
x <- 1:10
y <- 2 + 0.5 * x + rnorm(x, sd = 0.5)
m <- lm(y ~ x)
plot(x, y, pch = 16)
abline(m, lwd = 2, col = "red")
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Preliminary Notes

This tutorial is, similar to R, in permanent development. Suggestions and improvements are welcome, please
use always the most recent version.

Due to this, it is explicitly forbidden to upload this tutorial to other than the original internet locations.
Printing, copying and distribution on CDROM or flash drives is allowed, as long as these preliminary notes
are not removed.

Parts of this tutorial are based on a German course script from the same author. I am grateful to Christof
Bigler for comments on an earlier German version of this tutorial and to Jürgen Niedballa for help in trans-
lation of selected chapters.

However, both are not responsible for my mistakes, and suggestions and improvements are always welcome.
Note also that all information provided herein comes without any warranty.

The translation is still preliminary and more chapters, sections, figures and examples may follow. The
most recent version will always be available from http://tu-dresden.de/Members/thomas.
petzoldt/.
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1 Introduction

This tutorial assumes preliminary knowledge of basic applied statistics from a bachelor degree in natural
sciences or engineering and aims to extend this on a problem-oriented level.

This means that while some essential concepts are repeated, more serious gaps have to be filled up by self
study. The main focus is to establish a certain degree of “statistical feeling”, therefore statistical theory is
mostly skipped and should be taken from textbooks for full understanding.

1.1 Further reading

A huge amount of statistical literature can be found on the market, and it is difficult to give recommendations,
depending on existing knowledge and technical skills. Nevertheless, I want to give a few suggestions:

• As a well-readable introduction: Dalgaard, P., 2008: Introductory Statistics with R. Springer, New
York, 2nd edition.

• A very well understandable introduction into many fields of statistics, especially regression and
time series analysis: Kleiber, C. and Zeileis, A., 2008: Applied Econometrics with R, Springer, New
York.

• As an excellent introduction to R with strong emphasize to ANOVA methods: Crawley, M. J.,
2012: The R Book. Wiley.

• A compendium about the R language and many fields of application: Adler, J., 2010: R in a
Nutshell. O’Reiley.

• As comprehensive reference to many standard and also more specific methods with S-PLUS
and R:VENABLES, W. N. and B. D. RIPLEY, 2002: Modern Applied Statistics with S. Springer,
New-York.

• Advanced methods for ecological statistics can be found in Zuur, A. F. et al., 2008: Mixed Models
and Extensions in Ecology with R. Springer, New York.

• and in general many online documents about statistical data analysis with with R, see www.r-project.
org.

1.2 Tasks of Statistics

It is sometimes common practice to apply statistical methods at the end of a study “to defend the reviewers”,
but it is definitely much better to employ statistics from the beginning for planning observations and experi-
ments and for finding an optimal balance between measurement effort and intended results. In this context,
statistics can help to:

2
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1 Introduction

1. Formulate hypotheses (descriptive and explorative statistics),

2. Plan observations and experiments (optimal experimental design, estimation of the sample size),

3. And finally to test hypotheses (test statistics and model selection methods).

Similarly, it is often distinguished between:

Descriptive research: Monitoring with the goal to “identify effects, relationships or correlations”. The
observational subject is not manipulated.

Experimental research: Test whether an anticipated effect can be reproduced in a controlled experiment:

• Manipulation of single conditions,

• Elimination of disturbances (constant experimental conditions),

• Experimental design as simple as possible.

Only experimental research is able to demonstrate causal relationships in a conclusive way. This may lead
sometimes to disrespect against observational research, but this is not appropriate because experimental
research always needs good observations for formulating its hypotheses.

3



2 An Introductory R Session

2.1 Program Start and Help System

The easiest way to learn “R” is the creative understanding and modification of given examples, the usage of
R for solving practical problems and the diagnosis of the frequently occurring problems and error messages.
Don’t worry: error messages are a normal phenomenon in scientific computing and not an indication of
a dysfunction of the computer or the human brain. The opposite is true, a certain amount of stress hor-
mones helps to acquire permanent learning effects. Then, after a certain level of experience reading the
official R-Documentation (An Introduction to R, VENABLES et al., 2012) or any good R-book is strongly
recommended.

The first sections of this “crash course” are intended to give an overview over some of the most important
elements of R and an insight into a typical work flow, that may be useful for the first statistical analyses and
as a starting point for self-education.

We begin our first session by starting RStudio, a platform independent interface that makes working with
R easier. RStudio divides the screen into 3 (resp. 4) windows (called panes), where some of them have
additional tabs to switch between different views.

In a fresh RStudio session, one “Pane” should be the main help page of R. It is a good idea to browse a little
bit around to get an impression about the amount and the typical style of the available help topics. The most

Figure 2.1: R Studio with 4 panes. Use File – New R Script to open the the source code pane (shown top
left). Then enter some code and don’t forget to explore the help files.
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2 An Introductory R Session

important sections are “An Introduction to R”, “Search Engine & Keywords”, “Packages”, the “Frequently
Asked Questions” and possibly “R Data Import/Export”.

We start now to explore the R-System itself.

2.2 First Steps

Entering an arithmetic expression like this:

2 + 4

shows that R can be used as a pocket calculator, that immediately outputs the result:

[1] 6

Instead of printing the result to the screen, it is also possible to save the result into a named variable using
the assignment operator “<-”.

a <- 2 + 4

It seems that nothing happens, but the result is now saved in the variable a that can be recalled at any time
by entering the variable name alone:

a

[1] 6

Variable names in R start always with a character (or for special purposes a dot), followed by further char-
acters, numerals, dots or underscores, where a distinction is made between small and capital letters, i.e. the
variables value and VALUE can contain different data. A few character combinations are reserved words
and cannot be used as variables: break, for, function, if, in, next, repeat, while
and “...” (three dots). Other identifiers like plot can be re-defined, but this should be done with care to
avoid unwanted confusion and side effects.

You may also notice, that the output of the example above had a leading [1], which means that the line
begins with the first element of a. This brings us to a very important feature of R that variables usually
contain more than single values, but vectors, matrices, lists, etc.

The most basic data type is the vector, that can be filled with data by using the c (combine) function:

values <- c(2, 3, 5, 7, 8.3, 10)
values

[1] 2.0 3.0 5.0 7.0 8.3 10.0

To create a sequence of values, one can use the : (colon):

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

5



2 An Introductory R Session

or, even more flexibly the seq function:

x <- seq(2, 4, 0.25)
x

[1] 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Sequences of repeated equal values can be obtained with rep:

x <- rep(2, 4)
x

[1] 2 2 2 2

There are many ways to use these functions, try for example:

seq(0, 10)
seq(0, 10, by = 2)
seq(0, pi, length = 12)
rep(c(0, 1, 2, 4, 9), times = 5)
rep(c(0, 1, 2, 4, 9), each = 2)
rep(c(0, 1, 2, 4, 9), each = 2, times = 5)

Instead of accessing vectors as a whole, it is also possible to extract single elements, where the index of the
requested data is itself a vector:

values[5]

[1] 8.3

values[2:4]

[1] 3 5 7

values[c(1, 3, 5)]

[1] 2.0 5.0 8.3

Sometimes, elements of a vector may have individual names, which makes it easy to access them:

named <- c(a = 1, b = 2.3, c = 4.5)
named

a b c
1.0 2.3 4.5

named["a"]

a
1

In R (and in contrast to other languages like C) vector indices start with 1. Negative indices are also possible,
but they have the special purpose to delete one or several elements:

6



2 An Introductory R Session

values[-3]

[1] 2.0 3.0 7.0 8.3 10.0

It is also possible to extend a given vector by preceding or appending values with the combine function (c):

c(1, 1, values, 0, 0)

[1] 1.0 1.0 2.0 3.0 5.0 7.0 8.3 10.0 0.0 0.0

The length of a vector can be determined with:

length(values)

[1] 6

and it is also possible to have empty vectors, i.e. vectors that exist, but do not contain any values. Here the
keyword NULL means “nothing” in contrast to “0” (zero) that has length 1:

values <- NULL
values

NULL

length(values)

[1] 0

Such empty vectors are sometimes used as “containers” for appending data step by step:

values <- NULL
values

NULL

length(values)

[1] 0

values <- c(values, 1)
values

[1] 1

values <- c(values, 1.34)
values

[1] 1.00 1.34

If a data element should be removed completely, this can be done using the remove function:

rm(values)
values

Error: Object "values" not found
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2 An Introductory R Session

The complete workspace can be deleted from the menu of R or RStudio (Session – Clear workspace) or
from the command line with rm (remove):

rm(list = ls(all = TRUE))

The R session can be closed by using the menu as usual or by entering:

> q()

Sometimes and depending of the configuration, R asks whether the “R workspace” should be saved to the
hard disk. This may be useful for continuing work at a later time, but has the risk to clutter the workspace
and to get irreproducible results at a later session, so it is recommended to say “No” for now, except if you
exactly know why.

Later we will learn how to save only the data (and commands) that are needed.

2.3 Graphics

Now, we will see how to use R as a function plotter by drawing sine- or cosine functions within an interval
between 0 to 10. First, we create a table of values for x and y and in order to get a smooth curve, it is
reasonable to choose a small step size. As a rule of thumb I always recommend to use about 100...400 small
steps as a good compromise between smoothness and memory requirements, so let’s set the step size to 0.1:

x <- seq(0, 10, 0.1)
y <- sin(x)
plot(x, y)

Instead of plotting points, it is of course also possible to draw cotinuous lines. This is indicated by supplying
an optional argument type="l". Important: the symbol used here for type is the small letter “L” for
“line” and not the – in printing very similar – numeral “1” (one)!

Note also that in R optional arguments can be given by using a “keyword = value” pair. This has the
advantage that the order of arguments does not matter, because arguments are referenced by name:

plot(x, y, type = "l")

Now we want to add a cosine function with another color. This can be done with one of the function lines
or points, for adding lines or points to an existing figure:

y1 <- cos(x)
lines(x, y1, col = "red")

With the help of text it is also possible to add arbitrary text, by specifying first the x- and y- coordinates
and then the text:

x1 <- 1:10
text(x1, sin(x1), x1, col = "green")

Many options exist to modify the behavior of most graphics functions so the following specifies user-defined
coordinate limits (xlim, ylim), axis labels and a heading (xlab, ylab, main).
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plot(x, y, xlim = c(-10, 10), ylim = c(-2, 2),
xlab = "x-Values", ylab = "y-Values", main = "Example Graphics")

The above example is a rather long command and may not fit on a single line. In such cases, R displays a
+ (plus sign) to indicate that a command must be continued, e.g. because a closing parenthesis or a closing
quote are still missing. Such a + at the beginning of a line is an automatic “prompt” similar to the ordinary
“>” prompt and must never be typed in manually. If, however, the “+” continuation prompt occurs by
accident, press “ESC” to cancel this mode.

In contrast to the long line continuation prompt, it is also possible to write several commands on one line,
separated by a semi-colon “;”.

Finally, a number (or hash) symbol # means that the following part of the line is a comment and should
therefore be ignored by R.

In order to explore the wealth of graphical functions, you may now have a more extensive look into the
online help, especially regarding ?plot or ?plot.default, and you should experiment a little bit with
different plotting parameters, like lty, pch, lwd, type, log etc. R contains uncountable possibilities to
get full control over the style and content of your graphics, e.g. with user-specified axes (axis), legends
(legend) or user-defined lines and areas (abline, rect, polygon). The general style of figures like
(font size, margins, line width) can be influenced with the par() function.

In addition, R and its packages contain numerous “high level”-graphics functions for specific purposes. To
demonstrate a few, we first generate a data set with normally distributed random numbers (mean 0, standard
deviation 1), then we plot them and create a histogram. Here, the function par(mfrow=c(2,2)) divides
the plotting area into 2 rows and 2 columns for showing 4 separate figures:

par(mfrow = c(2, 2))
x <- rnorm(100)
plot(x)
hist(x)

Now, we add a so-called normal probability plot and a second histogram with relative frequencies to-
gether with the bell-shaped density curve of the standard normal distribution. The optional argument
probability = TRUE makes sure that the histogram has the same scaling as the density function, so
that both can be overlayed:

qqnorm(x)
qqline(x, col="red")
hist(x, probability = TRUE)
xx <- seq(-3, 3, 0.1)
lines(xx, dnorm(xx, 0, 1),col = "red")

Here it may also be a good chance to do a little bit summary statistics like: z.B. mean(x), var(x),
sd(x), range(x), summary(x), min(x), max(x), . . .

Or we may consider to test if the generated random numbers x are really normal distributed by using the
Shapiro-Wilks-W-Test:

x <- rnorm(100)
shapiro.test(x)
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Shapiro-Wilk normality test

data: x
W = 0.99388, p-value = 0.9349

A p-value bigger than 0.05 tells us that the test has no objections against normal distribution of the data. The
concrete results may differ, because x contains random numbers, so it makes sense to repeat this several
times. It can be also useful compare these normally distributed random numbers generated with rnorm
with uniformly distributed random numbers generated with runif:

par(mfrow=c(2,2))
y <- runif(100)
plot(y)
hist(y)
qqnorm(y)
qqline(y, col="red")
mean(y)
var(y)
min(y)
max(y)
hist(y, probability=TRUE)
yy <- seq(min(y), max(y), length = 50)
lines(yy, dnorm(yy, mean(y), sd(y)), col = "red")
shapiro.test(y)

At the end, we compare the pattern of both data sets with box-and-whisker plots:

par(mfrow=c(1, 1))
boxplot(x, y)

Exercise: Repeat this example with new random numbers and vary sample size (n), mean value (mean)
and standard deviation (sd) for rnorm, and use different min and max for runif. Consult the help pages
for an explanation of the functions and its arguments, and create boxplots with different data sets.
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Table 2.1: An overview over some of the most important classes of data objects in R. The elements of objects
from these classes can have different “modes” (basic data types) e.g. numeric, complex, logical,
character, raw function, expression or formula.

Object Typical modes Mixing Columns Remark
of modes have same
possible length

vector numeric, character,
complex, logical

no – most basic data object class containing one
column (resp. one row) of data

factor numeric, character no – encoded vector with categories like, “con-
trol” or “treatment”, very important for
ANOVA and graphics but sometimes confus-
ing for beginners because of the “coding”. Be
careful!

matrix numeric, character,
complex, logical

no yes data object with two dimensions, can always
be converted into data.frame

array numeric, character,
complex, logical

no yes similar to matrix, with arbitrary number of di-
mensions (rows, columns, layers, . . . )

data.frame numeric, character,
complex, logical

yes yes a typical table, can also be interpreted as a
non-nested list of columns with equal length;
can be converted into a matrix

list numeric, character,
complex, logical,
function, expres-
sion, formula

yes no most flexible type, can be similar to
data.frame (if all columns have same length)
or nested tree structure

2.4 Data Structures: Basic Classes of R-Objects

In addition to vectors, R contains several other classes of objects for saving data, Table 2.1 lists some of
the most important. This is only a selection and base R as well as contributed packages contain many more
classes. It is also possible to define user-defined classes.

All objects have the two built-in attributes mode (data type) and length (number of data in the object).
Under specific circumstances some of these data types can be converted into each other, e.g. by using
functions like as.matrix, as.data.frame etc. Conversion of factors into other data types should be
done with care, because contents are encoded as levels. The following example shows how to convert
factors to numeric values properly:

x <- c(2, 4, 6, 5, 8)
f <- as.factor(x)
as.numeric(f) # wrong !!!

[1] 1 2 4 3 5

as.numeric(as.character(f)) # correct

[1] 2 4 6 5 8

as.numeric(levels(f))[f] # even better
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[1] 2 4 6 5 8

This type of factor coding is not specific to R and appears also in other statistics packages. Attributes of
objects can be accessed and changed with functions attributes and attr; classes with class:

attributes(f)
attr(f, "class")
class(f)

2.5 Entering Data

Several different methods exist to input data into R. The most important are extensively explained in a
special manual “R Data Import/Export” and we want to show only a selection here:

1. direct input in the R code,

2. input via the clipboard,

3. input from a text file.

Other methods are direct data base access, import of data from other statistics packages like SPSS, SAS,
Stata or Minitab (library(foreign)), reading of GIS-Shapefiles (library(shapefiles)), and
even sound files or pictures.

2.5.1 Direct Input

We used this method already when creating vectors with the c (combine)-Function:

x <- c(1, 2, 5, 7, 3, 4, 5, 8)

In the same way it is possible to create other data types like data frames:

dat <- data.frame(f = c("a", "a", "a", "b", "b", "b"),
x = c(1, 4, 3, 3, 5, 7)

)

2.5.2 Copy and Paste from the Clipboard

R is able to read data directly from the clipboard that were pasted from an editor or a spreadsheet program
like Excel or LibreOffice. Let’s for example create a spreadsheet table from the following example that
contains some data from a lake area in north-eastern Germany (data source: KOSCHEL et al., 1987):

We now select the data and copy them to the clipboard (right mouse, copy), then we change to R and retrieve
the content of the clipboard with the following command line:

dat <- read.table("clipboard", header=TRUE)

The character argument "clipboard" is the file name for the data source, header=TRUE tells us that
the first line contains the variable names. In some countries that have the comma and not the dot as a decimal
separator, an additional argument dec = "," may be required.

Now, the data are saved in the data frame dat and it is possible to access them as usual:
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dat
colMeans(dat[2:8])
boxplot(dat[2:8])

Table 2.2: Morphometrical and chemical properties of selected lakes (S=Stechlinsee, NN=Nehmitzsee
Nord, NS=Nehmitzsee Süd, BL=Breiter Luzin, SL = Schmaler Luzin, DA = Dagowsee, HS
= Feldberger Haussee; z=mean depth (m), t=theoretical retention time (a), P=phosphorus con-
centration (µgl−1), N=nitrogen concentration (mgl−1), Chl=chlorophyll concentration (µgl−1),
PP=annual primary production (gCm−2a−1), SD = secchi depth (m)), data: KOSCHEL et al.
(1987)

No Lake z t P N Chl PP SD
1 S 23.70 40.00 2.50 0.20 0.70 95.00 8.40
2 NN 5.90 10.00 2.00 0.20 1.10 140.00 7.40
3 NS 7.10 10.00 2.50 0.10 0.90 145.00 6.50
4 BL 25.20 17.00 50.00 0.10 6.10 210.00 3.80
5 SL 7.80 2.00 30.00 0.10 4.70 200.00 3.70
6 DA 5.00 4.00 100.00 0.50 14.90 250.00 1.90
7 HS 6.30 4.00 1150.00 0.75 17.50 420.00 1.60

2.5.3 Reading from a Textfile

Reading from the clipboard sounds attractive, but it has a big disadvantage because it needs several manual
steps and cannot be automated. Therefore, it is much better to first save the data to a text file on the hard
disk before using read table. In the same way it is also possible to read text files directly from the internet.

Sometimes, it is necessary to know the full path to the data set, but it is also possible to set the working
directory of R to the data directory. This can be done with the function setwd or (even better!) by using
the respective menu functions from the R Gui or from Tinn-R resp. RStudio.

setwd("x:/guest/praktik/stat/")
mydata <- read.table("hall.txt", header=TRUE)

Note that we always use the ordinary slash “/” and not the backslash “\”, even on Windows. It is also
possible to use a file browser dialog box to locate and select a data file:

mydata <- read.table(file.choose(), header=TRUE)

but this has, again, the disadvantage that it cannot be automated.

If the data are available on an internet server, it can be read directly from there:

mydata <- read.table("http://www.simecol.de/data/hall.txt", header=TRUE)

Now, we are ready to inspect the content of this new variable mydata:

View(mydata)
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In RStudio View can also be invoked by clicking to mydata in the environment window.

Function View opens a table view, because mydata is a data frame. The data set hall.txt contains
growth curves from an experiment with Daphnia (water flea) that were taken from a figure of a publication
(HALL, 1964), where body length was mesured in dependence on time (day), temperature (temp) and food
concentration, that was measured in a historical turbidity unit “Klett”, klett), but this does not matter for
our example.

2.6 The “Import Dataset” Wizard of RStudio

RStudio contains a nice feature that makes importing of data more convenient. Essentially, this “Import
Dataset” wizard helps us to construct the correct read.table or read.csv function interactively. The
upper right window in Figure 2.2 shows the original input file and the lower window indicates whether the
data frame was correctly recognized. It is possible to try different options until a satisfying result is obtained.
For this purpose:

1. From the menu select: File – Import DataSet – From CSV.

2. Select the requested file and select suitable options like the name of the variable the data are to be
assigned to, the delimiter character (comma or Tab) and whether the first row of the file contains
variable names.

3. Hint: The Code Preview contains the commands that the wizard created. If you copy these commands
to the script pane, you can re-read the data several times without going back to the menu system.

Figure 2.2: Import Text Data wizard of RStudio.

Hint: Do not forget to set a Name for the resulting data frame (e.g. dat), otherwise R uses the file name.

2.7 Working with Dataframes

For large tables it is often not very useful to display the full content, so it is much better to use the function
str (structure) that gives a compact overview over type, size and content of a variable:
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str(mydata)

This function is very universal and also suitable for complicated object types like lists. Of course, there are
many more possibilities for inspecting the content of a variable:

names(mydata)
mode(mydata)
length(mydata)

and sometimes even:

plot(mydata)

Single columns of a data frame can be accessed by using indices (with []) similar to a vector or a matrix or
by using the column name and the $) operator:

mean(mydata[,4])
mean(mydata$leng)
mean(mydata[,"leng"])
mean(mydata[["leng"]])
plot(mydata$day, mydata$leng)

Note the difference of the output of the [] and the [[]] version. The difference is as follows: single
brackets return a data frame with one column, but double square brackets return the content of the column,
i.e. a vector.

The $-style can be abbreviated by using the attach function, but attach is a relict from rather old times
and many people recommend not to use this anymore. The reason is, that attached data must always be
detached (detach) after use, otherwise this may lead to very strange errors.

attach(mydata)
plot(day, leng)
detach(mydata)

To be on the safe side, it may be a good idea to use detach repeatedly until an error message confirms us
that there is nothing else that can be detached.

It is much better to use another function width, that opens the data frame only temporarily:

with(mydata, plot(day, leng))

We may also use curely brackets if we want to combine several commands:

with(mydata, {
print(mean(leng))
print(sd(leng))

})

A very powerful feature of R is the use of logical vectors as “indices”, with similar results like data base
queries. A prerequisite for this is that all vectors have the same length.
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par(mfrow=c(1, 2))
with(mydata, {

plot(day[temp == 20], leng[temp == 20])
plot(day[temp == 20 & klett == 16], leng[temp == 20 & klett == 16])

})

A logical comparison requires always a double “==”. Logical operations like & (and) and | (or) are also
possible. Note that and has always precedence before or, except this is changed with parenthesis.

