)...] (11)
¢ 0
where
Za=tr{T,exp(—ﬂJ%) exp(— $npU Y, Jdr (J1—o; x:8;+1 1+aiy,-R,-)>} . (12)
! 0

By substituting
X(D)=/1-a;x(7), Y(1)=/1+a,y(7) (13)

one can shift the a-dependence to the Gaussian measure
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Y D3X(2) D3V (1)
Z= J. 1;11 STah)? exp{—Q[a; .. X (7)..., .. ¥(1)..]}, (14)
with
Qla;...]=n Z fdr(f?—? + Y—'Z(T—) l +In Z[...X;(7)..., ... ¥:(7)--.], (15)
i 0 -y i
Z[...]=tr{T,exp(—B.%) exp(— %nﬂUz Jdr [Xi(‘t)Si(r)+iYi(t)Ri(r)]>} . (16)
d 1]

Therefore the functional Z is no longer explicitly dependent on the «,. Now, one can proceed in the usual way,
i.e. applying the coupling constant trick, writing down the associated Dyson equation, discuss the different
approximation schemes developed to calculate Z, etc., as done e.g. in ref. [3] for the two-field scheme, which
is a special case of eq. (2). Of course, the latter is outside the scope of this Letter and will be published else-
where. However, without doing any special calculation one immediately recognizes that for each approximation
the dependence of the «; will be different. Therefore the best choice of the «; is determined by the approxi-
mation employed to calculate the partition sum and the related thermodynamical potential. By minimizing the
latter one finds the equation determining the «; straightforwardly,

1 0

—E%flnzx:O forall ;. (17)

This criterion holds independent of the method used to evaluate the functional integral (14). However, usually
the partition sum is calculated by means of the saddle point approximation, i.e. only the extremizing “paths”,
hereafter assigned as X§(7) and ¥$(7), are of interest. By minimizing the functional Q with respect to the fields
one finds

l—a; &

X?(T)=—F8X,-(‘L') In Z| x,¢zy=x5¢0), vicoy = ¥3(1) » (18)
I+, &

Yi(7)= 2 3¥.(0) In Z| x,cy= x50y, vy = ¥5(2) - (19)

Within the saddle point approximation the thermodynamical potential becomes a functional of the extremizing
paths, which are functions of the «; via egs. (18) and (19). One has

1

F200 Xy YE (20)

1 3
_ 2 sp__ 1 . il — 2
ﬂlnﬂ’a_4U§i (1+a,)+2ﬂ§i In(1—-a?)+

From eq. (17) one finds

192 1002dX; 192 dYy 3a;

0= 45e, * Box- da, T Bo¥T da, " Bli-a}) T

1U. (21)
The second and the third term in eq. (21) vanish due to the saddle point approximation. Since Z depends not
explicitly on «; the resulting expression looks like

1 1
3q; n
0=18U~- I > + _a.)zdesz(‘t)— —(%w)zfdt Y¢(1). (22)
(] 0 1 0

—a; (1
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The fields can be expressed by means of the mean values of the local spins and quasispins. From variation of
the functional In Z in eqs. (18) and (19) one finds

1-—
Xi(0)== 252 [3BU (S.(1)>e, (23)
Yi(2) = i1t 3RFU CRAT) ). (24)

Here we introduced

tr{Tep.A(7)}

CA(1))e= o — (25)
and
1
pe=exp(—pH) exp(— InBU Y, J dr [X3(7)Si(7) + Y?(T)Ri(f)]) . (26)
£
Inserting eqgs. (23) and (24) into eq. (22) yields
1 1
e =5/3U(1+% f dr (Si(1))i+3 Jdr<Ri(r)>§> =B, (27)
' 0 0

which gives thetwo solutions

,,2._———(1+1/1+4B2) (28)

The second term in eq. (20) demands
l-a?=a,/B>0. (29)

This selects

;= —(1_\/ﬁ4—3—2) (30)

By eq. (30) the «; are completely determined and therefore no “arbitrariness” remains. However, since the
«; depend on the mean values of the local spins and quasispins, i.e. the quadratic form itself depends on the
results which should be calculated from it, one has to solve a self-consistent problem. The remaining task is
to determine the functional Z in a more or less advanced approximation scheme. This is beyond the scope of
this Letter and will be published elsewhere.

The idea of the method presented above can also be applied if the functional integration is carried out by
expansion around the extremizing paths to the second order. Furthermore, what is said above is independent
on the special kind of 4, since it is related to the Hubbard interaction term only, and therefore other models,
¢.g. the (periodic) Anderson model, may be treated in complete analogy.

1 want to thank E. Heiner for discussion and critical remarks.
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