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Abstract 

The influence of texture on the time and field dependence of the magnetization, the magnetic viscosity, the irreversible 
susceptibility and the fluctuation field is calculated for two models of non-interacting uniaxial panicles differing in the 
angular dependence of the switching field. The first model consists of single-domain particles reversing their magnetization 
by coherent rotation. In the second model the grains exhibit a 1/cos ~ dependence of the switching field on the misalign 
angle. A detailed comparison of our results with the existing theory of the magnetic viscosity is given. For both cases it was 
shown, that texture alone cannot give a barrier distribution smooth enough to get the mostly measured In t behaviour of the 
magnetization. The fluctuation field S v is found to be independent on the texture, in good agreement with the experimental 
situation, but in contrast to the theoretical considerations reported in the literature. 

1. Introduction 

The magnetic viscosity is one of the characteris- 
tics of  technically applied polycrystalline hard mag- 
nets, knowledge about which is necessary to give an 
expectation of the long term stability of these materi- 
als in technical devices [1-5]. Measurement and 
definition of  the viscosity is based on the experimen- 
tal fact, that nearly all known magnetic materials 
show a logarithmic decrease of  the magnetization 
with time. 

The theory of magnetic viscosity usually starts 
from a distribution of  energy barriers, or, what is 
essentially the same, from a broad distribution of  
relaxation times, whereas the theory of  the magneti- 
zation curve is based on a switching field distribu- 
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tion. Both the barrier distribution and the switching 
field distribution depend usually on the time and the 
history of  the magnetization process. Deviations from 
the logarithmic time dependence are sometimes ob- 
served. They are not measurable if the change in the 
slope of the barrier distribution in the interval be- 
tween 25kBT and 30kBT is small. From the theoreti- 
cal point of  view it would be desirable to start from 
time independent distributions of intrinsic parameters 
of the grains, e.g. the volume, the shape, the 
anisotropy, the saturation magnetization. This re- 
quires a detailed knowledge about the mode of mag- 
netization reversal, since the activation energy neces- 
sary to overcome an energy barrier has to be calcu- 
lated from micromagnetics. 

In the following we will study, how a distribution 
of the particle easy axis (a texture) will influence the 
aftereffect. Therefore we consider first the Stoner-  
Wohlfarth model [6] with a fiber texture. This model 
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is easy enough to get the complete time behaviour 
without the crude approximations inherent in the 
usual theory of the magnetic viscosity and it can 
serve as a reference system for other calculations. 
The same model was used to study the aftereffect in 
films of recording media [7,8], and it was used for 
ideal aligned grains [9]. Ideal aligned Stoner-Wohl- 
farth ensembles with a log-normal distribution of 
particle volumes were considered in Ref. [8] and it 
was shown that deviations from the In t behaviour 
can be explained via a power series expansion of the 
barrier distribution. Berkov [10] calculated the bar- 
rier distribution and the field dependence of the 
viscosity for an ensemble with a random distribution 
of easy axes. His treatment is based on an approxi- 
mate form for the misalignment angle and field 
dependence of the energy barrier of a single grain, 
given in Ref. [11]. This produces some unphysical 
pecularities at fields of H = ~ H  A and it yields 
wrong results regarding the field dependence of the 
barrier distribution and the field dependence of the 
viscosity. Since we use the exact dependence of the 
barrier on the field and on the misalignment angle, 
we are able to correct the wrong pictures given in 
Ref. [10]. The latter is not the main point of the 
paper, since our interest is focused on the depen- 
dence of the viscosity and the susceptibilities on the 
texture function. Therefore, in a second point, the 
influence of texture is considered starting from the 
1/cos ~ ansatz [12] for the angle dependence of the 
switching field of the individual grains, which is of 
interest, since Martinez and Missell [13] measured 
the viscosity constant S v of sintered Nd-Fe -B  based 
magnets to be nearly independent on the degree of 
alignment, in sharp contrast to the theory given in 
their paper. The experimental result was also con- 
firmed by Street et al. [14]. It is actually this contro- 
versy between theory and experiment, which moti- 
vated to produce this paper. 

