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Abstract

The thermodynamical potential of Hubbard models extended by either nearest-neighbour Coulomb correlation and/or
nearest-neighbour Heisenberg exchange is calculated analytically for a triangle and tetrahedron. It is shown that
the various degeneracies of the grand-canonical energy levels are partially lifted by the exchange interaction and
completely by the Falicov term. The influence of the additional interactions on the specific heat has been calculated
for the tetrahedron.
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Besides the fact that the analytical solution of non-trivial
models of strong correlation is a task of high pedagogical
value, the renewed interest in the analytical solution stems
mainly from cluster methods, which were successfully devel-
oped within the context of strong electron correlation dur-
ing the last decade [1,2] and applied to problems of high-
Tc superconductivity and from modelling of electron trans-
port through quantum dots [3]. Both topics have in com-
mon that a detailed knowledge of the cluster physics is a
key ingredient. The by far most employed model of strong
correlated electrons is the Hubbard model. Despite its sim-
plicity, the only analytical solutions available up to now
are the groundstate for n-site rings by help of the Bethe
ansatz or transfer matrix method [4,5] and the complete so-
lution on small clusters, i.e. the triangle, the tetrahedron
[6] and the square [7]. For models containing five and more
sites only approximate or numerically solutions exist. One
of the main points in [7] was the discovery of the degen-
eracy of cluster states with different particle numbers and
spin, which has surely a great influence of the coupling of
spin- and charge degrees of freedom. This point of view
got support very recently [8,9]. Usually the addition of fur-
ther terms to the pure Hubbard hamiltonian destroys this
degeneracy and makes the system unsolvable due to a re-
duced number of symmetries. In the present paper we study
the influence of nearest-neighbour (nn) Coulomb interaction
HF = W

∑
n.n.

ninj , exchange term (in the case of tri-

angle or tetrahedron) HX = J
∑

n.n.
SiSj or next-nearest

neighbour (nnn) hopping Hnnn = t′
∑

nnn
(c+

iσcjσ + h.c.)
(in the case of the square) respectively, which are added
to the standard Hubbard model. Here we use the notation
of Ref. [7]. For the square geometry any of the additional
terms reduces the symmetry, what prevents an analytical so-
lution. Furthermore, nnn-hopping creates frustration, what
becomes evident since for t′ = t the model is equivalent to
the pure Hubbard model on the tetrahedron. Nevertheless,
there exist non-trivial parameter sets, where analytical so-
lutions exist. Since for the triangular and tetrahedral geom-
etry the spatial and spin symmetries are enough to get a
complete solution we restrict, due to the lack of space, the
considerations to those cases. Regarding the method of cal-
culating the eigenvalues and eigenvectors we refer to [6,7]. In
the following the nn-hopping parameter t is used as energy
unit. For the on-site Coulomb energy U = 4t was chosen,
and the applied magnetic field in z-direction was set to zero,
if not otherwise mentioned.

In Fig. 1 we show the electron number in dependence on
the chemical potential for both the triangle and the tetra-
hedron respectively. For the triangle the most interesting
occupation number is N = 1, since for the related chemical
potential the empty state is degenerated both with a mag-
netic state with N = 1 and a non-magnetic state of N = 2.
Nearest neighbour-Coulomb interaction lifts the degeneracy,
whereas the exchange term does not. For the tetrahedron we
find the empty state degenerated with the groundstate for
N = 1, N = 2 and N = 3. This degeneracy is lifted partially
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Fig. 1. N(µ) for the triangle and the tetrahedron.
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Fig. 2. The lowest energy levels for 〈N〉 = 5 for the Hubbard
model without (left) and with (right) nn-Coulomb interac-
tion (Falicov term) on a tetrahedron.

by the exchange term and completely by the nnn-Coulomb
interaction. Furthermore the groundstates of N = 4, N = 6
are degenerated at the related chemical potential. The ben-
efit from formation of a spin singlet overcomes the increase
of the Coulomb energy, induced by an additional electron.
In Figs. 2 and 3 the influence of nn-Coulomb correlation and
spin exchange on the lowest (grand-canonical) energy lev-
els is depicted for the most interesting cases 〈N〉 = 5 and
〈N〉 = 2 respectively. The levels are classified by the quan-
tum numbers of electron occupation N , spin Sz , ~S2, and the
partners of irreducible representations of the point group Td

[6] respectively, e.g. E(N, Sz , S(S + 1), Γm,i. For the ”un-
doped” model, i.e. 〈N〉 = 4, the two Γ3-spin-singlets are the
groundstates (see appendix) and the first exited states are
the 9 triplet states belonging to Γ5 and S = 1.

As an example of the influence of these level crossings
on physical quantities, the specific heat of a cluster gas was
calculated. The results for the most interesting occupation
numbers are depicted in Fig. 4.

Summarising we can say, that the physics of the Hubbard
model on a triangle and tetrahedron is dominated by the
degeneration of groundstates belonging to different occupa-
tion numbers. The latter is lifted partially by an additional
Heisenberg exchange and totally by a n.n.-Coulomb interac-
tion.
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Fig. 3. The lowest energy levels for 〈N(µ)〉 = 2 for the Hub-
bard model without (left) and with (right) nn-Heisenberg
interaction on a tetrahedron.
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Fig. 4. The specific heat at constant electron occupation for
extended Hubbard models on a tetrahedron for < N >= 2
and < N >= 5.

Appendix A. EG on a tetrahedron for N=4

E(4, 0, 0, {Γ3,1, Γ3,2}) = −J − 4 µ + U + 5 W − 2 X Y
Y = cos(arccos(4 t2 (J + U −W ) /X3)/3)

X =
√

J2 + 16 t2 + 2 J U + U2 − 2 J W − 2 U W + W 2/
√

3
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