A subset of a data frame can also be extracted with the subset function:

twentydegrees <- subset(mydata, mydata$temp == 20)
View(twentydegrees)

Like in the example before, the condition argument allows also logical expressions with & (and) and | (or).

At the end of this section we show how to convert a data frame into a matrix and how to access single
elements in matrix-like manner:

mydata <- read.table("hall.txt", head = TRUE)
mymatrix <- as.matrix(mydata)

The element from the 2nd row and the 4th column can be selected with:

mymatrix[2, 4]

[1] 0.5227271

the complete 5th row with:

mymatrix[5, ]

klett temp day leng
0.2500000 20.0000000 9.2000000 0.9431816

and rows 5:10 of the 4th column (leng) with:

mymatrix[5:10, 4]

5 6 7 8 9 10
0.9431816 0.9602271 1.1250000 1.2215910 1.3068180 1.3920450

Additional methods for working with matrices, data frames and lists can be found in R textbooks or in the
official R documentation.

Mean values for factor combinations

The last examples are intended to demonstrate how powerful a single line can be in R. Function aggregate
can be used to compute statistics (e.g. mean values) depending on given criteria. The first argument of the
function is a data frame containing numeric data, the second argument a list (or data frame) of criteria (as
factors) and the third argument a function that will be applied to all possible factor combinations, e.g., mean,
median, sd, max etc.
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aggregate(mydata, list(klett = mydata$klett, temp = mydata$temp), mean)

or, because it is not meaningful here to calculate mean values for temperature, Klett-units and time:

aggregate(list(leng = mydata$leng),
list(klett = mydata$klett, temp = mydata$temp), mean)

Categorial Box Plots

Categorical boxplots can be obtained by using the so-called “formula-interface”. The variable at the left
hand side is the dependent variable, while independent factors used for classification are written at the right
hand side. The formula is then read “leng versus klett and temp”:

boxplot(leng ~ klett + temp, data = mydata)

Many, but not all R-Functions support this formula interface that can be read as: leng versus klett and
temp.

An even more powerful and compact visualization can be obtained with the lattice lattice-package:

library(lattice)
xyplot(leng ~ day|temp * klett, data = mydata)

Though the lattice package has a rather complex syntax, it is also very flexible and powerful, so the time to
learn it is worth the effort.

However, like in all similar cases, one may reach its goal also step by step with basic R functions only:

attach(mydata)
group1 <- leng[klett == 0.25 & temp == 11]
group2 <- leng[klett == 1 & temp == 11]
group3 <- leng[klett == 16 & temp == 11]
# ....
boxplot(group1, group2, group3, names=c("0.25/11", "1/11", "16/11"))
detach(mydata)

2.8 Output of Results

The most simple method to save outputs from R is to copy it directly from the R console to any other
program (e.g. LibreOffice, Microsoft Word or Powerpoint) via the Clipboard.

In Windows is is also possible to print the console output (File – Print) or to save it to a text file (File – Save
to File . . . ).

A third possibility available on all systems is redirection of the complete screen output to a logfile by using
the sink function:

sink("logfile.txt")

the following output is now directed to the text file and does not appear on the screen until the redirection is
closed with a call of sink without arguments:
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sink()

Because one cannot see what happens during sink is active it is recommended to use the optional split
argument, so that the output appears in both places, the screen and the logfile:

sink("logfile.txt", split = TRUE)
x <- 1:10
y <- 2*x + rnorm(x)
summary(lm(y ~ x))
sink()

Data frames can be saved as text files with write.table:

write.table(mydata, file="output-data.txt", row.names=FALSE, sep="\t")

In addition to these basic functions R has a wealth of possibilities to save output and data for later use
in reports and presentations. All of them are of course documented in the online help, e.g. print,
print.table, cat, pdf, png, etc. or within a specific “R-Data Import/Export Manual”. The add-
on package xtable contains functions for creating LATEX or HTML-tables while full HTML output is
supported by the R2HTML package.

2.9 Quitting an R-Session

The R-window can be closed as usual with the menu or by entering q() (quit):

q()

Depending on the configuration, we may now be asked whether we want to “Save workspace image” and
answering “Yes” would force to save all data from the R-Workspace into a file .Rdata, so that all data will
be automatically and immediately available in the next session, given that R is started in the same working
directory. Alternatively it is also possible to save or restore an R-Workspace manually into a file (Save
Workspace, Load Workspace).

Exercises

1. Explore different possibilities to plot the Hall-Data set. Draw one figure for each temperature level
and distinguish food concentration by using different colors, plot symbols or line types. Make use of
the annotation options for adding axis labels and main titles.

2. Read the data set lakeprofile.txt (Data from a students field course at IGB Berlin from 13.10.1992).
Plot vertical profiles for all variables.

Note: Measurement units may also use Greek letters or super- and subscripts by using the expression-
function. This looks professional, but works rather technical so that we should postpone it to a later
time.

3. R contains lots of data sets for exploring its graphical and statistical functions and that can be activated
by using the data function, e.g. data(iris). Use this data set and find appropriate ways for
visualization. A description of the data set can be found as usual in the help file ?iris.
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2.10 Loops and Conditional Execution

2.10.1 Compound Statements

In R it is possible to group several statements together by enclosing them into curly braces. As an example,
function system.time, can be used to calculate the CPU time that is used by a block of successive
function calls, e.g. generating and plotting a series of random data:

system.time({
x <- rnorm(10000)
plot(x)

})

user system elapsed
0.02 0.10 0.12

This means, that on the test system (Intel i7 PC with 3.0 GHz), total CPU time was 0.12 seconds, where
computation time was 0.02s and the rest was used by system functions, most likely the graphics.

2.10.2 Loops

In contrast to other programming languages, loops are needed less often in R. Being a vectorized language,
most R functions work on bigger data structures like vectors and matrices by default. However, loops are
sometimes unavoidable.

Often, a for-loop can be employed, that has the following syntax:

for (name in vector) statement

where name is called a “loop variable”, vector can be either a vector or a list and statement can be a
single R expression or a block of statements in a compound statement.

A loop is repeated as many times as there are elements in the vector. These elements are assigned one after
each other to the loop variable. So the following loop:

for (i in 1:10) {
print(i)

}

prints the numbers from 1 to 10 to the screen.

Loops can be nested, and it is very common to use indentation to improve readability. Proper indentation1

should always be used for your own work and even in the class room, because this will help your colleagues
and supervisors to see what your code does and also to eliminate errors. RStudio contains built-in functions
for automatic indentation and code formatting.

The following example of a nested for-loop plots 6 figures for several temperature and food combinations
of the HALL (1964) data set:

1My recommendation is 2 spaces per indentation level.
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halldata <- read.table("http://www.simecol.de/data/hall.txt", header = TRUE)
par(mfrow = c(2, 3))
for (klett.i in c(1, 16)) {

for (temp.i in c(11, 20, 25)) {
dat <- subset(halldata,

halldata$klett == klett.i & halldata$temp == temp.i)
plot(dat$day, dat$leng)

}
}

In addition to for, R contains a full set of loops (cf. repeat and while), and additional control state-
ments (next, break) to modify their execution.

2.10.3 Conditional execution

Conditional execution (also called branching) can be used to handle distinct cases or exceptions. The basic
syntax is:

if (expr1) expr2 else expr3

where is a logical expression that can be TRUE or FALSE, expr2 is an expression that is called in the
TRUE case and expr3 otherwise.

In the example before, no data have been available for the combination of klett==0.25 and temp==11,
so the loop would break if we try to plot this case. By means of an if it would be possible to handle it as
an exception:

halldata<-read.table("hall.txt", sep = " ", header = TRUE)
par(mfrow=c(3, 3))
with(halldata, {

for (klett.i in c(0.25, 1, 16)){
for (temp.i in c(11, 20, 25)) {

dat <- subset(halldata,
klett == klett.i & temp == temp.i)

if (nrow(dat) == 0) { # no data
plot(1, 1, axes = FALSE, type="n", xlab = "", ylab = "") # empty plot
box() # rectangle

} else {
plot(dat$day, dat$leng)

}
}

}
})

2.10.4 Vectorised ifelse

In many cases it is possible (and easier) to use the vectorized ifelse-function instead of branching with
if. The following example shows how to replace all zero values by a small value (10−6). In case of x==0,
a value of 1e-6 is returned, otherwise the original value. The final result is then saved back to x:
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x <- c(0, 0, 1, 3, 4, 2, 1, 7, 0, 2)
x <- ifelse(x == 0, 1e-6, x)
x

[1] 1e-06 1e-06 1e+00 3e+00 4e+00 2e+00 1e+00 7e+00 1e-06 2e+00

2.11 User-defined functions

Like in almost all programming languages, it is of course possible to extend the functionality of R with
user-defined functions. Such functions are very handy, if one wants to encapsulate things that are repeatedly
needed or to simplify complicated algorithms. The syntax of a user-defined function is:

name <- function(arg1, arg2, arg3, ... ) expression

where name is the name of the function (an arbitrarily selected valid variable name), arg1, arg2, ...
are the arguments of the function and expression is a block of statements that is to be executed within
the function. Most functions have a so-called return value that is returned at their end, which can of course
be a list or other data structure that contains multiple values. The following example from “An Introduction
to R” implements the classical two-sample t-test:

twosam <- function(y1, y2) {
n1 <- length(y1)
n2 <- length(y2)
yb1 <- mean(y1)
yb2 <- mean(y2)
s1 <- var(y1)
s2 <- var(y2)
s <- ((n1-1)*s1 + (n2-1)*s2)/(n1+n2-2)
tst <- (yb1 - yb2)/sqrt(s * (1/n1 + 1/n2))
tst

}

We can now compare this with R’s built-in function for the t-test:

x <- c(2, 3, 4, 5, 8)
y <- c(1, 3, 5, 9, 9)
twosam(x, y)

[1] -0.5255883

t.test(x, y, var.equal = TRUE) # built-in t-test function

Two Sample t-test

data: x and y
t = -0.52559, df = 8, p-value = 0.6134
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.387472 3.387472
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sample estimates:
mean of x mean of y

4.4 5.4

We see that the built-in t-test contains additional functionality, e.g. the computation of p-values.

We see also, that the names of the variables that are passed to the function call (here x and y) do not
necessarily need to be the same as in the function definition (here y1 and y2), because the assignment of
the function arguments is just defined by their order. This is a very important feature that allows to write
universal functions (sub-routines) that can be used in different contexts without caring too much about their
internal details.

Another very important property of functions is, that their internal variables are only valid within the local
scope of that function, so that “outer” variables with overlapping names are not overwritten. As an example,
calling yb1 outside if twosam would just give an error:

yb1

Error: Object "yb1" not found

because yb1 is not known outside of that function.

2.11.1 Debugging

For debugging purposes, i.e. if we suspect that something is wrong, it can be necessary to inspect values
of internal variables. For such cases, it would be possible to output internal variables with print or, as
an alternative, to switch the debug mode for this function on with debug(twosam). This mode can be
switched of with undebug(twosam).

R contains many additional possibilities, e.g. usage of optional named arguments with default values, the
ellipsis (...-argument, three dots) closures, object orientation or linking to C- or Fortran routines. Details
about this can be found in “An Introduction to R” and “Writing R Extensions”, that are both part of the
official R documentation.

2.11.2 Exercises

1. Implement and test a user-defined function for the exponential and the logistic population growth:

Nt = N0 · er·t

Nt =
K

1+( K
N0
−1) · e−r·t

2. Develop (or find) a function circle, that draws circles to the screen. Hint: This function is based
on the sine and cosine functions.
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3 Basic Principles and Terminology

Before we can start with some practical exercises, we should first clarify some of the most important con-
cepts and a little bit statistical terminology.

3.1 The principle of parsimony

The principle of parsimony, sometimes also called “Occams razor” is attributed to an English philosopher
from the 14th century who stated that “simpler explanations are, other things being equal, generally better
than more complex ones”.

In relation to statistical analysis and modeling this implies that (CRAWLEY, 2002):

• “models should have as few parameters as possible

• linear models should be preferred to non-linear models

• experiments relying on few assumptions should be preferred to those relying on many

• models should be pared down until they are minimal adequate

• simple explanations should be preferred to complex explanation”

This principle is one of the most important fundamentals, not only in statistics but also in science in general.
However, over-simplification has to be avoided as well, especially in complex fields like ecology.

3.2 Types of variables

Variables are all these things that are more or less directly measured or experimentally manipulated, e.g
phosphorus concentration in a lake, air temperature, or abundance of animals. In contrast to this, param-
eters are quantities that are estimated by using a particular (statistical) model, for example mean values,
standard deviation or the slope of a linear model.

Independent variables (explanation or explanatory variables) are variables that are intentionally manipu-
lated or that are assumed to result from external processes. Dependend variables (response or explained
variables) are the variables that we are interested in and/or that form the resulting outcome of an observation
or an experiment.

It is also necessary to distinguish different types of scales, because the scale determines which kind of
analysis or test can be done with a particular variable:

Binary or boolean variables can have exactly one of two alternative states: true or false, one or zero, present
or absent.
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Nominal variables (or factors) can be characterized by names, e.g. “control”, “treatment 1”, “treatment 2”
or “red”, “green”, “blue”. By definition, nominal variables do not have any natural order.

Ordinal variables (ranks, ordered factors) do have an order, but not a defined distance in between. An
example are the trophic states of a lake, e.g. (oligotrophic, mesotrophic, eutrophic, polytrophic, hy-
pertrophic). However, if we add a state that does not fit into this order like an acidified (i.e. dystrophic)
lake, then the whole variable becomes nominal.

Metric variables can be measured continuously and two sub-types can be distinguished:

Interval scale Here, differences make sense, but ratios are undefined. As an example one can say
that a temperature of 20°C is 10 degrees warmer than 10°C, but it does not make sense to say
that it is double. If you don’t believe this, then please tell what is the ratio between 10°C and
-5°C?

Ratio scale: Variables with a ratio scale have an absolute zero, so that ratios make sense. A tree with
2 m has double the hight of a tree with 1 m.

The above order tells us also something about the value or quality of the scales, ascending from lower to
higher, because “higher scales” contain more information than “lower scales”. Furthermore, it is always
possible to transform a variable from a higher scale to a lower, so that more possibilities are available for
their analysis.

3.3 Probability

According to the classical definition, probability p is the chance of a specific event, i.e. the number of events
we are interested in, divided by the total number of events. In a die roll, for example, the probability of any
certain number is 1/6 because the die has 6 sides and each number occurs only one time.

Unfortunately, this classical definition is not applicable to non-countable populations, because either the
denominator or the numerator (or both) may be undefined or infinite. What is, for example, the probability
that the height of a tree is 12.45 m?

To solve this, mathematicians use an axiomatic definition of probability:

Axiom I: 0≤ p≤ 1

Axiom II: impossible events have p = 0, certain events have p = 1

Axiom III: for events A and B, that exclude each other, i.e. in set theory A
⋂

B = /0 holds: p(A
⋃

B) =
p(A)+ p(B)

3.4 Sample and Population

The objects, from which we have measurements or observations form a sample. In contrast to this, a
population is the set of all objects that had the same chance to become part of the sample. This means that
the population is defined by the way how samples are taken, i.e. how representative our sample is for our
(intended) observation object.

In principle, there are two different sampling strategies:
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Random sampling means that the individual objects for measurement are selected at random from the pop-
ulation (examples: random selection of sampling sites by means of numbered grid cells; random placement
of experimental units in a climate chamber, random order of treatments in time).

Stratified sampling requires that the population is divided into sub-populations (strata). These are sepa-
rately sampled (at random!) and the population characteristics are estimated by using weighted mean values.
Therefore, it is essential, to have valid information about the size of the strata to derive the weighting coeffi-
cients. Examples are election forecasts, volumetric mean for a water body from measurements for different
layers, gut content of fish estimated from size classes. The advantage of stratified sampling is to get better
estimates from smaller samples, but this holds only if the weight coefficients are correct!

By convention, the “true” but unknown parameters of a population are symbolized with Greek letters (µ , σ ,
γ , α , β ); the calculated parameters (x̄, s, r2. . . ) are called “estimates”. A single value xi of a random variable
X can also be assumed to consist of an expectation value E(X) of the random variable and an individual
error εi. The expectation value (e.g. a mean) of this error term is zero:

xi = E(X)+ εi (3.1)

E(ε) = 0 (3.2)

3.5 Statistical Tests

Statistical tests are employed for testing hypotheses about data, e.g. specific properties of distributions or
their parameters. The basic idea is to estimate probabilities for a hypothesis about the population from a
sample.

Effect size and significance

In statistical testing significance has to be clearly distinguished from effect size. The effect size ∆ measures
the size of an observed effect like the difference between two mean values (x̄1− x̄2) or the size of a correlation
coefficient (r2). Even more important is the relative effect size, the ratio between an effect and random error
or the signal-noise ratio that is often represented as the ratio between the effect (e.g. difference between
mean values) and the standard deviation:

δ =
µ̄1− µ̄2

σ
=

∆

σ

In contrast to this, significance means that an effect really exists with a certain probability and that it is
unlikely a result of random fluctuations alone.

For testing whether an effect is significant or not, it is important to formulate clear hypotheses in terms of
statistical language, a so-called Null hypothesis (H0) and one or more alternative Hypotheses (Ha):

H0: Null hypothesis that two populations are not different with respect to a certain parameter or property.
It is assumed, that an observed effect is purely random and that the true effect is zero.

Ha: The alternative hypothesis (experimental hypothesis) claims that a specific effect exists. An alternative
hypothesis is never completely true or “proven”. The acceptance of HA means only than H0 is unlikely.
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Table 3.1: α and β errors
Reality

Decision of the test H0 true H0 false
H0 retained true, 1−α β error
H0 rejected α error correct decision

with power 1−β

Statistical tests can only test for differences between samples, not for equality. This means that H0 is
formulated to be rejected and that it is impossible to test if two populations are equal – for principal reasons.
If a test cannot reject “the null”, it means only that an observed effect can also be explained as a result of
random variability or error and that a potential effect was too small to be “significantly” detected, given the
available sample size.

Note: Not significant does not necessarily mean “no effect”, it means “no effect or sample size too
small”.

Whether an effect is significant or not is determined by comparing the p-value of a test with a pre-defined
critical value, the significance level α (or probability of error). Here, the p-value is an estimate for the
probability that the null hypothesis is wrong and on the other hand, α is the amount of false positives, i.e.
wrong rejections of H0 that we tolerate.

To sum up, there are two possibilities for wrong decisions (cf. Table 3.1):

1. H0 falsely rejected (error of the first kind or α error),

2. H0 falsely retained (error of the second kind or β error).

It is common convention to use α = 0.05 as the critical value in many sciences, but any other small value
(e.g. 0.01 or 0.1) would be possible as well. The essential thing, however, is that this value has to be defined
before doing the test and should not be adjusted afterwards.

In contrast to this, β is often unknown. It depends on the the relative effect size, the sample size and the
power of a certain test. It can be estimated before an experiment by using power analysis methods, or, even
better β is set to a certain value, e.g. 0.2 and then power analysis is used to determine the required sample
size.

3.6 The model selection approach

Significance testing is one of the most important concepts in statistics, but it is not the only one. In contrast
of testing whether a certain effect is significant or not, one can also test which of several candidate models
is more appropriate to explain a given data set. This is a direct application of the principle of parsimony, but
there are essentially two questions:

1. What is the best model?

2. What is the most parsimonious model?
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We may be tempted to answer the first question by just using a model with the best fit, for example with the
lowest mean square error or the highest R2, but such an approach would lead to very complex, overcompli-
cated models because a complex model with many parameters has much more flexibility to fit a complicated
data set. Therefore, what we need is not the model that maximally fits the data. We need the model with the
best compromise between goodness of fit and model complexity, i.e. the smallest model that fits the data
reasonably well.

This approach is called the model selection technique, an essential concept of modern statistics that some-
times supersedes p-value based testing.

3.7 Log likelihood and AIC/BIC

Two measures are needed to measure goodness of fit on one side and model size on the other, which are then
combined to so-called information theory-based measures like AIC (Akaike Information Criterion) and BIC
(Bayes Information Criterion). Here, goodness of fit is measured by means of the log likelihood, where
likelihood is a measure that tells us how good a certain model explains an observed set of data. Likelihood
is related to probability, but in contrast to probability where we know that the maximum value is one,
likelihood is unscaled and we don’t know the maximum value within a certain setting. Log likelihood is just
the logarithm to make the numbers more handy and to transform the multiplicative character of likelihood
into an additive relationship.

The second part of an information theory measure is a penalty term, that penalizes the number of parameters.
Depending how this is defined, we get:

AIC =−2ln(L)+2k

BIC =−2ln(L))+ k ln(n)

with log likelihood ln(L), number of parameters k and sample size n.

In model selection, we have usually have several candidate models, that include or exclude certain explana-
tion variables. Here the

full model is the model that includes all potential explanation variables,

null model is the model with no explanation variables. Often, it is just the mean of the series and in R it is
symbolized with ~1.

minimal adequate model (or most parsimonious model) is the model with the best compromise between
goodness of fit (log likelihood) and number of parameters (k), i.e. the model with the lowest AIC
resp. BIC.

Note that AIC and BIC are logarithmic values, so it does not matter wether they are positive or negative.
It just matters which of the models has the lowest value. More about this can be found in JOHNSON and
OMLAND (2004) and many modern statistics textbooks.
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Statistical tests work in one of two different ways:

1. by comparing data directly (non-parametric or distribution-free methods) or

2. by estimating specific measures (parameters) that subsume certain properties of interest from the
distribution of the samples.

In statistics, calculating parameters from sample data is called “estimation” and the obtained parameter
values, the “estimates” are symbolized with Latin letters while the true values of the population are sym-
bolized by Greek letters. Sometimes, there are also different estimators for one (theoretical) property of a
population, which are characterized by:

• Unbiasedness (the estimation converges towards the true value with increasing n),

• Efficiency (a relatively small n is sufficient for a good estimation),

• Robustness (the estimation is not much influenced by outliers or certain violations of statistical as-
sumptions).

Depending on a particular question, different classes of parameters exist, especially measures of location
(e.g. mean, median), variation (e.g. variance, standard deviation) or dependence (e.g. correlation).