2. Outlines of the 'standard theory' of the mag- 
netic viscosity 

2.1. Time dependence of magnetization and viscosity 

fore we assume the heterogeneous magnet to consist 
of a lot of small volume elements, which can exist in 
two magnetization states only, one of them stable 
and the other metastable. For example, the volume 
elements may be small single domain grains, or the 
volume between two neighbouring pinning sites of a 
domain wall, etcetera, in dependence of which mi- 
cromagnetic model one has in mind. The thermody- 
namic potential of the volume element exhibits a two 
minima shape for internal fields below the switching 
field and a one minimum shape above. Usually a 
double well potential is sufficient for a theoretical 
description of the thermal aftereffect. The magnetiza- 
tion corresponds either to the global minimum or to 
the local minimum, depending on the prehistory of 
the magnetization process. In both situations the 
magnetization will change with time due to thermal 
fluctuations (other processes are left out of consider- 
ation). This means that the magnetization of the 
volume element at a future time can only be deter- 
mined with a probability, which has to be calculated 
from 

dp 
dt w,2p + w21(1 - p ) .  (1) 

Here p describes the probability to find the volume 
element in the metastable state (state 1), w~2 and w21 
gives the transition rates for jumping from state 1 to 
the stable state (state 2) and w21 vice versa. If an 
opposite field is applied, which is lower than the 
switching field H s, the volume element remains 
metastable, but with a reduced barrier height. With 
increasing opposite field the energy barrier will be 
lowered and it vanishes at the switching field. If the 
function EB(H) describing the dependence of the 
barrier height on the applied field decreases 
monotonously, we can write down the solution of 
Eq. (1): 

p( t) = ~9( EB( H) ) 

W21 + W12 e-(W12+w2t)t I 
w12 -[-- w21 w12 -}- w21 

(2) 

The calculation of the thermal aftereffect in poly- 
crystals should start from a mesoscopic level. There- 

with ~9 being the step function. The energy of the 
metastable state is called El, the energy of the stable 
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configuration E2, and the energy of the maximum 
between them E M. For thermal fluctuation we have 

W12 = V 0 e - (eM-e ' ) / kBr ,  (3) 

w21 = r o e -(eM-e2)/k"r, (4) 

where r o is to be determined from microscopic 
theories, which is quite hard and till now not very 
satisfactorily done [1-3,15,16], or one can try to get 
it from experiment. It ranges typically from 10 9 tO 
1012 Hz [2,3]. Each of the volume elements of the 
heterogeneous magnet may be characterized by its 
barrier energy Eu = E M - E  1 alone, since the barrier 
for backjumps, E M - E 2 ,  is related to E B in a 
unique manner. The probability to find a volume 
element with a barrier energy between E~ and E B + 
dEB, i.e. f (E  a) dE a is the sum over all volume 
elements having a barrier in this interval divided by 
the total volume of the specimen. The averaged 
normalized magnetization ~ = M / M  s = i / I  s is cal- 
culated accordingly by 

::c 

~( H, t) = fo dEB f(  EB)m( H' t), (S) 

oo 

re(H, t) = fo dEB (2p(t)  - 1)f(EB). (6) 

The derivation of the viscosity starting from Eq. (5) 
was given in an elucidated manner by Berkov [17], 
proving the universal character of the In t law. Since 
Berkov has not given the well known relation be- 
tween the viscosity and the irreversible susceptibil- 
ity, we will do that by formulating the theory given 
by Gaunt [18] in the mathematical language of 
Berkov. For compatibility reasons we repeat the 
main steps given in Ref. [17] first. The magnetic 
viscosity measured in units of I s we get from 

O (H, t) 
S 

Oln t 
co =2fo dE B W12 . f ( E B ) r t e  -Ft.  (7) 

W12 q- W21 

Here was abbreviated 

F -~" W12 -~- W 2 1 .  ( 8 )  

Usually backjumps are neglected, also in Ref. [17]. 
We emphasize, that neglection of backjumps from 
state 2 to state 1 replaces the long term behaviour of 

Eq. (2), resulting in the anhysteretic magnetization 
curve for t --+ % by the quite unphysical value m(oo) 
= sign H. Nevertheless, for times relevant in experi- 
ments this assumption is justified. Using this approx- 
imation Eq. (8) simplifies to 

F= w12 = 1" 0 e -E~/kBr (9) 

and Eq. (7) becomes 
¢¢ 

S(H, t) = 2fo dEa f ( E B ) r t  e -r ' .  (10) 

Following Refs. [18,17] the peaked structure of 
r t  e x p ( - F t )  is used to evaluate the integral. In the 
vicinity of the peak position EB, max, which is given 
by 

EB . . . .  ~--- ksT In( rot ), (11) 

the distribution function f (E  s) is expanded into a 
Taylor series: 

n o ~ n!l ~Bd" EB) e s ( . ,  t) = 2 E  77;I (  
= B ,max 

oo 

X £  dE a (E B-EB,max)nFt e -v'. 