4.1 Measures of location

The arithmetic mean of a sample is the sum of all values, divided by the sample size:

x̄ =
1
n
·

n

∑
i=1

xi

the geometric mean is defined as the nth root of the product of all data:

G = n

√
n

∏
i=1

xi

but in most cases it is more practical to use the logarithmic form of the formula to avoid huge numbers that
would make problems for the computer:

G = exp

(
1
n
·

n

∑
i=1

lnxi

)

The harmonic mean is the reciprocal of the mean of the reciprocals of a sample:
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1
H

=
1
n
·

n

∑
i=1

1
xi

;xi > 0

These measures can be easily calculated in R with the mean-function:

x <- c(42, 43, 45, 51, 52, 55, 58, 61, 65, 67)
mean(x) # arithmetic mean

[1] 53.9

exp(mean(log(x))) # geometric mean

[1] 53.23059

1/mean(1/x) # harmonic mean

[1] 52.56164

All these measures of location have in common, that they can be rather strongly influenced by outliers. A
measure that is more robust is the median, that is the “middle value” that separates an ordered sample into
two parts with half the sample size:

• n uneven:
m = x(n+1)/2

• n even:
m =

xn/2 + xn/2+1

2

The trimmed mean forms a compromize between the arithmetic mean and the median. It is calculated like
the mean after discarding a proportion of the smallest and biggest values, usually 5 to 25 percent:

median(x) # median

[1] 53.5

mean(x, trim=0.1) # trimmed mean

[1] 53.75

mean(x, trim=0.5) # same as the median

[1] 53.5

Often the median or the trimmed mean are preferred over the mean, especially if the samples are likely to
contain outliers or stem from a skewed distribution.

The mode is the value that occurs most frequently in a sample. Strictly speaking, this measure is defined
only for discrete (binary, nominal, ordinal) scales, but it is also possible to obtain an estimate for continuous
scales, e.g. from binned data that are frequencies of data according to size classes. As a first guess, one can
simply use the middle value of the class with the highest frequency, but a better estimate uses a weighted
mean respecting the frequencies of neighboring classes:
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D = xlo +
fk− fk−1

2 fk− fk−1− fk+1
·w

Here, f is the class frequency, w the class width k the index of the most abundant class and xlo its lower
limit.

Another, more computer intensive but also more modern method is based on so-called kernel density esti-
mates, Fig. 4.1), where the mode is estimated by its maximum:

hist(x, probability = TRUE)
dens <- density(x)
lines(dens)
dens$x[dens$y == max(dens$y)]

[1] 54.22913
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Figure 4.1: Histogram and density estimate.

A sample can also have more than one mode (e.g. for the abundance of a fish population with several age
classes, cohorts), it is then called a multi-modal distribution.

The following example demonstrates a bi-modal distribution: (Fig. 4.2):

library(simecol) # contains a function to detect peaks
# a bi-modal distribution from two normally distributed samples
x <- c(rnorm(50, mean=10), rnorm(20, mean=14))
hist(x, prob=T)
dens <- density(x)
lines(dens)
peaks(dens, mode="max")$x # outputs the modal values

[1] 9.666202 13.493657
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Figure 4.2: Histogram and kernel density estimate for a bi-modal distribution.

4.2 Measures of variation

Measures of variation are used to measure variability in the data or to qualify the accuracy of statistical
parameters. The most common measure of variation is the variance s2 and its square root, the standard
deviation s:

s2
x =

SQ
d f

=
∑

n
i=1(xi− x̄)2

n−1

with SQ sum of squared deviations from the mean x̄ and d f degrees of freedom, that is equal to the sample
size n for the population and n−1 for a sample. If you don’t know whether n or n−1 is correct, you should
always use n−1.

In practice, s2 is computed with the following formula:

s2
x =

∑(xi)
2− (∑xi)

2/n
n−1

using the sum and the sum of squares of the data.

The square root of the variance s =
√

s2 is called the standard deviation. Its main advantage is, that it has
the same measurement unit like the mean x̄, so both can be directly compared.

The coefficient of variation cv or the relative standard deviation:

cv =
s
x̄

is very useful for comparing variations between different measurement units, locations or variables. It can
only be calculated for data with a ratio scale, i.e. for measurement units that have an absolute zero (like
meters) but not for variables like Celsius temperature or pH.

The range measures the difference between maximum and minimum of a sample:
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rx = xmax− xmin

but as it is likely to be influenced by outliers, it is much better to use the interquartile range, IQR or I50

that omits 25% of the smallest and 25% of the biggest values (one needs at least about 12 values):

I50 = Q3−Q1 = P75−P25

Here Q3 and Q1 are called the first and the 3rd quartiles of an ascending ordered sample (also called the
25th or 75th percentiles, P25,P75).

For normally distributed samples we find a fixed relationship between I50 and the standard deviation:

σ = E(I50/(2Φ
−1(3/4)))≈ E(I50/1.394)

where Φ−1 is the quantile function of the normal distribution.

Another, compared to the IQR even more robust measure of variation is the median absolute deviation:

MAD = median(abs(median− xi))

This value is often rescaled by default with 1.4826 to approximate the standard deviation.

Application in R

All measures of variation can be easily calculated in R:

x <- rnorm(100, mean=50, sd=10) # 100 random numbers
var(x) # variance

[1] 95.75608

sd(x) # standard deviation

[1] 9.785504

range(x) # range

[1] 25.02415 75.79907

quantile(x, c(0.25, 0.75)) # quartiles

25% 75%
44.75210 56.65558

IQR(x) # interquartile range

[1] 11.90348

diff(quantile(x, c(0.25, 0.75))) # same, calculated from quartiles

75%
11.90348

mad(x) # median absolute deviation

[1] 8.627367
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4.3 Standard error of the mean

In contrast to the deviation measures presented above, the standard error does not describe variability of
the sample, but instead the variability of a statistical measure in general. Therefore, the “standard error of
the mean” estimates the variability of the mean as a function of the standard deviation of the original sample
and the sample size:

sx̄ =
s√
n

It measures accuracy of the mean and plays a central role for the calculation of confidence intervals and in
many statistical tests, e.g. the t-test.

As a rule of thumb and for normally distributed samples with a sample size of about n > 30, the true mean
µ can be expected with probability of 68 % within a range of x̄± sx̄, but for small samples, quantiles of the
t-distribution must be used instead.

The standard error is often used for error bars in graphics. This is correct, if the accuracy of the mean
should be indicated. Sometimes, however, the error bars are intended to show variability of the samples.
In such cases, it is more appropriate to use the standard deviation or, even better, the quartiles or minimum
and maximum. In any case it is mandatory to indicate the type of error bars in the figure legend or figure
caption.

Error bars in R

Error bars are most easily plotted with function barplot2 from the add-on package gplots (Fig. 4.3):

library(gplots) # contains the barplot2 function
nx <- 2
ny <- 4
nz <- 10
x <- rnorm(nx, mean=5, sd=1)
y <- rnorm(ny, mean=4, sd=1)
z <- rnorm(nz, mean=8, sd=2)
m <- c(mean(x), mean(y), mean(z))
sx <- c(sd(x), sd(y), sd(z))/sqrt(c(nx, ny, nz))
barplot2(m, ci.l=m-sx, ci.u=m+sx, plot.ci=TRUE,

names=c("x", "y", "z"), xlab="mean +/- se")

4.4 Excercises

1. Generate samples of random numbers with n = 30 and determine the different location and variation
measures with Excel, R or your pocket calculator.

2. Load the data set nit90 into R and plot and print a histogram. Then mark the different location and
variation measures with pencil on the plot.

3. Determine appropriate location and variation measures of the variable “Sepal.Length” for the three
species of the iris data set. How accurate are these measures? Is it possible to distinguish the species
by “Sepal.Length”?
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Figure 4.3: The standard error is the appropriate measure to compare means.

34



5 Distributions

Probability distributions are one of the core concepts in statistics and many statistics courses start with coin
flipping or dice rolls. We begin with random number generators on the computer to get:

• a feeling about randomness and how a “true normal distribution” can look like,

• a tool for experimental design, for exploring statistical methods using data with known properties and
for testing the power of our intended analyses beforehand.

So measured data are to be tested for normal distribution frequently. In practice, however, it turns out most
of the times that there are more or less strong violations from it. This raises the question whether these
violations are relevant. As for the random numbers used hereafter: they are created using a specific type of
random number generator and therefore the type of distribution of the population is known.

For visualization we will first use the function hist(). Later we will get to know more types of graphics
and tests.

5.1 Uniform distribution

Uniformly distributed random numbers have the same probability of occurence in a given interval (e.g.
(0,1)). In R random numbers are created with the function runif, with r standing for random and unif
for uniform. The argument put in parentheses says how many random numbers are to be generated. We will
start by generating 10 random numbers and display them:

runif(10)

[1] 0.6287441 0.4463814 0.5529879 0.3545830 0.1875859 0.6556713 0.3025135
[8] 0.7021800 0.9969242 0.9793623

before we create 400 new random numbers and save them in the variable x:

x <- runif(400)

Now we can plot the random numbers (Fig. 5.1):

par(mfrow=c(1,2))
plot(x)
hist(x)

To get an idea of how different uniformly distributed random numbers look like the generation and plotting
can be combined in one command line, that can then repeated several times:

hist(runif(x))
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Figure 5.1: Uniformly distributed random numbers, on the left as a sequence of numbers, on the right as
histogram.

If the random numbers are not to lie in the interval (0,1) but in another interval (5,10) we can either use
normalization:

xmin <- 5
xmax <- 10
runif(100) * (xmax - xmin) + xmin

or we supply the maximum and minimum to the function runif as optional arguments:

runif(100, xmin, xmax)

The histogram (Fig. 5.1, right) shows how an empirical uniform distribution (created with random numbers)
looks like. But what does the ideal case, a theoretical uniform distribution, look like?

To find out we will use the function dunif, in which d stands for density. We can illustrate it by plotting
the density function over the interval (−0.2,1.2) with 100 (or, even better, 500) x values:

x <- seq(-0.2, 1.2, length=500)
plot(x, dunif(x), type="l",

xlab="random variable X",
ylab="probability density")

The density function f (X) is often termed “pdf” (probability density function). The area under curve is 1,
i.e. 100% of the results are located between −∞ and +∞ (or, as in our example, even in the interval (0,1)).

F(X) =
∫ +∞

−∞

f (X)dX = 1 (5.1)

If we want to know, however, what percentage of events (here: how many of the random numbers created
before) are smaller than a specified value x, we use the distribution function F as a definite integral:

F(x) =
∫ x

−∞

f (X)dX (5.2)
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In R, this integral is available as function punif (probability function).

x <- seq(-0.2, 1.2, length=500)
plot(x, punif(x), type="l",

xlab="random variable X",
ylab="distribution function")

Cumulative frequencies

A uniform distribution appears as a straight ascending line in the interval (0,1). For empiric distributions
this corresponds to the cumulative frequency, which can be displayed as a cumulative histogram too. As the
R- function hist knows no cumulative plots, we have to apply some handwork here. We will use hist
only for binning (replacing data values falling into a small interval (the bin) with a value representative
for that interval), but turn off the plotting function. Afterwards we have a look at the object h using str,
calculate the cumulative sum of h$counts and plot the result with the more general function barplot:

x <- runif(400)
hist(x)

h <- hist(x, plot=FALSE) # binning only, no plot
hcum <- cumsum(h$counts)
barplot(hcum, names.arg=round(h$mids,2),col="white")

Up to now, all histograms showed the absolute frequencies, while often relative frequencies are needed. For
the relative class frequencies there is an option in hist, and the cumulated frequencies can be obtained
with a simple division by the number of observations:

hcum <- cumsum(h$counts)/sum(h$counts)
barplot(hcum, names.arg=round(h$mids,2),

col="white", ylab="Probability")

As a last important function in this respect the quantile function qunif is to be mentioned. It is the inverse
of punif, with the help of which we are able to calculate up to what value a certain percentage of events
can be found.

Example: In which symmetrical range can we find 95% of all values given an uniform distribution U(40,60):

qunif(c(0.025, 0.975), min=40, max=60)

[1] 40.5 59.5
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Figure 5.2: Uniform distribution, top: absolute frequency and density function, bottom: relative cumulated
frequency and distribution function.
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5.2 Normal distribution

The book by CRAWLEY (2002) gives a very intuitive introduction to the understanding of the normal distri-
bution. He uses a simple exponential function as a starting point:

y = exp(−|x|m) (5.3)

To illustrate this we plot this function in the interval (−3,3) with an exponent of m = 1,2,3,8 (Fig. 5.3).
On this occasion we can also practice defining a user-defined function, which we will call f here:

f <- function(x, m) {exp(-abs(x)^m)} # the exponential function
par(mfrow=c(2,2)) # space for 4 graphics
x <- seq(-3, 3, length=100) # domain of definition
plot(x, f(x,1), type="l")
plot(x, f(x,2), type="l")
plot(x, f(x,3), type="l")
plot(x, f(x,8), type="l")

The function with m = 2 has an extremely high relevance for various reasons. It simply has to be scaled in a
way for the area under curve to become 1 and we receive the standard normal distribution with mean value
µ = 0 and variance σ2 = 1:

f (z) =
1√
2π

e−z2/2 (5.4)

Based on the standard normal distribution we can obtain other normal distributions with any desired mean
value µ and any variance σ2 by further scaling:

z =
x−µ

σ
(5.5)

Here µ moves the whole bell shaped curve along the x axis while σ leads to a stretching or compression in
the direction of y. This scaling is termed “standardization” or z-transformation.

The normal distribution in R

For the normal distribution, R contains functions for random numbers (rnorm), the density function (dnorm),
the distribution function (pnorm) and the quantiles (qnorm).

Now we will generate 100 random numbers from a normal distribution with µ = 50 and σ = 10, plot them
and determine (estimate) the mean value x̄ and the standard deviation s of the sample:

x <- rnorm(100, 50, 10)
hist(x, probability = TRUE)
mean(x)
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Figure 5.3: Different exponential functions. The function with the exponent m = 2 is quite close to a normal
distribution and needs only scaling so that the integral becomes 1.0

[1] 49.60832

sd(x)

[1] 9.811248

Now, we will draw a bell-shaped curve into the diagram (Fig. 5.4). Therefore, we will, on the one hand, use
a general density estimation with a so-called kernel density estimation and, on the other hand, a theoretical
normal distribution with the sample parameters x̄ und s:

lines(density(x), col="blue")
xnew <- seq(min(x), max(x), length=100)
lines(xnew, dnorm(xnew, mean(x), sd(x)), col="red")

[1] 49.60832

There is an important difference between the kernel density curve (see details in VENABLES and RIPLEY,
2002, or the R online help) and dnorm: in the first case we simply perform a general density estimation (a
smoothing) without any concrete assumptions about the underlying distribution, in the second case we are
already applying a statistical model, i.e. we assume a normal distribution.
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Figure 5.4: Normal distribution: classes (bars), density estimation (blue line) and theoretical density func-
tion (red line).

5.3 t-distribution

The t-distribution is a testing distribution, i.e. it describes how different statistical parameters are distributed.
Other testing distributions are the χ2-distribution (chi-squared distribution) and the F-distribution.

In principle the t-distribution is very similar to the normal distribution. In addition to the location parameter
µ and the scaling parameter σ it contains another parameter for the degrees of freedom d f . If the number of
the degrees of freedom is low the t-distribution has very broad “tails”, i.e. there is an increased probability
of extreme values. For d f → ∞ or practically already for d f ≈ 30 the t-distribution converges towards a
normal distribution.

Example

As an example we will plot a standard normal distribution with several t-distributions (Fig. 5.5) and a
different number of degrees of freedom each.

x <- seq(-3,3, length=100)
plot(x, dnorm(x), type="l", col="red")
lines(x,dt(x, df=1), col="cyan")
lines(x,dt(x, df=2), col="blue")
lines(x,dt(x, df=4), col="cyan")
lines(x,dt(x, df=8), col="blue")
lines(x,dt(x, df=16), col="blue")
lines(x,dt(x, df=32), col="green")

In a second example we will examine the dependence of the frequently needed t-value t1−α/2 with α = 0.05
(95% quantile in a two-sided test) from the number of degrees of freedom (Fig. 5.6). The two-sided 5%
standard normal quantile (dashed line) serves for comparison:

plot(1:30, qt(0.975, 1:30), type="l",
ylab="Student´s t", xlab="d.f.", ylim=c(0,15))

abline(h=qnorm(0.975), lty="dotted")

41



5 Distributions

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

Figure 5.5: Density distribution of the normal distribution (red) and t-distributions with a varying number of
degrees of freedom.
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Figure 5.6: Dependence of the t-quantile from the number of degrees of freedom. Easily observable is
the strong rise of the t-value especially at d f < 5. At d f > 30 the t-value (t =2.04) reaches
approximately the quantile of the normal distribution (1.96).
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The plot shows that we have to expect an additional “penalty” at sample sizes smaller than 5. This means
that in addition to the effects of the standard error (see below) confidence intervals are growing very rapidly
because of the t-distribution, and statistical tests are dramatically deteriorating in discriminatory power.

5.4 Logarithmic normal distribution (lognormal)

Many processes that can be observed in nature do not follow a normal distribution, but are limited by
zero on the left side while having large extreme values on the right side. The flow rate or rivers, nutrient
concentrations in waters or phytoplankton biomass in a lake may suffice as examples. On such processes
the logarithmic normal distribution can be applied quite successfully.

x <- rlnorm(1000, meanlog=0, sdlog=0.5)
hist(x, probability=TRUE)
xnew <- seq(min(x), max(x), length=100)
lines(xnew, dlnorm(xnew, meanlog=mean(log(x)),

sdlog=sd(log(x))), col="red")

The typical characteristic of the logarithmic normal distribution is that it is defined by the mean values and
standard deviations of the logarithms. The according sample parameters are called x̄L and sL, R knows them
as meanlog and sdlog.

x <- rlnorm(1000, meanlog=0, sdlog=0.5)
mean(x); sd(x)

[1] 1.09834

[1] 0.5693962

mean(log(x)); sd(log(x))

[1] -0.03037786

[1] 0.5036964

Therefore, the parameters x̄L and sL do not represent mean and standard deviation of the sample itself, but
of the so-called parent distribution. Thus, taking the log from values of a lognormal distribution results in a
normal distribution:

hist(log(x), probability=TRUE)
xnew <- seq(log(min(x)), log(max(x)), length=100)
lines(xnew, dnorm(xnew, mean=mean(log(x)), sd=sd(log(x))), col="red")

5.5 Gamma distribution

The gamma distribution is a right skewed distribution too, which is very useful for lots of practical problems,
especially generalized linear models (GLM), which have been increasingly applied and which allow for
analysis of variance of not normally distributed data, among other things. The gamma distribution is being
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Figure 5.7: Logarithmic normal distribution (left) and according normal distribution (parent distribution,
right).

described by the two parameters shape and rate or, alternatively, by shape and scale = 1/rate. The density
function is:

f (x) =
1

β αΓ(α)
xα−1e−x/β (5.6)

Here α represents the shape parameter and β the scale parameter. Interestingly, α ·β is the mean and α ·β 2

the variance. The χ2-distribution is a special case of the gamma distribution with α = d f/2, µ = d f and
σ2 = 2d f . The exponental distribution is a special case with µ = β , σ = β 2 und α = 1.

As we see the gamma distribution is very flexible. For visualization we will draw a few examples (Fig. 5.8):

x <- seq(0.01, 4, length=100)
par(mfrow=c(2, 2))
plot(x, dgamma(x, .5, .5), type="l")
plot(x, dgamma(x, .8, .8), type="l")
plot(x, dgamma(x, 2, 2), type="l")
plot(x, dgamma(x, 10, 10), type="l")

Subsequently we will generate 1000 random numbers for these examples with rgamma and calculate mean
value and variance.

Example

The data set prk_nit.txt contains individual biomasses of Nitzschia acicularis cells, which were deter-
mined in two practical courses. We will try to fit a gamma distribution (Fig. 5.9):

dat <- read.table("prk_nit.txt", header=TRUE, sep="\t")
#str(dat)
attach(dat)
rate <- mean(Nit90) / var(Nit90)
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Figure 5.8: Examples showing the flexibility of the gamma distribution.

shape <- rate * mean(Nit90)
xnew <- seq(0.01, max(Nit90), length=100)
hist(Nit90, probability=TRUE)
lines(xnew, dgamma(xnew, rate=rate, shape=shape), col="red")
detach(dat)

5.6 Poisson distribution

The Poisson distribution is a discrete distribution. It is applied e.g. in bacteria and plankton counting
or waiting queues and failure models. In the Poisson distribution µ = σ2 applies and this mean value
parameter is called λ . The confidence interval depends solely on the number of counted units (k). The size
of the confidence interval of a plankton counting can now easily be determined:

k <- 200 # counted units
qpois(c(0.025, 0.975), k)

[1] 173 228
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Figure 5.9: Histogram of the Nitzschia data set and its estimated gamma distribution.

The counting error is around 15% for k = 200, given the organism distribution matches a Poisson distribu-
tion, i.e. there is no clustering or dispersion.

Exercise: Plot the confidence interval of the Poisson distribution relative to k for an interval of k =

5 . . .1000.

5.7 Testing for distribution

Very often we want to know whether a data set belongs to a specific type of distribution. Though this sounds
quite easy, it is in fact rather difficult for theoretical reasons. As we may remember, statistical tests prove
for deviations from the null hypothesis, but here we want to test if H0 is true!

This is not really possible, because “not significant” means only that a possible effect is either not existent or
just too small to be detected with a given sample size. On the opposite, “significantly different” just means
that there is a certain probability of deviation and that we may have false positives.

Another complication results from the fact that the tested data are not required to belong to a given distri-
bution perfectly, e.g. to be “ideally normal distributed”, which would be indeed impossible for real-world
data. In effect, we are using sometimes a bigger α , e.g. 0.1 to allow some deviations and to avoid false
positives and it is strongly recommended to use graphical methods.

5.7.1 Shapiro-Wilks-W-Test

The Shapiro-Wilks-W has become the standard test for testing for normality, while the the χ2 (Chi-squared)
test is nowadays rarely used for this purpose. It is of course very important for other types of problems.

For demonstration purposes let’s generate 100 uniform random numbers and test whether they stem from a
normally distributed population:

x <- rnorm(100)
shapiro.test(x)
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Shapiro-Wilk normality test

data: x
W = 0.99064, p-value = 0.7165

In this example p is larger than 0.1, so we keep H0 and conclude that nothing speaks against acceptance
of the normal. This is of course obvious, because we used the generator function for normally distributed
random numbers.

If we repeat this experiment, we may get false positives, i.e. data sets that are considered “not normal”
according to the test, but that are still from a computer generated normal distribution in reality.

5.7.2 Graphical examination of normality

Already simple box plots (Fig. 5.10) allow a first assessment, whether a sample is normally distributed or
has atypical variance or is obviously skewed:

x1 <- rnorm(100, mean = 50, sd = 10) # normal distribution
x2 <- runif(100, min = 30, max = 70) # uniform distribution
x3 <- rlnorm(100, meanlog = 2, sdlog = 1) # lognormal distribution
boxplot(x1, x2, x3,

names=c("Normal", "Uniform", "Lognormal"))
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Figure 5.10: Comparison of differently distributed samples with boxplots.

Instead of one of the formerly used histograms for plotting:

• absolute frequency (frequency fi per class i)

• relative frequency ( fi,rel =
fi

∑ fi
)

• cumulative frequency ( fi,cum = ∑
i
j=1 f j)

• or relative cumulative frequency (Scumulative percentage, fi,cum,rel =
fi,cum
∑ fi
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it is also possible to plot the cumulative frequency against a theoretical distribution, and it is even simpler
to plot just the ordered values against theoretical quantiles. This is called quantile-quantile plot (or Q-Q-
plot) and can be done with function qqplot. For comparison with the normal, we just use qqnorm, and
qqline, (Fig. 5.11)

qqnorm(x)
qqline(x, col="red")
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Figure 5.11: Q-Q-plot for graphical test of normal distribution.

A normal distribution can be assumed if the points follow a straight line.

Exercise 1: Generate series of normally distributed random numbers with µ = 50,σ = 10 and check for
normal distribution by means of histograms, Q-Q-plots and the Shapiro Wilks test..

Exercise 2: Test whether the data set nit90 is normally distributed. The data set is available from the
course web page or from "http://www.simecol.de/data/prk_nit.txt".

5.7.3 Transformations

Transformations can be used to convert non-normal distributed data to an approximate normal distribution
to fulfill the assumptions of common statistical methods. The transformation is a completely legal method
and not an illegal manipulation of data. Its simple reason is the fact that, after transformation, we are able
to “recycle” our knowledge about analysis of normally distributed data, so that we are able to go back to
common methods. A number of useful transformations can be found in statistics texts like ZAR (1996)
or, specifically for water quality and catchment variables in HÅKANSON and PETERS (1995). Here some
examples from SACHS (1992):

• x′ = ln(x),x′ = ln(x+a)

• x′ = 1/x (“very powerful”, i.e. to extreme in most cases)

• x′ = 1/
√

x (compromise between ln and 1/x)
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• x′ = (x+a)c (a between 0.5 and 1)

• x′ = a+bxc (very general, includes powers and roots)

• x′ =
√

3/8+ x (counts: 1, 2, 3→ 0.61, 1.17, 1.54, 1.84, . . . )

• x′ = lg(x+3/8)

• x′ = ln(ln(x)) for giant numbers

• Percentages:

– x′ = arcsin
√

x/n

– x′ = arcsin
√

x+3/8
n+3/4

It is very important that transformations have to be monotonous, i.e. that the order of values is unchanged.

5.7.4 Box-Cox transformation

An outstandingly important class of transformations are powers and logarithms, that sometimes are intu-
itively used by people without testing the pre-requisites. One way, to overcome such an intuitive use and to
determine the optimal transformation from this class is the so-called Box-Cox transformation:

y′ = yλ (5.7)

where λ = 0 means that a logarithmic transformation would be appropriate. Function boxcox requires a
so-called “model formula” or the outcome of a linear model (lm) as the argument, in our example we use
just the model formula for a “null model” to test the full data set without explanation variables (~1) More
about model formulas can be found elsewhere, e.g. in the R documentation.

library(MASS) # package that belongs to the book of venables and Ripley
dat <- read.table("prk_nit.txt", header=TRUE)
attach(dat)
boxcox(Nit90 ~ 1)
detach(dat)

The dotted vertical lines and the horizontal 95 %-line show the confidence limits for possible transforma-
tions. Here we see that either a logarithmic transformation (λ = 0) or a power of approximately 0.5 are
suitable. It is also possible to obtain the numerical value directly:

attach(dat)
bc <- boxcox(Nit90 ~ 1)
str(bc)

List of 2
$ x: num [1:100] -2 -1.96 -1.92 -1.88 -1.84 ...
$ y: num [1:100] -237 -233 -230 -226 -223 ...

bc$x[bc$y == max(bc$y)]
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[1] 0.1818182

detach(dat)

We should keep in mind that these are approximate numbers so that it makes no sense to use more than one
decimal.
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Figure 5.12: Checking for Box-Cox-transformation.

It is also possible to test for several related series at once by using explanation factors (here f) on the right
hand side of the model formula:

nit90 <- na.omit(dat$Nit90)
nit85 <- na.omit(dat$Nit85)
x <- c(nit85, nit90)
f <- factor(rep(c("nit85", "nit90"), times=c(length(nit85), length(nit90))))
boxcox(x ~ f)

Exercise

Determine optimal transformations for both Nitzschia data sets and for the pooled data and plot the trans-
formed data by means of Q-Q plots and histograms. Add the density function of the normal distribution as
bell-shaped curve to the histogram and finally, apply Shapiro Wilks W test.

5.8 The central limit theorem

The central limit theorem of statistics (CLT) tells us that sums of a large number n of independent and
identically distributed random values are normally distributed, independently on the type of the original
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distribution. The required number n depends, however, on the skewness of the original distribution.

This means for statistical tests, that we can sometimes even use methods for normally distributed data, when:

• we have a large data set,

• the applied method deals with mean values of the data set and not with the original numbers,

• the original distribution is not “too skewed”.

To demonstrate, how the CLT works, we perform the following simulation experiment. In this we generate a
matrix with 100 rows and 12 columns of uniformly distributed random numbers and compute the row sums.
Then we plot histograms for the original uniformly distributed data and for the row sums (5.13):

par(mfrow=c(1,2))
x <- matrix(runif(12*100), nrow=12)
xs <- colSums(x)
hist(x)
hist(xs)
shapiro.test(x)

Shapiro-Wilk normality test

data: x
W = 0.95368, p-value < 2.2e-16

shapiro.test(xs)

Shapiro-Wilk normality test

data: xs
W = 0.97475, p-value = 0.05161
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Figure 5.13: Histogram of a uniformly distributed sample withs N = 1200 (left) and of 100 means values
taken from 12 original values (right). We see that the mean values are already quite close to a
normal, despite the fact that the original distribution was uniform.
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5.9 Confidence intervals for the mean

In order to assess the accuracy of a mean value, we can use the standard error of the mean:

sx̄ =
s√
n

(5.8)

This means that the variability of the mean is half, if we increase the sample size four times (22). Further-
more, it is possible to estimate the interval in which the true mean is found with 95 % probability, that is the
95 % confidence interval:

CI95% = (x̄− z0.975 ·
s√
n
, x̄+ z0.975 ·

s√
n
) (5.9)

with z1−α/2 = z0.975 = 1.96. For small samples (n / 30) but also in general we can use the t distribution
instead of the normal, i.e. the t quantile with n−1 degrees of freedom instead of z. The following example
shows the estimation of the confidence interval for a normally distributed random variable µ = 50 and
σ = 10:

n <- 10
x <- rnorm(n, 50, 10)
m <- mean(x)
s <- sd(x)
se <- s/sqrt(n)
# lower and upper confidence limits
m + qt(c(0.025, 0.975), n-1) * se

[1] 44.53931 59.23066

For real data we should of course respect their original distribution, especially if the sample size is small
(see CLT). Then we may consider to estimate the confidence interval for a transformed (e.g. after taking the
log) parent distribution and then back-transform (i.e. exp) the results:

x <- log(dat$Nit90)
m <- mean(x)
s <- sd(x)
n <- length(x)
se <- s/sqrt(n)
ci <- m + qt(c(0.025, 0.975), n-1) * se
exp(m) # is the geometric mean

[1] 475.8295

exp(ci) # an asymmetric confidence interval

[1] 407.8510 555.1383
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5.10 Outliers

Extremely large or extremely small values are sometimes called “outliers” what means that they are “not
really” from the population that we want to analyze, but instead influenced by another process, e.g. by
mixing up of two samples in the lab. However, this “other process” can also be something interesting, or
point to a new phenomenon, so it is always difficult to exclude values only because they are “too big” or
“too small” and it is better to find the reason, why they are so extreme.

Nevertheless, we can find several outlier tests in the literature, e.g. the 4σ -rule, where x̄ and s have to be
calculated without the outlier(s) and should be n≥ 10. Another outlier test according to SACHS (1992) for
n≥ 25 can be performed as follows. First, we calculate a value T1 with:

T1 =

∣∣∣∣x1−µ

σ

∣∣∣∣
and then we lookup a respective table in the book. For linear models and GLMs we can find an outlier test
(the Bonferroni outlier test) in package car. In the following, the 21st value (i.e. the 12) is identified as an
outlier:

library(car)
x <- c(rnorm(20), 12) # the 12 is an outlier
outlierTest(lm(x~1)) # x~1 is the null model

rstudent unadjusted p-value Bonferonni p
21 10.19573 3.848e-09 8.0808e-08

Instead of eliminating outliers it is also possible to use methods that are robust against this from the be-
ginning, e.g. the median or the trimmed mean instead of the ordinary arithmetic mean, to use rank-based
methods (like Spearman correlation), robust methods (like robust regression) or bootstrapping.

Note: Outliers may be omitted in an analysis, but the the number and extend of outliers must be mentioned!

Extreme values in boxplots

The boxplot function boxplot marks extreme values with stars if they are more than 1.5 times distant
from the box limits, compared to the width of the interquartile box (range=1.5). However, we should not
confuse the term “extreme value” (due to a skewed or heavy tailed distribution) with the term “outlier”.

If you intend to present boxplots to people with less experience in statistics it maybe sometimes advisable
to omit this option and just to draw the whiskers to the extreme values using option range=0:

par(mfrow=c(1,2))
x <- c(1,2,3,4,5,6,12)
boxplot(x)
boxplot(x, range=0)
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Figure 5.14: Boxplots with separately annotated extreme values (left) and with whiskers that include the
extreme values (right).
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Sophisticated methods such as generalized mixed models or labor-intensive multivariate analysis are not
always necessary. In many cases so-called classical tests are sufficient. Here, the principle of parsimony is
applies too: the simplest method should be preferred.

In the following chapter we will assume that most tests are more or less known already (otherwise consult
your favorite statistics book, e.g. DALGAARD, 2002). Therefore we will limit our efforts to a few short
examples and instructions of the application in R.

6.1 Testing for homogeneity of variances

Checking homogeneity (approximate equality) of variances is, on the one hand, a necessary precondition for
a number of methods (for example comparison of mean values) and on the other hand the heart of a number
of more sophisticated methods (such as analysis of variance). The classical F-test, which is based upon the
quotient of two variances, is available in R as var.test. More than two variances can be compared using
either the parametric Bartlett’s test or the non-parametric Fligner-Killeen test. The latter one is considered to
be very robust against deviations from the normal distribution. For demonstration purposes we will generate
three normally distributed data sets with identical (x1, x3) and different (x2) variance respectively, and
will apply the different variance tests to them. We will visualize them in a boxplot (fig. 6.1):

x1 <- rnorm(10, 5, 1)
x2 <- rnorm(10, 5, 2)
x3 <- rnorm(10, 10, 1)
boxplot(x1, x2, x3)

For comparing variances we have several tests available, the classical F-test:

var.test(x1, x2)

F test to compare two variances

data: x1 and x2
F = 0.21105, num df = 9, denom df = 9, p-value = 0.02989
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.05242167 0.84968342
sample estimates:
ratio of variances

0.2110493

Bartlett’s test, which is also suited for comparison of more than 2 variances:

55



6 Classical tests

bartlett.test(list(x1, x2, x3))

Bartlett test of homogeneity of variances

data: list(x1, x2, x3)
Bartlett's K-squared = 7.7136, df = 2, p-value = 0.02114

or as a non-parametric alternative the Fligner-Killeen test:

fligner.test(list(x1, x2, x3))

Fligner-Killeen test of homogeneity of variances

data: list(x1, x2, x3)
Fligner-Killeen:med chi-squared = 2.2486, df = 2, p-value = 0.3249

1 2 3

2
4

6
8

10

Figure 6.1: Boxplots of 3 samples from normally distributed populations.

6.2 Testing for differences between mean values

6.2.1 One sample t-Test

We can test for differences between mean values with the help of the classical t-test. The one-sample t-test
tests if a sample is from a population with a given mean value µ:

x <- rnorm(10, 5, 1)# normally distributed sample with mu=5, s=1
t.test(x, mu=5) # does x come from a sample with mu=5?

One Sample t-test

data: x
t = -1.116, df = 9, p-value = 0.2933
alternative hypothesis: true mean is not equal to 5
95 percent confidence interval:
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4.404882 5.201915
sample estimates:
mean of x
4.803398

6.2.2 Two sample t-Test

In the two-sample t-test two independent samples are compared:

x1 <- rnorm(12, 5, 1)
x2 <- rnorm(12, 5.7, 1)
t.test(x1, x2)

Welch Two Sample t-test

data: x1 and x2
t = -2.5904, df = 17.393, p-value = 0.01882
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.8064299 -0.1862296
sample estimates:
mean of x mean of y
4.683433 5.679763

That means that both samples differ significantly (p < 0.05). It has to be mentioned that R did not perform
the “normal” t-test but the Welch test (also termed heteroscedastic t-test), for which the variances of both
samples are not required to be identical.

The classical procedure would be as follows:

1. Perform a check for the identity of both variances with var.test beforehand:

var.test(x1, x2) # F-Test

F test to compare two variances

data: x1 and x2
F = 3.1211, num df = 11, denom df = 11, p-value = 0.0719
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:

0.8984895 10.8417001
sample estimates:
ratio of variances

3.121082

2. if p < 0.05 then the variances are significantly different, so the Welch test (see above) needs to be
used.

3. if p > 0.05, then variances are likely to be equal and the “normal” t-test can be applied:

t.test(x1, x2, var.equal=TRUE) # classical t-test
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Two Sample t-test

data: x1 and x2
t = -2.5904, df = 22, p-value = 0.0167
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.793999 -0.198661

sample estimates:
mean of x mean of y
4.683433 5.679763

6.2.3 Paired t-Test

If the present data are paired (e.g. an allergy test on the left and right arm) the paired t-test is used. Its
advantage is that the influence of individual differences (i.e. a covariate) is eliminated. The downside is that
the number of degrees of freedom is reduced. But if data are really paired it is definitely advantageous to
take that information into account:

x1 <- c(2, 3, 4, 5, 6)
x2 <- c(3, 4, 7, 6, 8)
t.test(x1, x2, var.equal=TRUE) # p=0.20 not significant

Two Sample t-test

data: x1 and x2
t = -1.372, df = 8, p-value = 0.2073
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.28924 1.08924
sample estimates:
mean of x mean of y

4.0 5.6

t.test(x1, x2, paired=TRUE) # p=0.016 significant

Paired t-test

data: x1 and x2
t = -4, df = 4, p-value = 0.01613
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.710578 -0.489422
sample estimates:
mean of the differences

-1.6

It can be seen that the paired t-test has a greater discriminatory power.
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6.2.4 Rank-based tests (Wilcoxon and Mann-Whitney U-test)

If data are not approximately normal distributed a transformation might be helpful. Alternatively, a non-
parametric, rank-based test (Wilcoxon-test or Mann-Whitney-U-test) could be used. Both are available in R
under wilcox.test.

dat <- read.table("prk_nit.txt", header=TRUE)
attach(dat)
boxplot(Nit90, Nit85)
wilcox.test(Nit90, Nit85)

Wilcoxon rank sum test with continuity correction

data: Nit90 and Nit85
W = 3007, p-value = 3.194e-07
alternative hypothesis: true location shift is not equal to 0

An analogous test for more than two samples is the Kruskal-Wallis rank-sum test. (kruskal.test).

The package exactRankTests1 contains improved alternatives to the Wilcoxon test. One is wilcox.exact,
which also accepts ties (i.e. double values), and a permutation test (perm.test), which calculates the
exact probability based on a complete permutation of all possibilities. The permutation test is relatively
demanding in terms of computing power, but does not seriously raise any problems to modern computers.
Ultimately, the Wilcoxon test is simply an approximation of the permutation test.

When we perform the permutation test in R we have to take care that missing values (NA values) have been
eliminated:

library(exactRankTests)
wilcox.exact(Nit90, Nit85)

Asymptotic Wilcoxon rank sum test

data: Nit90 and Nit85
W = 3007, p-value = 3.153e-07
alternative hypothesis: true mu is not equal to 0

perm.test(na.omit(Nit85), Nit90)

Asymptotic 2-sample Permutation Test

data: na.omit(Nit85) and Nit90
T = 16828, p-value = 7.744e-06
alternative hypothesis: true mu is not equal to 0

detach(dat)

1This package still works, but is not being developed anymore. Instead, the new package coin contains a generalized approach
to these and other non-parametric tests.

59



6 Classical tests

Table 6.1: Locations of Daphnia clone groups in the stone pit lake Gräfenhain (clone A, clone B, clone C,
epilimnic=top, hypolimnic=bottom, data: Matthes, Marco, unpublished)

Epilimnion Hypolimnion
Klon A 50 87
Klon B 37 78
Klon C 72 45

6.3 Testing for correlation

6.3.1 Contingency tables for nominal variables

Contingency tables can be used to uncover relationships between nominal (i.e. categorical or qualitative)
data, e.g. between eye and hair color, the kind of treatment and the number of those healed (healed/ not
healed), or between a Daphnia-clone and its preferred depth in a lake (Table 6.1). Here it is important
to use the absolute number of examined individuals (e.g. experimental animals) and not percentages or
“individuals per liter”.

For testing purposes we start by creating a matrix with 3 rows and 2 columns:

x <- matrix(c(50, 37, 72, 87, 78, 45), ncol=2)
x

[,1] [,2]
[1,] 50 87
[2,] 37 78
[3,] 72 45

and then perform a χ2-test or Fisher’s exact test:

chisq.test(x)

Pearson's Chi-squared test

data: x
X-squared = 24.255, df = 2, p-value = 5.408e-06

or:

fisher.test(x)

Fisher's Exact Test for Count Data

data: x
p-value = 5.807e-06
alternative hypothesis: two.sided

As a result we receive significant correlation between the clones and their location i.e. the locations of the
clones differ.
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6.3.2 Correlation coefficients for metric variables

For metric data the most frequently used correlation coefficients are Pearson’s correlation coefficient, Spear-
man’s rank correlation coefficient or or Kendall’s tau. All these correlation tests can be run in R with the
help of cor.test:

x <- c(1,2,3,5,7,9)
y <- c(3,2,5,6,8,11)
cor.test(x, y, method="pearson")

Pearson's product-moment correlation

data: x and y
t = 7.969, df = 4, p-value = 0.001344
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7439930 0.9968284
sample estimates:

cor
0.9699203

If the linearity of a relationship or the normality of the residuals is doubtful, a rank correlation test can be
carried out. Mostly, Spearman’s rank correlation coefficient is used:

cor.test(x, y, method="spearman")

Spearman's rank correlation rho

data: x and y
S = 2, p-value = 0.01667
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.9428571

. . . and sometimes “Kendall’s Tau”:

cor.test(x, y, method="kendall")

Kendall's rank correlation tau

data: x and y
T = 14, p-value = 0.01667
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.8666667

If only the correlation coefficients are to be calculated (e.g. for a complete matrix or all the variables in a
data frame), then function cor can be used.
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6.4 Determining the power of statistical tests

Besides the structure of the experimental design and specific properties of the used test, the discriminatory
power depends mainly on:

• the relative effect size (effect/standard deviation, δ = (x̄1−x̄2)
s ,

• the sample size n,

• and the pre-defined significance level α .

Here, the following rule applies: the smaller α , n and ∆, the bigger the error of the second kind β (type II
error), i.e. the probability to overlook effects despite of their existence. Therefore, it is advisable to set the
sample size before realizing an experiment and to test the statistical procedure to be applied. Determining
the sample size depending on α , β and ∆ or, vice versa, estimating β for a given n is called power analysis.

In the one-sample case the smallest necessary sample size can be found using a simple formula:

n =
(zα + z1−β

∆

)2

with z being the quantiles (qnorm) of the standard normal distribution for α (probability of error) and for
1−β being the power, whereas ∆ = δ/s is the relative effect size.

In the two-tailed case (called two-sided as well) with α = 0.025 and β = 0.2 the two z-quantiles are 1.96
and 0.84 respectively. What follows from this is the rule of thumb:

n = (1.96±0.84)2 ·1/∆
2 ≈ 8 ·1/∆

2

This rule allows for a certain estimation, but is valid only for the one sample problem. For other experimental
designs and tests specific nomograms or equations exist (e.g. in ZAR, 1996).

6.4.1 Power of the t-test

The power of a t-test, the necessary sample size or the minimum effect size, respectively, can be derived
with the function power.t.test(). Thus:

power.t.test(n=5,delta=0.5,sig.level=0.05)

Two-sample t test power calculation

n = 5
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.1038399
alternative = two.sided

NOTE: n is number in *each* group
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results in a alarmingly low power of 0.10, i.e. for n = 5 an effect of half a standard deviation that exists in
reality will only be detected in 1 out of 10 cases.

For reaching a power of 80 % at n = 5 a relative effect size of at least 2 is necessary:

power.t.test(n=5,power=0.8,sig.level=0.05)

Two-sample t test power calculation

n = 5
delta = 2.024438

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

In order to find a comparatively weak effect of 0.5s a sample size of at least n = 64 would be needed:

power.t.test(delta=0.5,power=0.8,sig.level=0.05)

Two-sample t test power calculation

n = 63.76576
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

Here it can be clearly seen that either a large sample size or a large effect strength are needed to find an
existant effect. Otherwise, the power will become so low that the experiment wouldn’t be worth the effort.

Presently, in R there are further functions for power analysis of balanced one-way ANOVA designs a for a
proportion test (prop.test). For other problems the simulation method can be used.