(12) 

The derivatives are to be evaluated at the extremal 
point E B . . . .  . Substituting in a first step 

E B = - k u T  i n ( r / r 0 )  (13) 

and afterwards x = r t  yields finally 

o: ( _ k B T )  n d n EB . . . .  

S( H, t) = 2k.V E - - f ( E a )  
n=0 n! dE~ 

× for°tdx ln"(x)  e -x. (14) 

If the measurement is started at a time t s for which 
the relation 

r0t  s >> 1 (15) 

holds, the upper boundary of the integrals can be set 
to infinity. Thus, the final expression is [17] 

co 

S( H, t) = 2kaTn=o ~ C, ( -kBT)"n! d--~Bd" f (  EB) e,m,. 

(16) 
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with 

c n = f o  dx In n x e  -x. (17) 

Practically, due to the large value of F 0, Eq. (15) 
holds for all the experiments reported up to now. 
Therefore the time dependence of S in Eq. (16) is 
due to the time dependence of EB,max, the value at 
which the derivatives of f(E B) have to be evaluated. 
Usually this time dependence is neglected, then one 
finds for the magnetization, by integration from the 
starting time t s 

~ ( H ,  t ) = ~ ( H ,  t s ) -  S ln(t/ts). (18) 

If one takes this time dependence into account, a 
suitable manner to handle it is the expansion of the 
derivatives at the starting time ts, resulting in devia- 
tions from the simple In t behaviour. This was shown 
by E1-Hilo et al. [8] for an ensemble of ideally 
aligned Stoner-Wohlfarth fine particles; since they 
did not use the energy barrier distribution directly 
but instead a distribution of single particle volumes, 
the mathematical terms are different. 

2.2. Irreversible susceptibility and fluctuation field 

From the mechanism outlined above follows a 
tight relation between the isothermal time depen- 
dence ( A H =  0) and the irreversible field depen- 
dence in a very short time (At = 0) of the magnetiza- 
tion. Regarding the field dependence of f(Ea) the 
susceptibility follows by differentiating Eq. (6) with 
respect to H at fixed time: 

i~( H, t) ~ af( EB) 
Xirr ~--- OH = 2fo dEB a-----~ e-rt" (19) 

This is the irreversible part of the susceptibility only, 
since reversible mechanisms are left out of consider- 
ation. Due to the implicit field dependence of f(EB), 

Xirr-----2f0 ~ dE B --Of(EB) dEB e -ft. (20) 
~E B dH 

Assuming dEB/dH to be constant, i.e. taking it at 
the point E B = EB,ma x, and integrating by parts yields 

dEBd--'-H- EB m a x  2f ° °z~B'8 e - r t )  Xirr = d E B  " ~  ( f ( E B )  

dEB f 
EB max " 0  

d n  . 2 d E  B f ( E B )  e - F t ( - - t )  

~F 
× ~E---~" (21) 

Taking into account that 

r ( o )  = t o ,  = o, 

r (22) 
OE B knT' f(~) = 0 

holds, the susceptibility is found to be 

d H  EB .... t,~B~ ~, 

(23) 

Here a term was neglected, which is small due to 
Fot >> 1. Finally, by comparison with Eq. (10), 

S dE B E ..... " (24) 
Xirr kBT dH 

Usually the quotient S v of S and Xirr, 

S =k T/dEBeBm, x / d H  S v =  B . , (25) 
Xirr 

is called the fluctuation field [1,2,5] or viscosity 
coefficient [13,19], and discussed to be a characteris- 
tic of the materials. We want to emphasize that this 
is only true if the field derivative of the energy 
barrier is constant in the energy range between 25kBT 
and 33kBT, otherwise the fluctuation field remains 
field dependent. With dEB/dH = constant, as was 
proved e.g. for domain wall pinning [18], the field 
dependence of E 8 is determined to be 

EB=E ° 1 -  . (26) 

The switching field H s of a single volume element 
with square hysteresis or the switching field if ther- 
mal activation is absent. If the field dependence of 
E ° and H s is weak, then S v should be linearly 
dependent on temperature. The switching field H s is 
given by the work to overcome the energy barrier at 
zero temperature: 

E°=tXOfvc dVfonSSHM(H)=l%VcMsH s. (27) 
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Here V~ is the activation volume times a numerical 
factor between one and two, dependent of the micro- 
magnetic model considered [18]. A comparison of 
Eqs. (25) and (27) leads to 

kBT 
- - .  (28) 

V c = /z0SvM s 

which is not constant in time. Therefore one should 
expect additional terms in the time dependence of 
the magnetization for interacting systems. 

3. The texturized Stoner-Wohlfarth ensemble 

The latter are the basic assumptions for the so called 
activation volume approach. We remark that the 
logarithmic time derivative of the irreversible sus- 
ceptibility equals the derivative of the viscosity with 
respect to the magnetic field, due to the theorem of 
Schwarz, i.e. 

0Xirr 0S 

0 In t OH" (29) 

As Berkov [17] emphasized, the logarithmic be- 
haviour does obviously not depend on the special 
form of the barrier distribution function, as long as 
the higher derivatives of the barrier distribution are 
small or, in other words, if the switching field distri- 
bution is not too narrow. But moreover, from Eqs. 
(10) and (23) we find that even in those cases, where 
the magnetization would not follow the In t law, the 
relation between the viscosity and the irreversible 
susceptibility is valid if the condition dEB/dH = 
constant holds. For the given derivation all the vol- 
ume elements are assumed as non-interacting. It is 
not yet clear, how an interaction between the grains 
will modify the form of Eqs. (18) and (25). One may 
argue that the interaction shifts the switching field of 
a volume element by the interaction field due to the 
neighbouring volume elements thereby transforming 
the original switching field distribution to an effec- 
tive one. This effect is included in the derivation if 
one identifies H with the internal field, as was 
supposed here. Nevertheless, every volume element 
will experience a local field, which deviates from the 
mean field due to fluctuations, caused by the hetero- 
geneity of its neighbourhood. If this distribution is 
known, one can generalize Eq. (5) by averaging with 
respect to the local field fluctuations. Attempts into 
this direction are contained in Ref. [10] as well. A 
complication arises, since even in the case where the 
original switching field of a grain is time indepen- 
dent, the effective switching field becomes time 
dependent, as it contains the local interaction field 

3.1. The angular dependence of the energy barrier 

In this section we will deal with the Stoner- 
Wohlfarth model [6], which allows to calculate the 
aftereffect without making assumptions about the 
field dependence on the barrier height, since we can 
calculate it exactly. For this we choose an ensemble 
of uniaxial particles each reversing magnetization by 
coherent rotation. The interaction between grains is 
neglected. This model was frequently employed to 
study fine particle systems [10,20,21]. We assume 
further all particles to have the same volume (in 
contrast to Refs. [8,9,20,21]) and the same anisotropy 
constant K 1. To the magnetic part of the energy of 
an oblique oriented particle, 

E = 2VKl f (h ,  O, q~) (30) 

with 

f ( h ,  O, ~o) = ½sin2~o - h c o s ( O -  ~o), (31) 

both the anisotropy and the field energy contribute. 
Here V is the volume of the grain or the volume 
element in which the magnetization coherently ro- 
tates and h is measured in units of the anisotropy 
field H A = 2K1/M s. The angle between the field 
direction and the c-axis of the uniaxial crystallite is 
O, the angle between the magnetization direction 
and field direction is ~o. The minima and maxima of 
the energy in dependence on the field h and the 
angle O are obtained from the first and second 
derivative of Eq. (31) with respect to ~o. Below a 
critical field h c, which depends on O according to 

h c = (cos  2/3 Oq'- sin 2/3 O) -3/2, (32) 

twO minima and two maxima exist, whereas above 
h c only one. This means that for large enough nega- 
tive fields a barrier does not exist, whereas below the 
critical field we have a barrier to overcome by 
thermal activation. If the easy axis of a grain lies in 
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Fig. 1. Energy barrier height in dependence of angle O for 
different values of the opposite field for the isotropic Stoner- 
Wohlfarth ensemble. 

the direction of the applied field, one gets for the two 
energy barrier heights 

El2 = E M - E 1 = VKI(1 - h) 2, (33a) 

E2I = g M - g 2 = V K I ( 1  + h )  2. (33b) 

For an arbitrary angle O the minima and maxima 
position and the related barrier heights have to be 
calculated numerically. Fig. 1 shows the barrier 
h e i g h t  E12 in dependence on the angle O for differ- 
ent applied fields. There is a significant difference 
between the results shown in Fig. 2 of Ref. [10] and 
our results. We do not find five different types for 
the dependencies of EB(O) for H between 0 and H A 
but only two, one for H < HA~2 and the other for 
H > HA~2. We believe that the wrong results in Ref. 
[10] are due to the approximative form of the barrier 
height in dependence of the misalignment angle. We 
believe that a grain magnetized opposite to the field 
direction has the highest barrier as shown in our 
calculation, and not a zero barrier as given in Ref. 
[10]. 