6.4.2 Simulation method *

Alternatively, the power can be estimated with simulations. This is a little bit more demanding in terms of
computing power and delivers only approximate values, but works in principle with any test design. In the
following we will execute 1000 t-tests two samples from a well-defined statistical population with known
differences between their mean values and will test, how many percent of the tests will deliver a significant
result. This will be counted in the variables a and b:

### simulated power of a t-test ###

# population parameters
n <- 10
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xmean1 <- 50
xmean2 <- 55
xsd1 <- xsd2 <- 10
alpha <- 0.05
# number of test runs in the simulation
nn <- 1000
a <- b <- 0
for (i in 1:nn) {

# creating random numbers
x1 <- rnorm(n, xmean1, xsd1)
x2 <- rnorm(n, xmean2, xsd2)
# results of the t-test
p <- t.test(x1,x2,var.equal=TRUE)$p.value
if (p < alpha) {

a <- a+1
} else {

b <- b+1
}

}
print(paste("a=", a, ", b=", b, ", a/n=", a/nn, ", b/n=", b/nn))

We receive (approximately, as it is a random experiment):

[1] "a= 194 , b= 806 , a/n= 0.194 , b/n= 0.806"

Here a/n is the number of significant results, i.e. despite of a demonstrably existing difference between both
mean values, we will receive a significant result in merely 20% of cases. So the power (1−β ) is just 20%.

6.5 Exercises

1. Compare the mean values of the flower characteristics “Sepal Length” a) of Iris setosa and Iris ver-
sicolor and b) of Iris versicolor and Iris virginica respectively. They are part of the Iris dataset
(data(iris)). Choose a suitable test and interpret the results.

2. Repeat the test with subsets of the samples of the particular species (try n = 5 or n = 10 for example).

3. Which effect size would be needed to detect a significant difference in a two-sample t-test with n =

3,α = 0.05 and 1−β = 0.8?

4. Evaluate the power of a Wilcoxon test in comparison to a t-test using the simulation method.
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7.1 Overview

Correlation and regression analysis serve for answering questions concerning the dependency of two or more
random variables. Despite the fact that both methods are usually discussed together and are often executed
in one step with a certain software, they have some important differences:

• Correlation analysis tests, if there is a dependency at all and how strong it ist (significance test).

Given two samples, in correlation analysis both will be regarded as random variables (model II), i.e.
there is no distinction between an independent and a dependent one. As a measure of the dependency
the correlation coefficient ρ can be used. It is estimated by r.

• Regression analysis tries to describe the dependency by means of functional relationships.

Normally, model I is assumed, that distinguishes between dependent and independent variables, i.e.
it is assumed that the “independent” variables are fixed and without error. Creating a calibration
curve for a photometer (as used in chemical analytics), as an example, is based on the assumption
that the weight of the chemical has distinct levels and all errors in the analysis (such as reaction time,
impurities, measurement errors of the photometer, and even the weighing errors) appear as errors of
the dependent variable (namely the extinction).

7.2 Correlation analysis

7.2.1 Pearson’s product-moment correlation coefficient

PEARSON’s product-moment correlation is the “ordinary” correlation coefficient, as we all hopefully know
it. With its help it can be tested whether two variables show a linear dependency.

Calculation:

rP =
∑(Xi− X̄)(Yi− Ȳ )√

∑(Xi− X̄)2 ∑(Yi− Ȳ )2

or, more favourable:

rP =
∑XiYi−∑Xi ∑Yi/n√

(∑X2
i − (∑Xi)2/n)(∑Y 2

i − (∑Yi)2/n)

The correlation coefficient always ranges from −1≤ rP ≤+1 and it is interpreted as follows:
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0 no correlation
+1 or−1 strictly functional positive or negative dependency
0 < |rP|< 1 positive or negative correlation

In R the correlation coefficient for two random variables x und y can be calculated like follows:

x <- c(1, 2, 3, 4, 5, 4, 3)
y <- c(1, 3, 4, 4, 6, 7, 8)
cor(x, y)

[1] 0.677408

and a significance test (null hypothesis ρ = 0) can be performed easily, too:

cor.test(x, y)

Pearson's product-moment correlation

data: x and y
t = 2.0592, df = 5, p-value = 0.09453
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1544282 0.9472485
sample estimates:

cor
0.677408

In order to determine it “by hand” there are various possibilities, e.g.:

1. consulting tables of so-called critical values, see table 7.1,

2. approximation with the help of the t-quantile:

t̂α/2;n−2 =
|rP|
√

n−2√
1− r2

P

3. or an F-test, see for example SACHS (1992).

The purpose of the significance test is to distinguish random from non-random (significant) correlations.
The more measurements were taken, the smaller correlations can be detected to be significant. If only two
pairs of values exist, we cannot test for significance, as there is always a straight line between two points
and it is said that there are no degrees of freedom (d.f.).

Problematic cases

While calculating rP is always allowed, the test requires bivariate normal distribution, continuous random
variables, independent pairs of observations and a dependency that is linear. Other monotonous, nonlinear
dependencies may bias rP as do non-normality and outliers. Thus, a graphical control it is always advisable.
If necessary, a transformation (e.g. a logarithm) should be applied.
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Table 7.1: Some critical values (rcrit) for the Pearson correlation coefficient (null hypothesis H0 : ρ = 0)
n d.f. t rkrit

3 1 12.706 0.997
5 3 3.182 0.878

10 8 2.306 0.633
20 18 2.101 0.445
50 48 2.011 0.280

100 98 1.984 0.197
1000 998 1.962 0.062

7.2.2 Spearman’s rank correlation coefficient

In contrast to PEARSON’s product-moment correlation SPEARMAN’s rank correlation tests for any mono-
tonic increasing or decreasing dependency, regardless if it is linear or not. Instead of the actual values ranks
are used, so that rS can be calculated with:

rS = 1− 6∑d2
i

n(n2−1)

with di being the difference between ranks of a sample pair di = xi− yi. Here, −1 ≤ rS ≤ +1 applies too.
For testing purposes, a table of critical values can be used again (Table 7.2).

Table 7.2: Critical values for Spearman’s rank correlation coefficient, taken from GRIMM and RECKNAGEL

(1985)

α 4 5 6 7 8 9 10 11 12
0.05 1.000 0.900 0.829 0.745 0.690 0.683 0.636 0.609 0.580
0.01 0.943 0.893 0.857 0.817 0.782 0.754 0.727

Another test (for N > 10) uses the t distribution:

t̂1− α

2 ;n−2 =
|rS|√
1− r2

S

√
n−2

Example: Calculating rS by hand:

x y Rx Ry d d2

1 2.7 1 1 0 0
2 7.4 2 2 0 0
3 20.1 3 3 0 0
4 500.0 4 5 -1 1
5 148.4 5 4 +1 1

2
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rS =
6 ·2

5 · (25−1)
=

12
120

= 0.9

For comparison: rP = 0.58

Hints:

If there are many ties, mid-level ranks have to be formed for identical values. Afterwards, rS is estimated by
calculating the rP of the ranks.

Advantages of rS:

• independent from the type of distribution,

• tests for any monotonic correlation,

• is not much influenced by outliers.

Disadvantages:

• a certain loss of information due to ranking,

• no information about the type of dependency,

• no direct link to the coefficient of determination.

In Conclusion, rS is highly recommended, especially at the beginning of an analysis.

7.2.3 Estimation and testing of rS with R

x <- c(1,2,3,4,5,4,3)
y <- c(1,3,4,4,6,7,8)
cor.test(x,y, method="spearman")

Spearman's rank correlation rho

data: x and y
S = 21.063, p-value = 0.1343
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.6238795

In case of ties (doubled values), R will output a warning, that it cannot compute exact p-values with ties .
In such cases the rank correlation coefficient can be estimated using PEARSON’s correlation coefficient of
ranks 1.

cor.test(rank(x), rank(y))

1One would simply write: “Because of the presence of ties the rank correlation coefficient war estimated with the help of PEAR-
SON’s correlation coefficient of ranks.”
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Pearson's product-moment correlation

data: rank(x) and rank(y)
t = 1.785, df = 5, p-value = 0.1343
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.2436494 0.9368085
sample estimates:

cor
0.6238795

In the example above both methods give identical results and no significant correlation.

7.2.4 Multiple correlation

Sometimes, one wants to account for dependencies of one variable on several others simultaneously, e.g.
the dependence of the chlorophyll concentration (Chla) in a lake according to Chla = f (X1,X2,X3,X4, . . .),
with Xi being the biomass of the ith phytoplankton species.

In general, a distinction can be made between the multiple correlation coefficient and the partial correlation
coefficient. Multiple correlation analysis appears to be very powerful at first sight, but in practice there are
often serious difficulties, for example:

1. if the independent variables are correlated with each other (multicollinearity) the multiple r is biased.

2. Nonlinearities are even harder to handle in multiple regression than they are in the two-sample case.

As a way out it is recommended to first provide oneself with an overview using multivariate methods (e.g.
NMDS), and then to approach the problem with more insight into the processes involved and a good portion
of instinct. HARRELL (2001) or QIAN (2009) provide more information on this topic.

7.3 Linear regression

Regression analysis aims to describe the dependency between two (simple regression) or several variables
(multiple regression) by means of a linear or nonlinear function. In case of not only multiple independent
variables (x-variables), but also multiple dependent variables (y-variables) this is referred to as multivariate
regression. In contrast to correlation analysis, which tests for the existence of a relationship, regression
analysis focuses on the quantitative description of this relationship by means of a statistical model. Besides
that, there are also differences in the underlying statistical assumptions. While correlation analysis assumes
that all variables are random containing an error (model II), regression analysis generally makes a distinction
between independent variables (without error) and dependent variables (with errors), which is called model
I (for more details see e.g. SACHS, 1992; ZAR, 1996).

7.3.1 Basic principles

In general, linear models form the basis for a variety of statistical methods, e.g. linear regression or analysis
of variance. The equation of a multiple linear model is:
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yi = α +β1xi,1 +β2xi,2 + · · ·+βpxi,p + εi (7.1)

with every value of the dependent variable yi being calculated from the corresponding value of the inde-
pendent variable xi, j, the model parameters α (y-intercept) and β j (regression coefficient or slope) and a
normally distributed error term εi with mean value 0.
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Figure 7.1: Linear regression (left) and residuals (right).

A simple regression model for example (best fit straight line, Fig. 7.1) with one dependent variable y and
only one independent variable x can be written as:

ŷi = a+b · xi (7.2)

In this context ŷ denotes the estimated values of the dependent variable, i.e. the values on the regression
line, while a and b are the estimates of the true model parameters α and β .

In order to estimate a and b an optimization criterion is needed. In most cases the sum of squared deviations
SQ = ∑(ŷi− yi)

2 will be used. The minimum SQ→ min can be obtained by setting the first partial derivate
of SQ with regard to the parameters a and b to zero:

∂ ∑(ŷi− yi)
2

∂a
=

∂ ∑(a+b · xi− yi)
2

∂a
= 0 (7.3)

∂ ∑(ŷi− yi)
2

∂b
=

∂ ∑(a+b · xi− yi)
2

∂b
= 0 (7.4)

and after solving the resulting system of equations one receives the determination equations for a and b:

b =
∑xiyi− 1

n(∑xi ∑yi)

∑x2
i −

1
n(∑xi)2

(7.5)

a =
∑yi−b∑xi

n
(7.6)
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Therefore, the best fit line can be directly calculated from the given values of x and y via a linear system of
equations. For that reason it is termed an analytical solution.

Residuals and coefficient of determination

The difference εi = yi− ŷi between the corresponding measured and the predicted values of the dependent
variable are called residuals (fig. 7.1 right) and their variance is called “residual variance”. It is obvious
that the residuals are less scattered than the original measurements. This means that a certain fraction of the
original variation is now contained within the regression line, or, in other words, explained by the model.
That fraction of the original variance now explained by the model is the coefficient of determination r2,
which in the case of the linear regression equals the square of Pearson’s correlation coefficient.

From this follows in general:

r2 =
explained variance

total variance
=

total variance− residual variance
total variance

(7.7)

or

r2 =
s2

y− s2
yi−ŷi

s2
y

(7.8)

and in the case of a linear regression

r2 =
∑(ŷ− ȳ)2

∑(y− ȳ)2 (7.9)

The coefficient of determination always ranges from 0 to 1 and a value of r2 = 0.85, for example, means
that 85% of total variance is explained by the model.

Significance test

Besides the numerical value of the coefficient of determination and graphical control of the results a sig-
nificance test is always needed. The larger the sample size n, the smaller values of r2 can be found the be
significant. Significance of the slope can be examined with the help of an F-test:

F̂1;n−2;α =
s2

explained

s2
residual

=
r2(n−2)

1− r2 (7.10)

Confidence intervals

Confidence intervals can be estimated for the parameters (e.g. a and b), for the regression line itself and for
future observations Yi at Xi (prediction interval). The confidence intervals of the parameters a and b can be
calculated easily with the help of their standard errors sa and sb

a± t1−α/2,n−2 · sa (7.11)

b± t1−α/2,n−2 · sb (7.12)
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Figure 7.2: Linear regression with confidence interval of the regression line (dashed) and prediction interval
for future observations (solid).

The confidence interval (as in Fig. 7.2) represents the limits in which the regression is found with a certain
probability (e.g. 95%). The hyperbolic shape is comprised of a shift (confidence interval of parameter a)
and a rotation (confidence interval of b).

In contrast, the prediction interval has a completely different meaning. It tells us within which limits a
predicted value y is to be expected for a given x. Thus, whereas the confidence interval characterizes the
mean course of the regression line, the prediction interval makes a statement about expected single values.

According to (SACHS, 1992) or (ZAR, 1996) these intervals can be obtained from the total sum of squares
Qx for the x values like follows:

Qx =
n

∑
i=1

(xi− x̄)2 =
n

∑
i=1

x2
i −

1
n

n

∑
i=1

xi (7.13)

and the standard error of the prediction (the standard deviation of the ŷ values) for a given x (sy|x, to be read
as: “s y for x”):

sy|x =

√
∑

n
i=1(yi− ŷ)2

n−2
=

√
∑

n
i=1(yi−a−b · xi)

n−2
(7.14)

We first calculate the standard deviation for an estimated mean value ŷ and the standard deviation for pre-
dicted single value ŷ. at x

sŷ = sy|x ·

√
1
n
+

(x− x̄)2

Qx
(7.15)

sŷ. = sy|x ·

√
1+

1
n
+

(x− x̄)2

Qx
(7.16)

72



7 Correlation and regression

and thus receive the confidence interval of the regression line as:

ŷ±
√

2 ·F(2,n−2) · sŷ (7.17)

and the prediction interval as:

ŷ± t(n−2)sŷ. (7.18)

with F and t being the appropriate quantiles of the F- and t-distribution.

Assumptions of the linear regression

Only if the following prerequisites are met, the parameters (a,b) can be estimated without bias and the
significance test will be reliable (SACHS, 1992):

1. Model I is assumed (x is defined, y is a random variable).

2. For every value of x, y is a random variable with mean µy|x and variance σ2
y|x.

3. y values are independent and identically distributed (no autocorrelation and homogeneous variance
σ2)

4. For multiple regression all x j must not be correlated with each other (multicollinearity condition).

5. The residuals e and the y values need to be normally distributed.

In this context it is especially important that the variance of the residuals is homogenous along the whole
range of x, i.e. the variation of the residuals must not increase or decrease or show any systematic pattern.

Further information on the basics and the execution of regression analysis can be found in general statistics
textbooks like KÖHLER et al. (2002), SACHS (1992) or ZAR (1996), e.g. about the calculation in confidence
intervals, significance tests for a and b or about alternatives to the method of least squares.

7.3.2 Implementation in R

Model formula in R

R has a special formula syntax for describing statistical models. A simple linear model (y versus x) can be
described as:

y ~ x + 1

or shorter, because “+ 1” can be omitted:

y ~ x

In contrast to the former, “-1” means a regression model with zero intercept:

y ~ x - 1
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The complete formula syntax and further examples are contained within the R documentation or can be
found in textbooks, for example in VENABLES et al. (2001).

A simple example

First, we create a vector containing 10 x values:

x <- 1:10

and a vector of y values that depend on x:

y <- 2 + 0.5 * x + rnorm(x)

where rnorm(x) returns a vector with random numbers with the same length as there are values in x. The
random numbers come from a standard normal distribution with mean zero and standard deviation one.

First, we plot the data with:

plot(x, y)

Then, a linear model can be fitted with the linear model function lm():

reg <- lm(y ~ x)

The R object delivered by lm (called reg in our case) now contains the complete results of the regres-
sion, from which significance tests, residuals and further information can be extracted by using specific R
functions. Thus,

summary(reg)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-1.33483 -0.21043 -0.03764 0.59020 1.04427

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.77581 0.59426 1.306 0.228008
x 0.64539 0.09577 6.739 0.000147 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8699 on 8 degrees of freedom
Multiple R-squared: 0.8502, Adjusted R-squared: 0.8315
F-statistic: 45.41 on 1 and 8 DF, p-value: 0.0001467

gives us the most important results of the regression, e.g. the coefficients, with intercept being equivalent
to parameter a and the dependence on x being equivalent to the slope parameter b. The coefficient of
determination is found as Multiple R-squared. Besides that also standard errors of the parameters and
significance levels are printed.

The regression line can be added to the plot with the universal line drawing function of R, abline that
directly accepts a linear model object (reg) as its argument:
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abline(reg)

With the help of predict the y values belonging to given x values can be calculated:

x1 <- c(1.5, 2.5, 7.5)
y1 <- predict(reg, data.frame(x=x1))
points(x1, y1, col="green")

In doing so, one has to keep in mind that predict expects the new data in a data frame with the same
variable names as in the initial call of lm. Using predict we can also create confidence and prediction
intervals (see Fig. 7.2):

x <-1:10
y <- 2 + 0.5 * x + 0.5 * rnorm(x)
reg <- lm(y ~ x)
plot(x,y, ylim=c(0,10), xlim=c(0,10))
abline(reg)
newdata <- data.frame(x=seq(min(x), max(x), length=100))
conflim <- predict(reg, newdata=newdata, interval="confidence")
predlim <- predict(reg, newdata=newdata, interval="prediction")
lines(newdata$x, conflim[,2], col="blue", lty="dashed")
lines(newdata$x, conflim[,3], col="blue", lty="dashed")
lines(newdata$x, predlim[,2], col="red")
lines(newdata$x, predlim[,3], col="red")

There are numerous additional possibilities, for example coef(reg), which delivers the coefficients, and
residuals(reg), which delivers the residuals for futher use. The function plot(reg) can be used
for getting diagnostic plots. Finally, str(reg) shows the elements contained within reg, that can be used
for further calculations.

7.3.3 Exercise: Relationship between chlorophyll and phosphate

Problem

The file oecd.txt contains the mean annual values of total phosphate (TP µgl−1) and chlorophyll a
(CHLa in µgl−1) from 92 lakes digitized from a figure in VOLLENWEIDER and KEREKES (1980)2. The
data are to be visualised and a suitable regression line is to be fit.

Solution

First, the data are read from a text file, in which the first row holds the variable names (header=TRUE).
Using attach(mydata) the variables within the data frame mydata can be accessed directly.

dat <- read.table("oecd.txt", header=TRUE)
plot(dat$TP, dat$CHLa)
reg <- lm(CHLa ~ TP, data = dat)
abline(reg)
summary(reg)

2because some data points coincide, two of the original 94 lakes are missing.
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The plot indicates that the assumptions of the linear regression were heavily violated. Thus, both the the x
axis and the y axis are to be transformed. As in the original publication we will us a logarithmic transforma-
tion. In accordance with most other programming languages, in R log() stands for the natural logarithm.
In order to fit a line to the transformed data, the logarithm can be applied directly within lm, but it is also
possible to transform the data beforehand:

logTP <- lof(TP)
logCHLa <- log(CHLa)
plot(logTP, logCHLa)
reg <- lm(logCHLa ~ logTP)
abline(reg)
summary(reg)

7.3.4 Additional exercises

1. Convert the equation ln(CHLa) = a+b · ln(T P) into the form CHLa = a′ ·T Pb.

2. Remove the data in which not phosphorous (P), but nitrogen (N) or light (I) are the limiting factors
and recalculate the regression. Plot all regression lines together into one plot.

3. Calculate the coefficient of determination using equation 7.8 and compare the result to the output of
R.

7.4 Nonlinear regression

7.4.1 Basic concepts

Many seemingly nonlinear functions can be fitted using linear techniques, e.g. polynomials or periodic
(sine and cosine) functions, and some others can be fitted by using transformations of the variables, e.g.
logarithms or reciprocals. So, for instance:

y = a · xb (7.19)

is equivalent to the function

ln(y) = ln(a)+b · ln(x) (7.20)

It has to be noted, however, that carrying out such a linearisation transforms the residuals as well. Some-
times, this is correct and necessary to meet the assumptions of linear regression, as in the above example
of the dependency of chlorophyll from total phosphate. However, care has to be taken in such cases and
at least graphical diagnostics of the transformed data is required. Unfortunately, common spreadsheet pro-
grams hide this from the user, and this can result in misleading and essentially wrong results.

Typical problematic examples are fits of Monod functions (see below) to reciprocally transformed data,
which often leads to biased estimates. Therefore, it is highly recommended to fit such functions directly
using nonlinear methods.
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Figure 7.3: Numerical optimization problem: The goal is to find the global minimum of a function by means
of the least squares between measurements yi and predictions ŷi. In the case of two or more
parameters pi one gets a multidimensional “optimization landscape”.

Nonlinear regression with numerical optimization methods

In all cases where an analytical solution of the partial derivatives is unknown or not existent and if lineariza-
tion would lead to a violation of the regression assumptions, a numerical optimization method has to be
used.

Similar to linear models, the quality of the fit is usually measured by the sum of least squares SQ:

SQ = ∑(yi− f (xi,p))2 = min! (7.21)

with y being the dependent variable, x the matrix of one or more independent variables and p the parameter
vector.

The theory and practice of optimization methods is a very broad field and many different optimization
methods are now available in R, but a detailed description of this is beyond of the scope of this tutorial.
More information can be found in the CRAN optimization task view at http://cran.r-project.
org/web/views/Optimization.html.

The individual methods differ with respect to several aspects, for instance with respect to the necessity of
using derivatives or whether the search can be performed without the need for derivatives, or regarding their
efficiency and behavior in solving numerically difficult problems.

In Newton-type methods (e.g. Gauss-Newton algorithm, Newton-Raphson method, Quasi-Newton method),
second partial derivatives (Hessian matrix) are required or estimated internally using numerical methods.
Due to this such methods are very efficient an converge quickly.

In gradient or simplex methods the direction of the steepest descent is followed. The methods are less
efficient, but nevertheless recommendable, e.g. for finding starting values in case of the existence of local
minima.