3.2. The energy barrier distribution 

From Eq. (33) and Fig. 1 it is evident that the 
barrier heights are not linearly dependent on the 
applied field, in contrast to the assumption necessary 
to get the commonly used Eq. (25). If the grains are 
ideally aligned, the barrier distribution in Eq. (5) is 
B-like, resulting in a time behaviour proportional to 
p(t)  from Eq. (2). Otherwise, if the easy axes are 
distributed according to a texture function, one can 
calculate the barrier distribution from the results 

shown in Fig. 1 using the texture function. Since the 
details of the fiber texture function are of less impor- 
tance, we use in the following the simple rotational- 
symmetric function [22] 

f ( O )  = (2n + 1) Cos2nO, (34) 

where the angle O is between the texture axis and 
the c-axis of the individual grains. Both the applied 
field and the texture axis should be parallel to the 
z-axis. Using the angle dependence of the barrier 
height together with the texture function, we are able 
to calculate the barrier distribution function for dif- 
ferent fields and texture parameters. As an example 
we show the distribution of the barrier El2 for 
different magnetic fields for the isotropic sample 
(n = 0) in Fig. 2. 

3.3. Magnetization and viscosity 

If all grains of the ensemble are in the metastable 
state at t = 0, we get the averaged normalized mag- 
netization parallel to the field from 

= ( M ( t ) / M s ) = ( c o s ( O -  q~l)p( t ) )  

+ ( c o s ( O -  ~o2)(1 - p ( t ) ) ) .  (35) 

Here ~o 1 and ~o 2 denote the angles between the 
magnetization and the c-axis of the metastable and 
stable state respectively, and p(t)  is the time depen- 
dent probability to find a grain in a metastable state, 
according to Eq. (2). The brackets symbolize an 
average, which has to be calculated by integration 
with respect to the texture function: 

( . . . )  = f . . /2  dO sin O f (  O ) . . . . (36) 
¢0 

6 0 -  

Y Ilos ]I 
f ~  
~3o- u I~1 

~..~ 2 0 -  I . 

0.~ i 

3 E 

o~ 02 03 04 o s  
E,2/(2K,V) 

i 0  

Fig. 2. Energy barrier distribution El2 of the isotropic ensemble 
for different opposite magnetic fields (parameter on the curves: 
h=H/HA). 
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To get the full time dependence of the magnetization 
it is necessary to make an assumption about the 
parameter E12/kBT. To have a remarkable effect 
during experiments lasting typically from 1 to 10 4 S 
this parameter should lie between 25 and 33 [18]. In 
Figs. 1 and 2 the barrier height is measured in units 
of  2V K t. Therefore the value 25kBT/2V K 1 should 
be between 0 and 0.5. We choose kBT/2VK 1 to be 
0.001. This is essentially a choice of  an effective 
particle volume V. For example for Ba-ferrite one 
gets 22 nm diameter, for SmCo 5 8 nm, and for the 
other hard magnetic materials a value in between, 
which is of  the order of the Bloch-wall thickness, 
instead of the order of  the grain volumes of sintered 
magnets. 

3.4. Susceptibilities and fluctuation field 

Due to the differences of  the presumptions of  the 
model under consideration and the theory of section 
2 yielding Eq. (25) we cannot expect S v to be 
constant a priori. Therefore we computed the total 
and irreversible susceptibility, and the aftereffect 
constant in their dependence on field and time. The 
total susceptibility ,)(tot we get by simply differentiat- 
ing Eq. (35) with respect to H thereby taking the 
waiting time as constant. Concerning the irreversible 
susceptibility, we find in the literature two different 
methods to measure it. The first way is to differenti- 

5 0 .  

4 0  

- -  -- X i , ,  

3 0  . ~l#d. 