In very difficult cases (e.g. for the calibration of complex models) stochastic methods (Monte Carlo meth-
ods) or so-called “evolutionary strategies” or “genetic algorithms” can be helpful.
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The general availability of fast computers and powerful algorithms in statistics packages and spreadsheet
software has led to the situation that nowadays optimization methods can easily be applied in many cases.
Nevertheless, a certain amount of caution and sensitivity of the user are always indicated.

Choosing a suitable model

Choosing a suitable regression model (regression function) for a given problem or data set cannot be ex-
pected from an optimization algorithm, but is up to the user. In the ideal case, physical, chemical, biological
or other theoretical considerations would lead to a mechanistic model (BATES and WATTS, 1988). Naturally,
the choice of the model is the task of the user that is most familiar with the subject. Therefore, for natural
scientists as we are, model creation is an essential part of our business.

In making the correct choice of a regression model, experience, literature studies and a suitable function
library will help. The chosen function should be mechanistically justified, but nevertheless as simple as
possible. Very often, a good regression function (e.g. the Monod or the logistic function) is just an analytical
solution of a differential equation model. Beyond that, it is possible to fit differential equation models
directly.

Furthermore, one always begins with a simple model and builds it up stepwise by adding further terms and
parameters where appropriate.

A serious problem of nonlinear models comes up in situations where some of the individual parameters of a
model depend on each other too strongly, thus compensating each other. Consider for example the following
trivial case:

y = a+
b
c
· x (7.22)

where it is obvious that b and c cannot be determined at the same time, as simultaneously increasing values
of a and b will keep the quotient constant. In such a case the parameters are said to be unidentifiable.

Often, the relationship is not that obvious or less strict. Broadly speaking, the identifiability depends upon
the number of parameters, the number of data points, the variance of the residuals and the correlation
between the parameters, i.e., how strictly they depend upon each other. If some or all the parameters are
hard or impossible to determine, the model has to be simplified and parameters need to be aggregated.
Besides that, the data set may be enlarged, measurement errors reduced or the parameter in question may
be determined separately in an additional experiment. Moreover, the R package FME (SOETAERT and
PETZOLDT, 2010) contains tools for identifiability analysis, e.g. calculating identifiability indices according
to BRUN et al. (2001).

Determination of starting values

All numerical methods have in common, that they need either starting values or parameter ranges to be
searched through. Then, the optimization algorithm tries to find a global minimum of a given quality cri-
terion (fig. 7.3) and stops, when a minimum was found or prints a warning message if no convergence has
been achieved after a given number of iterations. The convergence and tolerance parameters can be set by
the user.

Often, there is not only one global minimum, but also additional local minima, and there is basically no war-
ranty that the global minimum can be found within finite computation time. For this reason it is sometimes
common to perform multiple optimization runs with different starting values. Suitable starting values are
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often found by thought, manual trial and error, or approximations, for example via a linearizing transforma-
tion. For some functions specific methods are available which determine starting values automatically.

Evaluation of the model fits

In nonlinear regression, graphical validation of model results is of particular importance. Besides plotting
the measured data and best-fit curves the residuals should be examined. Here, no pattern or systematic
deviation should be visible and the variance has to be homogeneous.

An important criterion is the coefficient of determination, which in the nonlinear case cannot simply be
derived from the square of the correlation coefficient. Instead, the general approach according to equation
7.8 is applicable, thus:

r2 = 1− s2
ε

s2
y

(7.23)

in which s2
ε is the variance of the residuals (ε = ŷ− y) and s2

y the variance of the dependent variable. In
certain cases the coefficient of determination may become negative. That means that the residuals possess a
greater variance than the original measured values. The reason for this is a failed optimization. In diagnostic
plots this can instantly be recognized, as the fitted curve lies besides the points. In order to solve the problem
one can try to repeat model fitting with new starting values or one may consider to choose another function
type for the regression equation.
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Figure 7.4: Exponential relationship.

7.4.2 Implementation in R

In R there are several packages for optimization of nonlinear problems. For the nonlinear regression with the
method of least squares the function nls can used, which by default employs a Gauss-Newton algorithm.
The function nls expects a regression equation as well as the data and starting values given as lists.

The regression equation which is to be fitted can be given as so called “model formula”, e.g. an exponential
growth function as y ~ a * exp(b * x). It has to be noted that in nonlinear regression (in contrast to
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linear regression) all symbols (e.g. ^) are being interpreted as “arithmetic”. Even more general is the use of
an R-function for the model equation:

f <- function(x, a, b) {
a * exp(b * x)

}

A third possibility is using predefined “autostart functions”, in which the starting values are determined
automatically, e.g. SSlogis for the logistic model or SSmicmen for the Michaelis-Menten model.

The procedure is to be explained using the example of an exponential model y = a · exp(bx). This model
is very universal and can be used to describe exponential growth, but is also found in the laws of 1st order
decay of substances or light absorption. We begin by defining an R-function f, provide the data (x, y) and
assign the start values for the parameters to pstart. With the optional argument trace=TRUE we allow
interim results of the optimization algorithm to be displayed. Finally, the results are shown on the screen
and plotted. The evaluation of the equation (for the plot, for instance) can be performed using predict:

f <- function(x, a, b) {a * exp(b * x)}
x <- 1:10
y <- c(1.6, 1.8, 2.1, 2.8, 3.5, 4.1, 5.1, 5.8, 7.1, 9.0)
pstart <- list(a = 1, b = 1)
plot(x, y)
aFit <- nls(y ~ f(x, a, b), start = pstart, trace = FALSE)
x1 <- seq(1, 10, 0.1)
y1 <- predict(aFit, list(x = x1))
lines(x1, y1, col = "red")

If trace=TRUE is set, one could watch how the algorithm approximates the parameters iteratively. As a
result we receive the parameter values with details on their significance:

summary(aFit, correlation=TRUE)

Formula: y ~ f(x, a, b)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 1.263586 0.049902 25.32 6.34e-09 ***
b 0.194659 0.004716 41.27 1.31e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1525 on 8 degrees of freedom

Correlation of Parameter Estimates:
a

b -0.97

Number of iterations to convergence: 13
Achieved convergence tolerance: 2.504e-08
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The option correlation=TRUE enables the output of correlation coefficients between the model param-
eters (a and b in our case).

In our example the correlation between parameters is about −0.97, a relatively high absolute value. This
means that a certain interaction between the parameters is present, but as the residuals are small (which
means our data are “good”) this was no big problem. By no means this correlation coefficient must be
confused with the correlation coefficient (or rather, the coefficient of determination) of the regression model
itself, which can be calculated with the equation 7.23:

1 - var(residuals(aFit))/var(y)

[1] 0.9965644

Thus, the nonlinear coefficient of determination amounts to 0.9966, i.e. the exponential model explains
99.66% of the variance of y.

7.4.3 Exercise

Problem

On the occasion of a practical course for students of the TU Dresden, conducted at the Institute of Fresh-
water Ecology and Inland Fisheries, Department Limnology of Stratified Lakes, in September 2001, the
heterotropic potential (glucose intake rate IR in µg C L−1h−1) of bacteria was determined in dependence
of substrate availability (glucose concentration S, in µgL−1). In a sample from lake Fuchskuhle, taken in a
water depth of 2.5 m, the following values were measured:

# substrate ug C/L
S <- c(25, 25, 10, 10, 5, 5, 2.5, 2.5, 1.25, 1.25)
# intake rate ug C /(L*h)
IR <- c(0.0998, 0.0948, 0.076, 0.0724, 0.0557,

0.0575, 0.0399, 0.0381, 0.017, 0.0253)

What we are interested in are the parameters K and Vm of a Michaelis-Menten kinetics:

IR =
Vm ·S
K +S

(7.24)

Solution 1

Frequently, the Michaelis-Menten equation is fitted using linearisations, but in most cases a nonlinear fit is
preferable. We modify the nls example from above and receive:

f <- function(S, Vm, K) {
Vm * S/(K + S)

}
pstart <- list(Vm = max(IR), K = 5)
aFit <- nls(IR ~ f(S, Vm, K), start = pstart, trace = TRUE)
plot(S, IR, xlim = c(0, max(S)), ylim = c(0, max(IR)))
x1 <- seq(0, 25, length=100)
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lines(x1, predict(aFit, list(S = x1)), col = "red")
summary(aFit)
Rsquared <- 1 - var(residuals(aFit))/var(IR)
paste("r^2=", round(Rsquared, 4))

In order to obtain a smooth curve we once again use a vector x1 containing 100 values ranging from 0 to
25.

Solution 2

There is an even simpler solution, the application of the in R predefined autostart model SSmicmen, so that
we can avoid the need for defining the model ourselves and, even more useful, the need to specify starting
values:

aFit <- nls(IR ~ SSmicmen(S, Vm, K), trace=TRUE)
plot(S, IR, xlim=c(0, max(S)), ylim=c(0, max(IR)))
x1 <- seq(0, 25, length=100)
lines(x1, predict(aFit,list(S=x1)), col="red")
summary(aFit)
paste("r^2=", round(1 - var(residuals(aFit))/var(IR), 4))

7.4.4 Additional exercises

1. Linearise the implementation example (exponential model), fit a linear model and compare the results.

2. Fit a suitable model to the data of a batch experiment with the Microcystis aeruginosa stem PCC 7806
(JÄHNICHEN et al., 2001):

# time (days)
x <- c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
# cells (per mL)
y <- c(0.88, 1.02, 1.43, 2.79, 4.61, 7.12,

6.47, 8.16, 7.28, 5.67, 6.91) * 1e6
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Time series analysis poses a number of typical problems which can be handled using specific methods.
The following chapter demonstrates a selection of basic procedures. For more detailed yet comprehensible
information chapter 6 from KLEIBER and ZEILEIS (2008) is to be recommended, or alternatively a specific
book on time series analysis, e.g. SHUMWAY and STOFFER (2006).

In accordance with the convention found in most textbooks on time series analysis the variables will not be
called x and y hereafter. The independent variable will be referred to as t and the dependent variable as x.

8.1 Stationarity

Stationarity of time series is one of the central concepts in time series analysis. A stochastic process (xt) is
called a strictly (or strong) stationary process, when the distribution of (xs+t) is independent from the index
s. Weakly or wide-sense stationary random processes only require that 1st and 2nd moments (i.e. mean
value, variance and covariance) do not vary with respect to time.

Two Example Data Sets

To clarify the concept of stationarity we will compare the following two time series:

xt = β0 +β1t +ut (8.1)

xt = xt−1 + c+ut (8.2)

Here t stands for time, β0,β1 and c are constants and ut is a random process (so-called white noise). One
can discover that the time series following the equation 8.1 resembles a linear regression model, whereas
the time series following the equation 8.2 corresponds to a random walk with a drift constant c.

For illustration of different types of stationarity we will generate two example time series:

set.seed(1237) # makes random number generator reproducible
time <- 1:100
## linear regression model
TSP <- 2 + 0.2 * time + rnorm(time)
## random walk
DSP <- numeric(length(time))
DSP[1] <- rnorm(1)
for (tt in time[-1]) DSP[tt] <- DSP[tt-1] + 0.2 + rnorm(1)

In R there are specific classes for handling time series data. The most important ones are ts for equidistant
data and zoo for non-equidistant data. A vector can be converted into an equidistant time series using the
function ts:
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TSP <- ts(TSP)
DSP <- ts(DSP)

Doing so only the x-values of the time series are saved. Time itself is contained only in the form of beginning,
end and frequency. It can be extracted with the utility function time(). Another very useful function is
tsp() (time series properties).

par(mfrow=c(1,2))
plot(TSP)
plot(DSP)
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It can be easily seen that both time series seem to have some kind of trend. Just, how can we test if that trend
is significant? The most obvious method may be a linear regression of xt against time, but is that correct?

A Simulation Experiment

In a simulation experiment, linear trends for the time series according to equations 8.1 and 8.2, are to be
tested for significance. For simplification we define two functions for generating time series of type “TSP”
and “DSP” with user-specific parameters β0,β1 and c:

genTSP <- function(time, beta0, beta1)
as.ts(beta0 + beta1 * time + rnorm(time))

and:

genDSP <- function(time, c) {
DSP <- numeric(length(time))
DSP[1] <- rnorm(1)
for (tt in time[-1]) DSP[tt] <- DSP[tt-1] + c + rnorm(1)
as.ts(DSP)

}

Now we will test for the number of significant F-values for the linear regression model using a num-
ber of simulations for both types of time series. We set the trend to zero, so the result of the function
countSignif (a) counts in fact the false positive results within the simulation loop.
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count.signif <- function(N, time, FUN, ...) {
a <- 0
for (i in 1:N) {

x <- FUN(time, ...)
m <- summary(lm(x ~ time(x)))
f <- m$fstatistic
p.value <- pf(f[1], f[2], f[3], lower=FALSE)
# cat("p.value", p.value, "\n")
if (p.value < 0.05) a <- a + 1

}
a

}

To some readers of this script the above function may possibly appear to be too complicated. Ultimately,
the details (handing over a function FUN with optional arguments ... or calculating the p-value via the
distribution function of the F-distribution pf 1 are not that crucial here.

More important is what the function does: it simulates many (e.g. 1000) time series using a given function
FUN and counts the number of significant results with p < 0.05. For function genTSP the portion of false
positives is approximately 5%.

Nruns <- 100 # or even better 1000 !!!
count.signif(N=Nruns, time=time, FUN=genTSP, beta0=0, beta1=0) / Nruns

[1] 0.05

In the process genDSP that portion is much higher than the expected 5%:

count.signif(N=Nruns, time=time, FUN=genDSP, c=0) / Nruns

[1] 0.91

That means that an apparent trend is detected much too often while in reality there is none. This phe-
nomenon is called “spurious regression”. The reason for this is that only example “TSP” is a process with a
deterministic trend (trend stationary process). The “DSP” series is a so-called difference stationary process,
which can be made stationary by differencing (i.e. subtracting successive values) and not by subtracting an
(in our case linear) trend.

8.2 Autocorrelation

The correlation between a time series with a time-shifted version of the same time series is called auto-
correlation. Usually, the time shift (lag) is being varied and the result is displayed in a tabulary or graphic
way (correlogram or autocorrelation plot). The autocorrelation for lag = 0 is 1 (one), the other values (with
higher lags) express to which amount the value at a given instant xt depends on its preceding points in
time (xt−1,xt−2, ...). The dependency can also be indirect, i.e. xt is dependent on xt−2 only because xt−1

is dependent on xt−2. When direct dependencies without indirect effects are to be shown, so called partial
autocorrelation is used.

1see also https://stat.ethz.ch/pipermail/r-help/2009-April/194121.html
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In the TSP data set the autocorrelation plot exhibits a serial dependency of the observations. The partial
autocorrelation function however shows that only subsequent values (lag = 1) are significantly correlated:
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Cross-correlation is used to describe the mutual dependency of two variables, in which the lag can be positive
or negative. In a lake, for instance, global radiation determines water temperature, not the other way around.

With the help of typical patterns of the autocorrelation function, different types of time series can be distin-
guished, e.g. time series of TSP and DSP-type following the equation 8.1 and 8.2 respectively.

The autocorrelation plots of the original time series (left) look very much alike. In the differentiated time
series (middle) and the series obtained by subtracting the regression line the differences are easily visible.

par(mfrow=c(3,3))
acf(TSP)
acf(diff(TSP))
acf(residuals(lm(TSP~time(TSP))))
acf(DSP)
acf(diff(DSP))
acf(residuals(lm(DSP~time(DSP))))
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After differencing the time series “TSP” a negative correlation can easily be observed at lag = 2 (central
figure). As one would expect, once the regression line has been subtracted the resulting residuals are merely
white noise (right). In the “DSP” example things are different. Here, differencing results in white noise,
while the detrended time series still reveals strong autocorrelation.

8.3 Unit Root Tests

In order to determine whether a time series is of type “DSP” (difference-stationary process) unit root tests
can be used. The mathematical theory they are based on cannot be discussed here. However, in real life the
ADF-test (augmented Dickey–Fuller test) is used frequently. It is contained within the R-package tseries:

library(tseries)
adf.test(TSP)

Augmented Dickey-Fuller Test

data: TSP
Dickey-Fuller = -4.0145, Lag order = 4, p-value = 0.01134
alternative hypothesis: stationary

adf.test(DSP)
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Augmented Dickey-Fuller Test

data: DSP
Dickey-Fuller = -2.4355, Lag order = 4, p-value = 0.3962
alternative hypothesis: stationary

The time series TSP can be made stationary by subtracting a linear trend. This is done automatically by the
test.

In the DSP series the null hypothesis (presence of an unit root) cannot be rejected, thus the time series would
be regarded as non-stationary. But after differencing there are no objections against stationarity:

adf.test(diff(DSP))

Augmented Dickey-Fuller Test

data: diff(DSP)
Dickey-Fuller = -3.9902, Lag order = 4, p-value = 0.01261
alternative hypothesis: stationary

The KPSS test (Kwiatkowski-Phillips-Schmidt-Shin test) tests directly for stationarity or trend stationarity:

kpss.test(TSP) # instationary
kpss.test(TSP, null="Trend") # stationary after trend removal
kpss.test(DSP) # instationary
kpss.test(DSP, null="Trend") # still instationary

8.4 Trend tests

Common trend tests are suitable only for trend-stationary time series, but not for difference-stationary time
series, because in these the residuals are autocorrelated. This also holds true for the Mann-Kendall test which
is popular in environmental sciences. In its standard formulation it is applicable only for trend-stationary
time series.

library("Kendall")
MannKendall(TSP)

tau = 0.894, 2-sided pvalue =< 2.22e-16

MannKendall(DSP)

tau = 0.755, 2-sided pvalue =< 2.22e-16

8.5 Decomposition into mean, trend and a seasonal component

The traditional approach towards time series analysis is based on the decomposition of time series into
different components (classical component model). The most important ones are:

1. trend component,
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2. seasonal or cyclical component and

3. stochastic component.

Many of the decomposition methods require normal distribution of the residuals. If this is not the case or,
even worse, the variance of a time series changes proportionally with a trend, a transformation might be
necessary. For hydrological or biomass data, which frequently show positive skewness (the bulk of values
of the density distribution lie left of the mean), a logarithmic transformation is often helpful.

8.5.1 Smoothing methods

The detection or elimination of a trend can by achieved by fitting curves or by using so-called smoothers.
A linear trend, for example, can be detected with a linear regression against time. The residuals then
correspond to the time series corrected for the trend. This works not only for trend-stationary time series,
but in principle for difference-stationary time series as well. However, as mentioned above, the significance
tests that are normally used for linear regression models are likely to give wrong results because of the
autocorrelation of the residuals. To sum up: the use of linear regression for trend elimination is fine, but the
associated tests may fail, depending on the particular properties of the time series.

Alternatively, trends can be identified by application of moving averages (linear filters), by exponential
smoothing or by using so-called “kernel smoothers”. Differencing also eliminates trends. To illustrate a
linear filter we will use a data set of annual precipitation values from the Great Lakes region from 1900 to
1986, which is contained within the package Kendall (MCLEOD, 2009). For comparison, another possibility
is presented too: the LOWESS-Filter (CLEVELAND, 1981) that is very popular in modern data analysis.

library(Kendall)
data(PrecipGL)
tsp(PrecipGL)

[1] 1900 1986 1

plot(PrecipGL)
kernel <- rep(1, 10) # a rectangular kernel, please vary bandwith
lines(filter(PrecipGL, kernel/sum(kernel)), lwd=2, col="blue")
lines(lowess(time(PrecipGL),PrecipGL),lwd=3, col=2)
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Now, the trend corrected series can be obtained by subtracting the trend, e.g.:
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smooth <- filter(PrecipGL, kernel/sum(kernel))
## OR:
# smooth <- lowess(time(PrecipGL), PrecipGL)$y
res <- PrecipGL - smooth

For a seasonal time series with monthly values KLEIBER and ZEILEIS (2008) recommend a filter with
13 coefficients. The data set used in the following example describes the water level of Rio Negro 18 km
upstream from its confluence with the Amazon River. The data set is contained in the package boot (CANTY

and RIPLEY, 2009):

library(boot)
data(manaus)
tsp(manaus)

[1] 1903.000 1992.917 12.000

plot(manaus)
lines(filter(manaus, c(0.5, rep(1, 11), 0.5)/12), lwd=2, col="blue")
lines(lowess(time(manaus),manaus),lwd=3, col=2)
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It is possible to vary the amount of smoothing for the linear filter and the LOWESS-smoother. In addition to
LOWESS there is an improved algorithm implemented in R, LOESS (without “W”). Beyond that there are
methods that try to achieve the ideal smoothing automatically (e.g. via GCV (generalized cross validation)).
The generalized additive models (GAM) popular in many disciplines belong also to this class of smooth-
ing models. An excellent overview of this subject is given in WOOD (2006), whose homepage 2 features
additional tutorials too.

8.5.2 Automatic time series decomposition

The function decompose implements the classical approach towards time series decomposition with the
help of simple symmetric moving average filters.

manaus_dec <- decompose(manaus)
str(manaus_dec)

2http://www.maths.bath.ac.uk/~sw283/
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List of 6
$ x : Time-Series [1:1080] from 1903 to 1993: -1.124 -1.164 -1.349 -0.945 -0.654 ...
$ seasonal: Time-Series [1:1080] from 1903 to 1993: -0.00036 0.00312 0.00704 0.00228 -0.00213 ...
$ trend : Time-Series [1:1080] from 1903 to 1993: NA NA NA NA NA ...
$ random : Time-Series [1:1080] from 1903 to 1993: NA NA NA NA NA ...
$ figure : num [1:12] -0.00036 0.00312 0.00704 0.00228 -0.00213 ...
$ type : chr "additive"
- attr(*, "class")= chr "decomposed.ts"

plot(manaus_dec)
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Decomposition of additive time series

In this data set the seasonal component possesses an additive character, but a multiplicative component
would be possible too (type="multiplicative").

The function stl (seasonal time series decomposition (CLEVELAND et al., 1990)) uses a LOESS filter:

manaus_stl <- stl(manaus, s.window=13)
plot(manaus_stl)
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8.5.3 Periodogram analysis

In nature periodic phenomena are found frequently, for instance the annual courses of global radiation and
temperature, the development cycles of vegetation throughout the year or the beating of a water fleas’ (Daph-
nia) legs. At this point only the application of the harmonic analysis (Fourier analysis) for the approximation
of periodic data series is to be presented.