2O ': 

10 x",, 

°o . . . . . . . . .  o . ' 5 ' '  : - : - : - : - : :  "o.6 H/HA 
Fig. 3. Reversible, irreversible and total susceptibility for the 
isotropic sample for a waiting time of 1 s. The differentiated 
remanence for the same system is also shown. 
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Fig. 4. Time dependence of the magnetization, viscosity, irre- 
versible susceptibility and fluctuation field for the isotropic en- 
semble. Parameters on the curves: applied opposite field. 

ate the remanence curve [23]. For the model under 
consideration one has to evaluate 

0mR=ah ( c o s ( t g - ' r r ) ~ p ( t ,  h)) 

+ o s ( O ) ~ - ~ ( 1 - p ( t ,  h)) .  (37) 
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For t = 0 this can be calculated analytically [24], 
yielding 

~)m R 

~h 
= O ( h - 0 . 5 )  O ( 1 - h )  

X :~  cos(O/) sin(O/) f(Oi) 
i=  1,2 

(cos 2/3 0 i +sin  2/30i) 5/e 
× 

Icos -1/3 sin O i - sin -1/3 cos Oi I" 
(38) 

Here the two angles O i are determined by the inter- 
section of the curve h c = h and the curve given by 
Eq. (32), i.e. 

O1,2 = a r c c o s ( 1  (1 + ( 1 
4 ( 1 - h 2 )  3 1 

27 h4 I " 

(39) 

For finite times the calculation has to be done nu- 
merically. 

The second way to get the irreversible susceptibil- 
ity is to measure the difference between the total and 
the reversible change of magnetization [25]. For the 
considered model one gets the reversible susceptibil- 
ity by freezing the state of each grain, which it has, 
if a field was applied for a time t. Then one has to 
look how the magnetization changes due to the 
reversible rotation process, i.e. 

a 
Xrev = (p( h, t)-~c°s( O- ~Pl)) 

+((1-p(h, t))-~cos(O-q~2) I. (40) 

The so defined irreversible susceptibility, i.e. )(irr = 

)(tot - Xr~v, is obviously different from the differenti- 
ated remanence curve. In Fig. 3 we show the numeri- 
cally calculated field dependence of the two differ- 
ently defined irreversible susceptibilities together 
with the reversible and total ones. Fig. 4 shows the 
time dependence of the magnetization, the viscosity, 
irreversible susceptibility and fluctuating field for an 
isotropic ensemble for different magnetic fields in 
the vicinity of the coercivity field of about h = 0.48. 
The magnetization does not follow the In t law. The 
peaks of the viscosity and the irreversible suscepti- 
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Fig. 5. Field dependence of the magnetization, viscosity, irre- 
versible susceptibility and fluctuation field for waiting times of 
10 -3, 1 and 103 s. 

bility cancel each other giving a nearly time indepen- 
dent value of the fluctuation field S v. The same 
quantities are depicted for different waiting times in 
Fig. 5, and in Fig. 6 the dependence on the texture 
parameter n is plotted for the same quantities. The 
fluctation field is independent on the degree of align- 
ment showing that the peak of Ft e x p ( - F t )  is 
sharp enough for the higher derivatives of dEa/dH 
not to contribute. 
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4. The texturized Kondorsky ensemble 

4.1. Magnetization and viscosity 

In contrast to the Stoner-Wohlfarth model, where 
the angular dependence of the switching field is 
given by Eq. (32), in the following we will discuss 
the case where the angular dependence of the switch- 
ing field exhibits a 1/cos O law [12]. For the mod- 
els of both weak and strong domain wall pinning as 

well as for the nucleation models [18,26] one has a 
linear dependence of the barrier height E B on the 
applied field, according to Eq. (26). Assuming E ° 
and H s to be determined by intrinsic material pa- 
rameters, the main contribution to the angular depen- 
dence is due to the fact that only the component 
parallel to the easy axis causes irreversible changes. 
We neglect the lowering of the domain wall energy 
due to rotation processes. For the barrier height 
follows 

( -c°s° t EB(COS O) = E  ° 1 Hs . 

We get the viscosity from 
0~(H,  t) 

S -  
0In t 

= 2 f ; / 2  dO sin 0 cos O f(cos O ) F t  e - r t ,  

(42) 

where ~ is calculated analogous to Eq. (35), but 
with qh = 'rr and 92 = 0, and f(cos O) is the texture 
function Eq. (34). Solving Eq. (41) for cos 0 and 
changing the integration variable to E B yields 

2H~ l e o  dE B f (  E , )  
S = H2E----~B "tE°(1-H/Hs ) 

X(1-EJE°)Ft e - f t .  (43) 

If the maximum of F t  e x p ( - F t )  is outside the 
limits of the integral, S will be small. If it is inside, 
from a Taylor series expansion results 

2H~ 
S = H--~-o f ( g B , m a x ) ( 1 -  gB,max/EB 0) 

E o 
× f " dEB r t  e -r ' ,  (44) 

deo(l - H/Hs) 

with EB,ma x according to Eq. (11). 

4.2. Irreversible susceptibility and fluctuation field 

For the irreversible susceptibility we get 

0~ E ° ~/2 
Xirr = 0--n = - 2  f dO sin O cos20 

HskaT "o 

×/'(cos O)rt e - r ' ,  (45) 

where we used 

o r  r e  ° 
- - c o s  O. (46) 

OH = ksTH s 
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Changing to an energy integration yields 

- 2 H 2  f E° dE B f ( E . )  
Xirr = f i 3 - k B  T .,EO(I_H/Hs ) 

× ( 1  -EB/EB)° 2Ft e -ft. (47) 
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Fig. 7. Time dependence of the magnetization, viscosity, irre- 
versible susceptibility and fluctuation field for an isotropic ensem- 
ble of grains with 1/cos O angular dependence of the switching 
field H s with E o/kBT = 1 0 0 ,  F 0 = 1 0  - 9  s - 1 .  Parameter on the 
curves: applied opposite field h = H / H  s. 
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With the same condit ion as cited above  w e  get, as 
the leading term o f  a Taylor expansion,  

- 2 H  2 

X i r r  "~ H----3-~BTBTf( EB,max)(1-- EB,max/E°) 2 

× r E° dE Ft  e ft. 
JEO(I - H/Hs) 

( 4 8 )  
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Whereas the viscosity and the irreversible suscepti- 
bility depend on the texture function, the quotient of 
Eq. (44) by Eq. (48), 

-HkBT 
S v = EO _ EB,max, (49) 
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Fig. 9. The  d e p e n d e n c e  o f  the magne t i za t ion ,  v iscos i ty ,  irre- 

vers ib le  suscept ibi l i ty  and f luctuat ion f ield on  the a l i gnmen t  pa-  

r ame te r  n (1 R / I  s = ( 2 n  + 1 ) / ( 2 n  + 2 ) )  for  an  e n s e m b l e  o f  g ra ins  

wi th  1 / c o s  ,9 angu la r  dependence  o f  the swi tch ing  f ield H s wi th  

E o / k B T =  100, F o = 10 - 9  s - 1 .  Pa rame te r s  on  the  curves :  ap- 

pl ied opposi te  field h = H / H  s. The wai t i ng  t ime  is 1 s. 

does not depend on the texture function. Eq. (49) 
shows that S v should be linearly dependent on the 
applied field if E ° and F 0 are field independent. 
The temperature dependence is more complicated, 
since E B . . . .  is linearly dependent on the temperature 
and also E ° is expected to decrease with increasing 
temperature. The typical measuring times are be- 
tween one and some thousands seconds which means 
that the energy EB, max is between 25kBT and 33kBT. 
Therefore the barrier E ° has to be larger than ~ 
35kBT, while here kBT/E°=O.O1 was chosen, 
whereas the magnetic field should be larger than half 
of the switching field. If we do not restrict the 
calculation to that interval, the calculation of S, Xirr 
and S v has to be done numerically, and indeed, we 
calculated the following pictures from Eqs. (42) and 
(45) directly. Fig. 7 shows the overall time depen- 
dence of the magnetization, viscosity irreversible 
susceptibility, and fluctuation field. The field depen- 
dence of the same quantities for waiting times of 
10 3, 1 and 10 +3 s is plotted in Fig. 8, and finally in 
Fig. 9 the dependence on the texture parameter n is 
given. 

5. Discussion 

The main topic of this paper is to calculate the 
influence of a distribution of easy axes on the time 
dependence of the magnetization, the magnetic vis- 
cosity, the susceptibilities and the fluctuation field 
using well defined assumptions on the intrinsic pa- 
rameters of the models. Since our results were calcu- 
lated without using an energy barrier distribution 
being the main entity to the 'standard theory', it is 
very useful to compare the given theory with the 
usual way to get the magnetic viscosity. This com- 
parison is possible, since both investigated models, 
i.e. the texturized Stoner-Wohlfarth and Kondorsky 
ensemble respectively, allow to calculate the barrier 
distribution from the texture function. 