In principle every time series can be described as a sum of sine and a cosine functions with different periods
(Fourier series).

xt = a0 +
N/2−1

∑
p=1

(
ap cos(2π pt/N)+bp sin(2π pt/N)

)
+aN/2 cos(πt), t = 1 . . .N (8.3)

Here, a0 is the mean value of the time series, ap,bp are the coefficients of the Fourier series and N is the
length of the time series or the period. Similar to linear regression models the coefficients can be determined
with a system of linear equations:

a0 = x̄ (8.4)

aN/2 =
N

∑
t=1

(−1)txt/N (8.5)

ap = 2
∑

N
t=1 xt cos(2π pt/N)

N
(8.6)

bp = 2
∑

N
t=1 xt sin(2π pt/N)

N
(8.7)
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Beyond that there is an especially powerful method called “fast Fourier transform” (FFT), which can calcu-
late the coefficients a0,ap,bp very efficiently with the help of complex numbers.

Equation 8.3 can also be transformed into a form with only one cosine term:

xt = a0 +∑(Rp · cos(2π pt/N +Φp) (8.8)

with:

Rp =
√

a2
p +b2

p (8.9)

Φp = arctan(−bp/ap) (8.10)

This offers the advantage that the amplitudes Ri and the phase shifts Φi of the particular frequencies 2π/N,
4π/N, . . . , π) can be read off directly. The periodogram can be derived by plotting out R2

p/2a, the proportion
of variance of the pth harmonic term, against the frequency ωp = 2π p/N. Smoothing might be necessary
in certain circumstances.

Because harmonic analysis breaks down the process into the proportions of variance, a time series can be
synthesized based upon selected proportions of frequency.

8.5.4 Implementation in R

In order to simplify the analysis it is a good idea here to create two auxiliary functions. One functions is
used in determining the coefficients ap and bp (eq. 8.4 to 8.7), the second one synthesizes the harmonic
function according to equation 8.3. Below several possibilities are presented, e.g. the classical way an a
function using the FFT contained within R. The synthesis can also be accomplished in various ways, e.g.
the classical way via equation 8.3 or 8.8 or using the inverse FFT (not shown here). In R it is convenient
to use matrix multiplication instead of loops. In practice, however, one function for each step is sufficient,
e.g. analysis via FFT (harmonic.fft) and synthesis via the classic way with matrix multiplication
(synth.harmonic):

## classic method of harmonic analysis
harmonic.classic <- function(x, pmax=length(x)/2) {
n <- length(x)
t <- 0:(n-1)
a0 <- mean(x)
a <- numeric(pmax)
b <- numeric(pmax)
for (p in 1:pmax) {

k <- 2 * pi * p * t / n
a[p] <- sum(x * cos(k))
b[p] <- sum(x * sin(k))

}
list(a0=a0, a=2*a/n, b=2*b/n)
}
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## fast fourier version of harmonic analysis
harmonic.fft <- function(x) {

n <- length(x)
pf <- fft(x) # Fast Fourier Transform
a0 <- Re(pf[1])/n # first element = mean
pf <- pf[-1] # drop first element
a <- 2*Re(pf)/n # Real part of complex
b <- -2*Im(pf)/n # Imaginary part
list(a0=a0, a=a, b=b)

}
### =================================================

## synthesis of a harmonic function
## (classic method)
synth.harmonic.classic <- function(t, fpar, n, ord) {

a <- fpar$a; b <- fpar$b; a0 <- fpar$a0
x <- a0
for (p in ord) {

k <- 2 * pi * p * t/n
x <- x + a[p] * cos(k) + b[p] * sin(k)

}
x

}
## synthesis of a harmonic function
## version with amplitude (R) and phase (Phi)
synth.harmonic.amplitude <- function(t, fpar, n, ord) {

a <- fpar$a; b <- fpar$b; a0 <- fpar$a0
R <- sqrt(a * a + b * b)
Phi <- atan2(-b, a)
x <- a0
for (p in ord) {

x <- x + R[p] * cos(2 * pi * p * t/n + Phi[p])
}
x

}
## synthesis of a harmonic function
## classic method with matrices
synth.harmonic <- function(x, fpar, n, ord) {

a <- fpar$a; b <- fpar$b; a0 <- fpar$a0
k <- (2 * pi * x/n) %*% t(ord)
y <- a0 + cos(k) %*% a[ord] +

sin(k) %*% b[ord]
y

}

A data set appropriate for testing can be created with sine and cosine functions, with a normally distributed
error term for adding a little “noise”:
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n <- 36
t <- 0:(n-1)
x <- 2 + sin(t*4*pi/n+2) + sin(t*2*pi/n + 4) + rnorm(n, sd=0.1)

Now, the estimation of the Fourier parameters is carried out with:

fpar <- harmonic.fft(x)

Afterwards, calling up fpar displays the calculated coefficients. Synthetic time series with the maximum
order (or order 2 which is optimal in this case) can be received with:

t1<-seq(min(t), max(t), length=100)
x.max <- synth.harmonic(t1, fpar, n, ord=1:(n/2))
x.1 <- synth.harmonic(t1, fpar, n, ord=1:2)
plot(t1, x.max, col="gray", type="l")
lines(t1, x.1, col="red")
points(t,x)
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t1 is a user-defined domain of definition for which the function is to be plotted, fpar contains the Fourier
coefficients and n is the period (number of values of the original data set). The vector ord indicates the
harmonic order which is to be used in the synthesizing the function. Not all the orders from 1 to n/2 need
to be used. Specific orders can be selected separately, too.

The calculation could also be performed outside R in a way similar to the one using synth.harmonic
with the help of the coefficients a0,ap,bp and equation 8.3 in a spreadsheet program (e.g. Excel).

8.5.5 Exercise

Annual courses of temperature or global radiation serve as driving forces of ecosystems and of course also
of ecological models. A simple possibility is to represent them with harmonic functions of low order.

Exercise: Find a harmonic function that describes the mean annual course of global radiation in Jcm−2d−1.
Use the 1981 to 1990 data set of Wahnsdorf weather station near Dresden (source: World Radiation Data
Center3).

3http://wrdc-mgo.nrel.gov/
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Solution

First, the auxiliary functions for harmonic analysis need to be typed in or read in. Afterwards, the data are
imported from a text file, which needs to contain the column names in the first line (header=TRUE). We
display the variable names, copy column igl to variable x and create a new variable representing time t,
whereby we can bypass date calculation which can at times prove to be somewhat tricky.

dat <- read.table("http://www.simecol.de/data/igl8190_dd.txt", header=TRUE)
names(dat)

[1] "date" "igl" "interpoliert"

x <- dat$igl
t <- 1:length(x)

Subsequently we plot the data as a time series spanning several years:

plot(t, x)
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Alternatively, all the years can be plotted on top of each other, with the operator %% being the modulo
operator (remainder of an integer-type number division. In this case day 366 would be plotted at t = 1.

plot(t %% 365, x)
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8 Time Series Analysis

After providing us with some orientation, we will now proceed to the actual analyis (using FFT this time)
and plotting the results.

fpar <- harmonic.fft(x)
plot(t, x)
lines(synth.harmonic.classic(t,fpar,length(x),ord=10), col="red", lwd=2)
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As the data set we use contains 10 years, ord=10 represents an annual cycle. We start by playing around
a little with the Fourier order and displaying the results, e.g. for the orders ord=1, ord=1:10 and
ord=1:100 .

Solution 2

An alternative possibility is to calculate the 10 years mean for each of the 365 days and to calculate a
1st order harmonic function afterwards. The mean value can be calculated using an external spreadsheet
programm or the very powerful R-Funktion aggregate, which expects its arguments to be either lists or
data frames. The first argument characterizes the data to be analyzed, the second one the grouping and the
third one the function to be used.

meanyear <- aggregate(list(x=x), list(yr=t%%365), mean)
x <- meanyear$x
t <- 1:length(x)
plot(t, x)
fpar <- harmonic.fft(x)
lines(synth.harmonic.classic(t,fpar,length(x),ord=1), col="red", lwd=2)
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For further use the calculated function can now be written in a closed form. As we know the coefficients are
located in the list fpar. If only the seasonal cycle (p = 1) is to be shown, what follows from equation 8.3
is:

cat(fpar$a0, fpar$a[1], fpar$b[1], "\n")

996.746 -815.988 126.741

plot(t,x)
x1 <- 997 - 816 * cos(2*pi*1*t/365) + 127 * sin(2*pi*1*t/365)
lines(t,x1)

Written out as a mathematical function that is:

x = 997−816 · cos(2π · t/365)+126 · sin(2π · t/365) (8.11)

Because of the annual cycle it is more or less obvious which Fourier orders are needed in our example.
Generally, this is unknown beforehand and has to be derived from periodogram or frequency analysis (see
SCHLITTGEN and STREITBERG, 1989; BOX et al., 1994).

8.5.6 Frequency spectra

It goes without saying that R features a predefined function to this end. First, we convert the series into a
time series and have a look at the autocorrelograms:

dat <- read.table("http://www.simecol.de/data/igl8190_dd.txt", header=TRUE)
x <- dat$igl
irad <- ts(dat$igl)
par(mfrow=c(1,2))
acf(irad, lag.max=2*365)
pacf(irad, lag.max=2*365)
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What follows is a spectral analysis with the parameter spans defining the window of the smoothing func-
tion (in this case a modified Daniell smoother):

sp <- spectrum(irad, spans=c(2, 2))
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Series: x
Smoothed Periodogram

bandwidth = 0.000278

Instead of plotting it against the frequency domain the spectrum can be also plotted against the period
(1/freq), with the y-axis displayed logarithmically here.

with(sp, plot(1/freq, spec, type="l", xlim=c(0,1000),
ylab="spectrum", log="y", xlab="period length (days)"))

abline(v=365.25, col="red")
(smax <- 1/sp$freq[sp$spec == max(sp$spec)])

[1] 375

abline(v = smax, col = "green") # spectral maximum is 375 days
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The lines mark the expected and the empirical maximum at 365.25 and 375 days respectively.

8.5.7 More exercises

1. Caclulate the amplitude and phase shift of the global radiation function.

2. Does the result match your expectations (calendar)?

3. Present the function in the style of equation 8.8 and check the result graphically.

4. Compare the 10th order global radiation function from solution 1 with the 1st order function from
solution 2.

5. Plot the function and the data with your preferred graphics or spreadsheet software.

6. Try to describe the epilimnion temperature of a lake with a harmonic function (data set t_epi7.txt).
How many Fourier orders are required?

8.6 ARIMA Modelling

The main focus of ARIMA modelling4 (BOX et al., 1994) is prediction. Periodogram analysis and ARIMA
models are both based upon the autocorrelation function. They are simply two different points of view. The
idea is to convert time series with distinct trends or cycles to time series that are approximately stationary.
Simple and seasonal difference filters are of particular importance here and may be applied multiple times
successively. In order to reverse the differentiation used for model identification, integration is used for the
prediction step.

A challenging problem in ARIMA modelling is the specification of the model order, that is the decision
which AR and MA orders are to be used. In the BOX-JENKINS approach the autocorrelation function (acf)
and the partial autocorrelation function (pacf) are used. Often, characteristic patterns can be observed,
which may then serve as a first indicator as to which order the process in question has. Furthermore, it is
recommended to fit several alternative models and to evaluate them using the mean squared error and the
significance of the parameters (“Overfitting”, BOX et al., 1994).

4Autoregressive Integrated Moving Average
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The autocorrelation function is suited especially for determining pure MA processes and the partial auto-
correlation function for AR processes. Nevertheless, according to SCHLITTGEN and STREITBERG (1989)
the use of ACF and PACF for specifying mixed ARMA processes is a “delicate problem”.

8.6.1 Moving average processes

A stochastic process is termed moving average process of order q (in short: MA(q)-process), if it can be
expressed by:

Xt = εt −β1εt−1−·· ·−βqεt−q

In this context (εt) is a white noise process. This means that the actual value of Xt depends solely on “random
fluctuations” (εt) in the past.

8.6.2 Autoregressive processes

A stochastic process (Xt) is termed autoregressive process of order p (in short: AR(p)-process), if it satisfies
the relation:

Xt = α1Xt−1 + · · ·+αpXt−p + εt

(εt) is a white noise process here. Thus, the AR-process formally corresponds to a multiple linear regression,
in which the actual value can be understood as a function of the preceding values.

8.6.3 ARIMA processes

A process that is composed of an AR(p)- and a MA(q)-fraction is termed ARMA(p,q)-process. If it has been
subject to one or more differencing steps it is called ARIMA(p,d,q)-process. If not only the immediate his-
tory is considered, but a seasonal shift as well, the resulting processes are ARIMA(p,d,q)(P,D,Q)-processes,
which can be called SARIMA (seasonal ARIMA) too.

8.6.4 Fitting ARIMA models

Identification is the process of determining the parameter values for a model specified before. To this
end different methods are available, all of which are based on the maximum likelihood criterion. The
main problem is the selection (specification) of the optimal model. Different criteria are suggested for
decision making, e.g. “overfitting” and subsequent model simplification using visual criteria or a very
detailed interpretation of autocorrelograms (e.g. by BOX et al., 1994).

While these hints are still valid, today AIC-based model selection is preferred over a solely visual compar-
ison of models. Given the availability of todays’ computing power it is even possible to test the models in
question (selected by acf, pacf) automatically. We will again use the manaus data set to do this.

library(boot)
data(manaus)

101



8 Time Series Analysis

We begin by taking a look at the correlograms of the time series and its differences. In the case of the
“double” differentiation we first differentiate seasonally (season-wise) and afterwards with lag=1:

par(mfrow=c(2,3))
acf(manaus)
acf(diff(manaus))
acf(diff(diff(manaus, lag=12)))
pacf(manaus)
pacf(diff(manaus))
pacf(diff(diff(manaus, lag=12)))
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Without going into detail too deeply, we see that by all means differentiation is necessary and one or two
AR-parameters and probably MA-parameters and seasonal parameters will be required.

The following short script (according to KLEIBER and ZEILEIS, 2008, modified) fits all models with 0 to
1 or 2 parameters respectively for all components. The number of differentiations is fixed to lags 1 for the
immediate predecessor and 12 for the seasonal component. Note! Defining the models that are to be tested
requires process knowledge and some good instinct.

dat <- manaus
pars <- expand.grid(ar=0:2, diff=1, ma=0:2, sar=0:1, sdiff=1, sma=0:1)
aic <- numeric(nrow(pars))
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for (i in seq(along=aic))
aic[i] <- AIC(arima(dat, unlist(pars[i, 1:3]), unlist(pars[i, 4:6])),

k=log(length(dat)))
ndx_best <- which.min(aic)
(pars_best <- pars[ndx_best,])

ar diff ma sar sdiff sma
26 1 1 2 0 1 1

## and now we refit the 'best' (i.e. the most parsimonious) model again
(m <- arima(dat, unlist(pars_best[1:3]), unlist(pars_best[4:6])))

Call:
arima(x = dat, order = unlist(pars_best[1:3]), seasonal = unlist(pars_best[4:6]))

Coefficients:
ar1 ma1 ma2 sma1

0.7424 -0.5647 -0.4353 -0.9906
s.e. 0.0231 0.0312 0.0308 0.0338

sigma^2 estimated as 0.5766: log likelihood = -1248.63, aic = 2507.27

We see that the best model is one of SARIMA(1,1,2)(0,1,1)12 type. The level of significance can be
obtained with the help of the standard errors.

The package forecast (HYNDMAN and KHANDAKAR, 2008) contains a fully automatic function that deliv-
ers a similar, though not perfectly identical result in our example:

library(forecast)
auto.arima(dat)

The identified model can be verified with tsdiag:

tsdiag(m)
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One can see that the residuals show no obvious pattern (and thus appear stationary) and that the ACF does
not considerably exceed the significance thresholds (except for lag = 0 of course). The p-values of the
Ljung-Box statistics are greater than 0.05, i.e. the residuals do not differ significantly from white noise.

The last step is the application of the identified model for a prediction. The function predict can be used
for this purpose, for example for a period of 50 years:

pr <- predict(m, n.ahead=50*12)
plot(manaus, xlim=c(1900, 2050))
lines(pr$pred, col="red")
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The package forecast features even more powerful functions and more “beautiful” graphics.

8.6.5 Exercises

1. Change the number of ARIMA-parameters to be fitted in the above example and evaluate the results.

2. Try to fit ARIMA models for the TSP and TSD time series.

8.7 Identification of structural breaks

If one or more statistical parameters are not constant over the whole length of a time series it is called a
structural break. For instance a location parameter (e.g. the mean), a trend or another distribution parameter
(such as variance or covariance) may change.

8.7.1 Testing for strctural breaks

The package strucchange (ZEILEIS et al., 2002) implements a number of tests for identification of structural
changes or parameter instability of time series. Generally, two approaches are available: fluctuation tests
and F-based tests. Fluctuation tests try to detect the structural instability with cumulative or moving sums
(CUSUMs and MOSUMs).

The Nile data set (DURBIN and KOOPMAN, 2001, and literature cited there) contains measurements of
annual discharge of the Nile at Aswan from 1871 to 1970:

library(strucchange)
data("Nile")
plot(Nile)

105



8 Time Series Analysis

Time

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Now we want to test if there is a structural break with respect to the location parameter, i.e. if there are
periods with different discharge. We will use an ordinary least squares OLS-CUSUM test. The family of
OLS-CUSUM and MOSUM tests is flexible and can be applied to various types of problems. The following
example tests the simplest case by comparison with a null model. The functions needed are efp (empirical
fluctuation model) and sctest (structural change test):

ocus <- efp(Nile ~ 1, type = "OLS-CUSUM")
plot(ocus)
sctest(ocus)

OLS-based CUSUM test

data: ocus
S0 = 2.9518, p-value = 5.409e-08
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Instead of simple testing for stability of the mean with a null model (~1) time-shifted signals, among others,
are possible on the right side too (see the example in KLEIBER and ZEILEIS, 2008, p. 171). Covariates can
be specified as well.
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8.7.2 Breakpoint analysis

The purpose of breakpoint analysis (BAI and PERRON, 2003; ZEILEIS et al., 2002, 2003) is to identify if
there are structural breaks in a time series with respect to a specified linear model, and if yes, their number
and location. That way it can be found out whether and where mean value or a trend change. What is special
about the method presented here is that a model with an optimal number and location of breaks can be found
with a BIC-based model selection.

Here, again, we can only demonstrate one of the simplest cases, the constancy of the location parameter
(i.e. the mean). The function breakpoints serves for systematical testing and evaluation of a number
of structural break models. As the result you receive candidates for the structural breaks and their RSS
(residual sums of squares) plus BIC (Bayes Information Criterion). The full result can be obtained with
summary and the behavior of RSS and BIC can be visualized with the plotting function:

bp.nile <- breakpoints(Nile ~ 1)
summary(bp.nile)

Optimal (m+1)-segment partition:

Call:
breakpoints.formula(formula = Nile ~ 1)

Breakpoints at observation number:

m = 1 28
m = 2 28 83
m = 3 28 68 83
m = 4 28 45 68 83
m = 5 15 30 45 68 83

Corresponding to breakdates:

m = 1 1898
m = 2 1898 1953
m = 3 1898 1938 1953
m = 4 1898 1915 1938 1953
m = 5 1885 1900 1915 1938 1953

Fit:

m 0 1 2 3 4 5
RSS 2835157 1597457 1552924 1538097 1507888 1659994
BIC 1318 1270 1276 1285 1292 1311

## the BIC also chooses one breakpoint
plot(bp.nile)
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We can discover that the most suitable model here is indeed the model with exactly one structural break.
For visualizing the breakpoints a linear model can be fitted piecewise. For this purpose, we use the function
breakfactor that creates a so-called dummy variable with codes for each segment. Other generic func-
tions serve for illustrating the location lines(bp.nile) and confidence interval (confint(bp.nile),
lines(ci.nile)) of the structural break:

## fit null hypothesis model and model with 1 breakpoint
fm0 <- lm(Nile ~ 1)
fm1 <- lm(Nile ~ breakfactor(bp.nile, breaks = 1))
plot(Nile)
lines(ts(fitted(fm0), start = 1871), col = 3)
lines(ts(fitted(fm1), start = 1871), col = 4)
lines(bp.nile)
## confidence interval
ci.nile <- confint(bp.nile)
ci.nile

Confidence intervals for breakpoints
of optimal 2-segment partition:

Call:
confint.breakpointsfull(object = bp.nile)

Breakpoints at observation number:
2.5 % breakpoints 97.5 %

1 25 28 32

Corresponding to breakdates:
2.5 % breakpoints 97.5 %

1 1895 1898 1902

lines(ci.nile)
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Of course the results can be analyzed with R’s standard functions instead of the “generic” functions too.
Here, as an example, the location of the structural break:

plot(Nile)
dat <- data.frame(time = time(Nile), Q = as.vector(Nile))
abline(v=dat$time[bp.nile$breakpoints], col="green")
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In order to check whether the model with the structural break is better than the null model we can use either
a likelihood ratio test (i.e. a pairwise ANOVA in R) or a comparison by means of the AIC5:

anova(fm0, fm1)

Analysis of Variance Table

Model 1: Nile ~ 1
Model 2: Nile ~ breakfactor(bp.nile, breaks = 1)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 99 2835157
2 98 1597457 1 1237700 75.93 7.439e-14 ***

5Akaike Information Criterion
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Vergleich per AIC
AIC(fm0,fm1)

df AIC
fm0 2 1313.031
fm1 3 1257.663

We can see that the model with the structural break in the year 1898 is significantly better than the null
model.

Of course, further diagnostics and analyses can follow for the fitted models, e.g. a diagnostic comparison of
autocorrelation and spectral density or a Q-Q-plot to see whether the residuals are normally distributed:

acf(residuals(fm0))
acf(residuals(fm1))
spectrum(residuals(fm0), log = "no", spans = c(5, 5))
spectrum(residuals(fm1), log = "no", spans = c(5, 5))
qqnorm(residuals(fm0))
qqnorm(residuals(fm1))

8.7.3 Exercise

The following example, which features an original data set from IHLE et al. (2005), is about how the abun-
dance of the cyanobacteria genus Microcystis changes in the sediment of a highly eutrophic reservoir. The
hypothesis was, broadly speaking, that there is a habitat change between a benthic and a pelagic mode of
life. Structural break methods were used to determine the dates of such events which were in turn examined
for coincidence with other variables.

The analysis is in line with the previous example. A small difference is that the time series is not equidistant,
but in the here this does not matter much as the analysis is restricted to the location parameters. But instead
of the class ts we have to use use class zoo for non-equidistant time series.