In Section 3 we dealt with Stoner-Wohlfarth 
ensembles with different degrees of alignment. For a 
random oriented ensemble the angle dependence of 
the energy barrier and the barrier distribution was 
first given by Berkov [17]. We found his results to be 
incorrect. Our numerically calculated barrier distribu- 
tion has only one singularity according to the energy 
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barrier minimum at 45 °. Fig. 2 shows that even for a 
random ensemble the assumption of a nearly con- 
stant barrier distribution in the vicinity of E B . . . . .  
necessary to evaluate the integrals in the 'standard 
theory', is violated. We found that the barrier distri- 
butions, which result from different degrees of mis- 
alignment, have always sharp edges and the slope in 
between is not small. Accordingly the computed time 
dependence of the magnetization is not linearly de- 
creasing with In t. In contrast to our model, where 
we used a ~-like distribution for the critical volumes 
and where the barrier distribution is due to a texture, 
in Ref. [7] an ideally aligned ensemble, where the 
barrier distribution is due to a distribution of particle 
volumes, was considered. There was shown that a 
small distribution width results in deviations from 
the In t behaviour. The reason is again that the 
assumption of a constant barrier distribution in the 
vicinity of EB, rnax is violated. Taking into account 
higher order derivatives of the barrier distributions, 
the approximative evaluation of the integrals can be 
improved, giving leading corrections to the In t law 
[7]. We did not follow this line, instead we calcu- 
lated the integrals over the misalign angle numeri- 
cally. In the Stoner-Wohlfarth model it is also possi- 
ble to calculate the barrier height for backjumps. 
Taking them into account, it can be shown straight- 
forwardly from Eqs. (2) and (6) that the magnetiza- 
tion for long waiting times approaches the anhys- 
teretic curve, according to what one should expect. 
Furthermore, since that model contains both re- 
versible and irreversible processes, it was possible to 
demonstrate the difference between the irreversible 
susceptibility, which is dependent on the applied 
field and the waiting time, and the differentiated 
remanence curve. From Eq. (23) follows that the 
susceptibility, which is used to determine the fluctua- 
tion field, has to be measured at the same field and 
the same waiting time at which the viscosity was 
determined. For this purpose the differentiated rema- 
nence curve seems less suited, since the remanence 
is dependent on the time the opposite field was 
applied before switching it off. Nevertheless our 
results show that the difference is not too big, so that 
it may be neglected in experiments. 

For the models with Kondorsky-type angular de- 
pendence treated in section 4 the time behaviour 
depends mainly on the parameter E°/k~T. We used 

for our computation the value 100. In that case the 
texture functions under consideration are much wider 
than the peak of the function Ft exp(Ft) .  The 
numerical results shown in Figs. 7, 8 and 9 are 
therefore conform with Eq. (49). We find the In t 
law nearly fulfilled if the applied field is in the 
region of the switching field H s or larger. The shift 
of the magnetization curve to lower fields with in- 
creasing waiting time is in good qualitative agree- 
ment with experiments which measured the sweep 
rate dependence of the hysteresis curves in 
SmCo3.sCul. 5 [27]. It is surprising that the texture 
dependence of the viscosity and the irreversible sus- 
ceptibility cancel out, giving a texture independent 
fluctuation field S v. This is in good agreement with 
the experimental results given in Refs. [13,14]. Our 
results are not related to the special form of the 
texture function, e.g. a Gaussian gives the same 
results [24]. This can be seen immediately from the 
derivation of Eq. (49), where it is not necessary to 
specify the form of the texture function at all. We 
regard that the discrepancy between the experiment 
and the theoretical considerations in Ref. [13] is due 
to the fact that in Ref. [13] S v was averaged. Instead 
one has to average S and Xirr separately. 

Since we used models of identical particles, i.e. 
without any distribution of switching fields or activa- 
tion volumes etc., the texture influence on the fluctu- 
ation field S v should be stronger than in every more 
realistic model, i.e. when distributions of other in- 
trinsic parameters are taken into account. Even for 
that case we found no dependence of S v on the 
texture parameter n. Nevertheless, for applications 
not S v but S itself is of more interest. This quanti- 
tity shows a texture dependence in both models if the 
applied opposite field is in the vicinity of the coer- 
civity field. The flat maxima in Figs. 6 and 9 will be 
smeared out if one takes into account distributions of 
other parameters. Therefore our main conclusion is 
that there is no chance to change the magnetic 
aftereffect significantly by manipulation of the tex- 
ture. 
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