Test this example and discuss the results with the help of the publication of IHLE et al. (2005):

dat <- read.table("http://www.simecol.de/data/cells_sediment.txt", header = TRUE)
time <- as.Date(as.character(dat$date), format = "%d.%m.%Y")
## zoo: Z's ordered observations, loaded by strucchange
Cells <- zoo(dat$cells, time)
par(mfrow=c(2, 1))
bp <- breakpoints(Cells ~ 1, h = 5)
plot(bp)
fm1 <- lm(Cells ~ breakfactor(bp))
plot(Cells, type = "p")
lines(fitted(fm1), col = "red")
abline(v = time[bp$breakpoints], col = "blue")
(ci <- confint(bp))
sctest(Cells ~ 1, type = "OLS-CUSUM")
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9 Multivariate statistics

The purpose of multivariate statistics is to analyze multiple variables simultaneously. This can be useful to
get an overview of a large data set or to formulate preliminary hypotheses, which are to be examined in more
detail later on (exploratory data analysis). On the other hand, multivariate statistics is applied if the effect in
question is distributed over several variables, e.g. over the presence of multiple species, several peaks in a
chemical analysis or a to compare differences at several places of a DNA molecule.

In general, one starts with a rectangular data structure, e.g. a matrix or a data frame, and refers to the rows as
observations, sites, cases or objects, and to the columns as variables, properties or species. Now, the purpose
of multivariate methods is to uncover structures in this matrix (similarities, differences and correlations, to
be precise), to reduce the number of dimensions as far as possible, and to present the result numerically or
graphically. The following chapter will give a short overview of important methods before demonstrating
examples and their implementation in R. A detailed view at the background can be found in textbooks like
LEGENDRE and LEGENDRE (1998) or LEYER and WESCHE (2007).

9.1 Basic concepts

The basic concepts that apply here are covariance and correlation, respectively distance and similarity.

A there variety of different measures of distance and similarity exist, so it is helpful to first specity their
properties, by using a so-called axiomatic definition.

For a measure of distance d between the multidimensional points xi and x j the following conditions apply:

1. d(xi,x j)≥ 0 (distances are similar or equal to zero),

2. d(xi,x j) = d(x j,xi) (the distance from A to B is the same as from B to A),

3. d(xi,xi) = 0 (the distance from a given point to itself is zero).

Beyond that, a distance measure is termed metric, if:

• d = 0 applies in the case of equality only, and

• the triangle inequality (the indirect route is longer than the direct route) applies too.

A measure of similarity s can be defined in a similar way:

1. s(xi,x j)≤ smax

2. s(xi,x j) = s(x j,xi)

3. s(xi,xi) = smax

and it is metric, if:
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• smax applies only in the case of equality and

• the triangle inequality applies too.

Similarity and distance can be transformed into each other. There are different possibilities to that end, e.g.:

s = 1−d/dmax d = 1− s/smax

s = exp(−d) d =−ln(s− smin)

In many cases a simplification results from limiting the range of values of the similarity measures to the
interval (0,1), as done by some authors. Accordingly, the values d = 1− s are called “measure of dissimi-
larity”, whereas to the more general “distance measures” are within the interval (0,∞).

From the variety of distance measures the following five may be most important for us:

• Euclidean distance (shortest connection between 2 points in space),

• Manhattan distance (around the corner, as in Manhattans grid-like streets),

• Chi-square distance for comparison of frequencies,

• Mahalanobis distance (takes covariance into account),

• Bray-Curtis Dissimilarity Index (created specifically for comparison of species lists in ecology).

Euclidean distance

At first, the Euclidean distance (shortest connection according to the Pythagorean theorem) appears to be
the only natural criterion:

d =
√

∑(xi j− xik)2

In practice, however, this doesn’t always hold true, as we often try to compare different units of measurement
or different processes, with each other. If, for example, the nitrogen and phosphorous concentration of some
water is given in mgl−1, then phosphorous usually shows vanishingly small values, so the difference in
nitrogen concentration comes to dominate the calculation of distance.

Thus, it is absolutely necessary to make the different measures and ranges of values comparable (scaling).
Standardization is one possibility to do so:

x′i =
xi− x̄

s

i.e. the subtraction of the mean value and the division by the standard deviation. It should be noted that
standardization is not always advisable. Let’s assume we have an ecological survey with common and
rare species. Then occurrence of one single individual of a species should be weighted less than the mass
occurrence of a dominant species.

If a weighting is to be implies by different values (e.g. peak heights or abundances), centering is used:

x′i = xi− x̄

Other possibilities of data preparation are:
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• transformation of the data, e.g. by applying powers, roots or logarithms,

• ranking, i.e. assignment of 1, 2, 3, . . . to the ordered values,

• special formulas for distances or similarities for binary (yes/no) or nominal data types.

Manhattan distance

In visual terms, the Manhattan distance (or city block distance) corresponds to a distance “around the cor-
ner”, i.e. it is the sum of all distances over all dimensions:

d = ∑ |xi j− xik|

Mahalanobis distance

The Mahalanobis distance is a special measure, that takes into account the covariance (i.e. the mutual
dependency) of the regarded dimensions. Let’s for example assume we have four variables, e.g. nitrogen,
phosphorous and phytoplankton concentration in a lake and the lake’s depth. The first three variables are
criteria of the trophic status and normally correlated among each other, because all of them are dependent
on external loads. By applying a multivariate analysis to such a data set, the trophic status is given an almost
threefold influence on the statistics, while the lake’s depth occurs only once. Thus, small yet possibly
existing differences between nitrogen, phosphorous and phytoplankton will get lost in the analysis.

At this point the Mahalanobis distance can help. It takes interdependency into account and eliminates
correlation between the variables. However, minor effects and and random errors get also increased weight
and may falsely influence the result.

On the other hand the Mahalanobis distance has the advantage that scaling (making different scales compa-
rable) is made unnecessary by including the structure of covariance.

Chi-square distance

Chi-square distance (χ2 distance) serves for comparison of frequencies, as they are used in correspondence
analysis (see CA and CCA for instance). Here, the Chi-square distance (χ2) measures to which extent an
observed frequency deviates from an expected frequency. It is in general defined as:

χ
2 =

n

∑
i=1

(Bi−Ei)
2

Ei

where Bi is the observed and Ei is the expected frequency. By calculating the square root it becomes clear
that χ is basically a weighted Euclidean distance, in which the weight is the reciprocal of the expected
frequency. With regard to correspondence analysis (CA), this means that every frequency refers to the total
sum of the values in the columns or rows of the table. Variables with large values (e.g. common species)
will thus be weighted less, while variables with smaller frequencies will be emphasized.

Applying the genaral formula to a species list, we get (in the notation of LEYER and WESCHE (2007)):

D
χ2

1,2
=
√

x++

√
m

∑
k=1

1
x+k

(
x1k

x1+
− x2k

x2+

)2

(9.1)
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Table 9.1: Example for the calculation of the Bray-Curtis coefficient from species abundances from (LEYER

and WESCHE, 2007)

1 2 3 4 5 6 B C w
Object 1 7 3 2 0 4 0 16
Object 2 4 4 0 0 6 5 19
Min 4 3 0 0 4 0 11

Here x+k is the sum of all values for species k, x1+ is the sum of all values for observation 1 and x++ is the
sum of all values contained in the table.

Bray-Curtis distance

The Bray-Curtis distance is a non-metrical (i.e. violating the triangle rule) distance measure used for the
comparison of abundances. The numerator counts the sum of differences between abundances, the denom-
inator the sum of all sums of abundances of the compared samples (e.g. sampling sites):

d =
∑ |xi j− xik|
∑(xi j + xik)

(9.2)

Alternatively, the Bray-Curtis coefficient (Sbc) can be obtained as the double ratio of the species present in
two observations (w) and the sum of species present only in one of both observations (B or C, resp.):

sbc =
2w

B+C
(9.3)

Instead of Bray Curtis similarity, it can also be expressed as Bray-Curtis dissimilarity:

dbc = 1− sbc (9.4)

The following example is to illustrate the application. We assume there are 2 objects (e.g. sampling sites),
in which 6 species were found in total (see table 9.1).

First we calculate the Bray-Curtis coefficient (sbc) or Bray-Curtis dissimilarity (1-sbc) according to
equation 9.3:

ob1 <- c(7, 3, 2, 0, 4, 0); ob2 <- c(4, 4, 0, 0, 6, 5)
B <- sum(ob1); C <- sum(ob2); w <- sum(pmin(ob1, ob2))
sbc <- 2*w/(B+C)
sbc

[1] 0.6285714

1 - sbc

[1] 0.3714286
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as well as according to equation 9.4 (for comparison):

sum(abs(ob1-ob2))/sum(ob1+ob2)

[1] 0.3714286

and finally with the ready-to-use function vegdist from the vegan package:

library(vegan)
vegdist(rbind(ob1, ob2))

ob1
ob2 0.3714286

In all three cases we receive the same result. The vegdist function, however, is usually used to create a
complex distance matrix for the pairwise comparison of a multitude of objects.

9.2 Ordination methods

The purpose of ordination methods is to bring measurements into an order. Such an “order” does not need
to be limited to one dimension, but can be multidimensional. The number of dimensions is smaller or equal
to the original number of variables. Usually it will be tried to reduce the information present in the data to
as few dimensions as possible (dimensional reduction).

In the past, a large number of different methods was developed, which can roughly be divided into single-
matrix methods (termed unconstrained ordination, too) and two-matrix methods (constrained ordination).

As the name suggests, single matrix methods work with a single matrix, which might for example be a
species list or a matrix with physical and chemical data. In the two-matrix methods methods a distinction
is made between a dependent matrix (e.g. a species list) and an independent or explanatory matrix (e.g.
environmental factors). In the following we will therefore often just call them “species matrix” and “envi-
ronmental matrix”, but the same methods can also be applied to other data sets, e.g. chemical data, results
of simulation experiments or marketing data.

9.2.1 PCA: Principal Components Analysis

The aim of principal components analysis is to place new coordinate axes into a multidimensional space
(created by the variables) in such a way that the main part of the information is found in as few dimensions
(coordinate axes) as possible. In these terms, “information” is measured as the total variance of the data
from which as much as possible is to be assigned to a small number of new artificial coordinate axes (the
principal components). The method is the most fundamental method of dimensionality reduction and is
based on turning the original coordinate system using matrix operations (Eigenvalue decomposition).

The working basis of the method and a useful by-product of the analysis is the covariance or correlation
matrix. Details can be found in the textbooks (see for example VENABLES and RIPLEY, 2002).

A particular advantage of principal components analysis is that the variables and objects can be displayed
in a combined plot (a biplot). Another advantage is that the PCA is easily understandable and therefore
interpretable. Beyond that, a PCA of a data set can serve as a starting point for further analysis, e.g. for
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cluster analyses with a dimension-reduced data set, as a starting point for Nonmetric Multidimensional
Scaling (NMDS) or for performing principal component regression.

The main disadvantages are that the PCA relies on Euclidean distance, and one often does not succeed in
bringing a sufficient portion of the information into one plane.

9.2.2 CA: Correspondence Analysis

The correspondence analysis has been developed several times under different names and can be calculated
in different ways. The classical method is based on the so-called gradient analysis (how can species be or-
dered along an environmental gradient) and was also called weighted averaging (see LEYER and WESCHE,
2007, for a description of the classical method).

In modern software the CA is being calculated similarly to the PCA with the help of eigenvalue decompo-
sition. The only difference is the use of the Chi-square distance instead of the Euclidean distance.

In short, the PCA is most suited for the analysis of metric data where Euclidean distances makes sense, the
CA for the analysis of frequency data.

9.2.3 PCO: Principal Coordinate Analysis

PCA as well as as CA are both limited to one specific measure of distance. The PCO methods (or PCoA) are
an advancement insofar as they allow for the use of other distance measures (or dissimilarity measures) than
the Euclidean distance. For that reason, they are more flexible, but the interpretation can be tricky because
of the many different variants. PCO is the classical form of the metrical multidimensional scaling (MDS).

The R functions dist from the stats package or vegdist from the vegan package allow other distance
measures besides Euclidean and Chi-square, e.g. Bray-Curtis or Canberra distance. Beyond that, individual
distance matrices (based for example upon Renkonen’s coefficient) can be handed over to the PCO.

9.2.4 Nonmetric Multidimensional Scaling (NMDS)

PCO is the method that creates the best distortion-free geometric projection of higher dimensional data to
a lower dimension. Sometimes, however, an even better representation of the structure of similarity can be
achieved when a certain distortion is accepted. In contrast to the search for coordinate axes with a maximum
portion of variance, nonmetric methods strive for a representation (mapping) in which the correlation of the
distances is as large as possible.

Different iterative methods have been developed to achieve this aim, e.g. Nonlinear Mapping (Sammon)
or Kruskal’s Nonmetric Multidimensional Scaling (NMDS). In both methods the quality of the mapping is
expressed by a “stress” value, but they are calculated in different ways. In the vegan aund MASS packages
the so-called “stress 1” is given (table 9.2):

S1 =

√√√√∑i 6= j(θ(di j)− d̃i j)2

∑i6= j d̃2
i j
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with d̃i j = ordination distance and θ(di j) = observed dissimilarity. Another way of evaluating the results
is the Shepard diagram. It compares the distances displayed in the NMDS with the original distances. The
NMDS fit is plotted as stepcurve.

As the NMDS works iteratively, we receive different results depending on the initial situation. It is impossi-
ble to find the best fit, only local minima can be found. As a consequence, one either has to perform several
runs with different starting configurations, e.g. with the help of random numbers, or starts with a configu-
ration that is known to work well, e.g. because it has been calculated with a PCO. By default, the function
isoMDS performs an NMDS with PCO as starting configuration. IN contrast (and even better) function
metaMDS from the vegan package can be used for a multiple automatic MDS with random initialization.

Table 9.2: Guideline stress values for the function isoMDS and the reference values of the SPSS procedure
ALSCAL for comparison

Stress 1 (R) Stress 2 (SPSS-ALSCAL)
low 0.2 0.4
sufficient 0.1 0.2
good 0.05 0.1
excellent 0.025 0.05
perfect 0 0

9.2.5 CCA und RDA: Canonical Correspondence Analysis and Redundancy Analysis

Redundancy analysis and canonical correspondence analysis are comparable to multiple linear regression,
but, in contrast, not only multiple independent variables (x-values, explanatory variables), but also a complex
matrix of dependent variables (y-values, e.g. a complete species matrix) can be related to each other.

Accordingly, RDA and CCA are two-matrix methods, i.e. a regression between multiple y as a function
of multiple x. They are called constrained ordination methods, because a distinction is made between the
dimensions that can explained by the environmental matrix (constrained axes) and the other dimensions
(unconstrained axes).

Apart from their different origin, both methods are relatively similar to each other. One difference is,
however, that RDA uses the Euclidean distance, whereas the CCA uses the Chi-square distance. Thus, it
becomes clear that the PCA is a special case of RDA, and CA is a special case of CCA, if the explanatory
“environmental” matrices are omitted.

CCA is very widespread in vegetation ecology and is recommended as a standard method in that field,
besides a special variant of it called DCA (Detrended Correspondence Analysis). A great advantage of
these methods is that they allow for the simultaneous analysis and plotting of environmental factors and
species lists, another is that there is an extraordinary amount of experience in interpreting the results of
these methods.

Initially, though, there may be problems understanding that only the explainable portion of the information
(called “Inertia” or mass) is displayed. In addition, RDA and CCA sometimes produce unexpected artifacts
(so-called arc effects or horse-shoe effects). Even in DCA, which was developed to that purpose, these
artifacts are fixed only incompletely (and according to some authors in a way hardly comprehensible). The
DCA can be found as decorana in R.
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9.3 Vector Fitting

“Vector fitting” is a method of subsequently fitting environmental data to an ordination obtained from a
one-matrix method (such as CA, PCA or NMDS).

As this method is suitable for expressing the influence of environmental factors to a species composition, an
NMDS with subsequent vector fitting is a simpler and sometimes more comprehensible alternative to CCA.

9.4 Randomization Tests

Ordination methods at first only deliver a graphic representation. In many cases, however, it is desirable
to extract information on the significance of the displayed relations. In the context of multivariate statistics
most often randomization methods are used to that end. The principle they are based on is that a suitable test
criterion is calculated and then the observed configuration is compared to a variety of random configurations.
Depending on the problem there are different randomization tests, e.g.:

• The Mantel test, that compares two distance matrices (e.g. species list and environmental matrix) and
tests the hypothesis that there is a correlation between these distance matrices (if there is a correlation
between environmental factors and the colonization, for instance).

• Procrustes analyses, that allows to describe similarities and differences of two ordinations (congruence
analysis). In particular, the Procrustes test tests if two ordinations differ significantly. It may be used
as an alternative to Mantel tests.

• ANOSIM is a resampling analogue to ANOVA which tests for the hypothesis that there is a difference
between two or more sampling series (e.g. after an anthropogenic interference). The ANOSIM test is
rank-based. A problem is that it is not robust against different group sizes and group heterogeneity,
which can under certain circumstances lead to falsely significant results (OKSANEN, 2010).

• For two-matrix methods (e.g. CCA or RDA), permutation tests for the significance of the constraints
(the influencing environmental variables) are available. In R it can easily be called using the function
anova with a resulting object of a CCA or RDA.

• The Multiple Response Permutation Procedure (MRPP) is similar to ANOSIM in terms of expres-
siveness, but works with the original distances instead. The method detects differences in the location
(species abundance) and variation (diversity).

• The ADONIS test is a relatively new and now already popular method for multivariate analysis of
variance of distance matrices (ANDERSON, 2001). The method tests, how complete species lists
depend upon environmental factors specified in a model formula. In that process it often is important
to limit the permutation to appropriate strata, for instance if samples were taken at different times of
the season.

In R these methods can be found in the functions called mantel, anosim, mrpp and adonis, all of them
being part of the vegan package. Beyond that, the BIOENV method known particularly from the statistics
package PRIMER (in Ras function bioenv) offers another method for identifying the “best subset of
explanatory variables” for a species list.

Multivariate resampling tests allow for direct comparison of species compositions (or other multivariate data
sets) without the need for a calculation of indices of any kind (e.g. diversity indices). The usual statistical
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prerequisites have to be met, though, especially representativeness and independence of samples. What can
be seen is that multivariate resampling tests can often relatively easy detect significant differences. However,
the question remains what, after all, the meaning of differences in species composition is. A subject-specific
interpretation and evaluation of the findings is, in this case, even more important than normally.

9.5 Classification methods

The aim of cluster analysis is to identify groups of similar objects. In contrast to ordination methods (PCA,
PCO, NMDS etc.) the groups are not to be visualized in their location relative to each over, but their
distances are to be displayed in a tree diagrem. While ordination methods do not always succeed in reducing
a given data structure to only a few dimensions (e.g. a two-dimensional plot), cluster methods can handle
arbitrary high-dimensional and non-correlated data. Therefore, it is often advisable to combine ordination
with cluster analysis.

Basically, there are hierarchical, non-hierarchical, agglomerating and disaggregating (divisive) methods of
cluster analysis. In the following only two methods are presented, agglomerative hierarchical clustering and
a non-hierarchical divisive method.

9.5.0.1 Hierarchical Cluster Analysis

Hierarchical cluster analysis starts with individual objects, and creates clusters by combining the objects
closest to each other. The algorithm is:

1. Find the smallest distance,

2. merge objects with the smallest distance into a new object,

3. refresh the distance matrix (distances to the new objects),

4. go to step 1, if there are more than 2 objects left.

In step 3 the problem arises of how to determine the distance between an individual observation and a cluster
created before. Accordingly, there is a large number of possibilities and making a decision which one to use
can be hard at first view.

Single Linkage nearest neighbour
Complete Linkage most distant element
Average Linkage average distance
Median (weighted/unweighted) distance of medians
Centroid (weighted/unweighted) centroid
WARD (weighted/unweighted) minimum variance
flexible strategies adjustable behaviour

While single linkage uses the shortest distance between the nearest elements of a cluster, in the complete
linkage approach the elements farthest away from each other determine the distance. The WARD method is
a special method. It calculates the distance in a way that keeps the variance of the created clusters as small
as possible. All other methods employ different kinds of mean distances between the clusters.
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Single linkage often produces very widely branched clusters and so-called chain-effects, whereas complete
linkage usually aggregates clusters very late. As a general rule the best compromise can be achieved with the
WARD strategy or a mean value method. Above that, it is no bad idea to run different methods successively
and to observe the stability of the configuration (are individuals always assigned to the same cluster?).

9.5.0.2 Non-hierarchical k-Means Cluster analysis

In non-hierarchical cluster analysis the number of groups to be created is defined beforehand. The clusters
are being aggregated either from a starting configuration or iteratively with the help of a random initializa-
tion. The clustering success is then mesured as sum of squares or by means of a “stress” value.

The number of cluster is either derived from the specific scientific question, or it is set based on a hierarchical
cluster analysis. K-means clustering can be used if a very large number of individuals needs to be classified
and a tree diagram would be too big and confusing. Another useful application is the combined application
of k-means clustering and a plotting method, e.g. an NMDS.

9.6 Examples and Implementation in R

Despite the fact that some of the methods presented before work quite differently, it makes sense to present
their use and implementation in context. Besides the methods presented here (which come from the packages
stats, MASS and vegan), additional methods can be found in packages cluster, knn, ade4, cclust,
daisy and others.

The vegan package has undergone a very exciting development, and now contains a comprehensive set of
advanced functions tailored directly to the specific needs of ecologists.

Most notable among these enhancements are, for instance, the great extension of the function metaMDS,
the direct linking of environmental data with NMDS graphics (vector fitting and surface fitting) and modern
randomization tests. These allow to perform ANOVA-like analyses with entire species lists (similarity
matrices).

It is particularly pleasing that all these function are now well documented. An easily understandable and
highly recommended tutorial1 and additional material on multivariate statistics can be found on the home-
page2 of the first author of vegan, Jari Oksanen.

Complementary to this also the approach pursued by the “French School” of multivariate statistics would be
worth to be considered (see e.g. DRAY and DUFOUR, 2007), especially as there are also nice graphical user
interfaces (THIOULOUSE and DRAY, 2007).

9.6.1 Example 1: Lake Data Set

The following example shows some criteria of several lakes in Brandenburg and Mecklenburg from KOSCHEL

et al. (1987). The example is intended to be small, so basically there would be no need for multivariate
statistics. It has, however, the advantage that the results can easily be understood and compared with our
expectations.

1http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
2http://cc.oulu.fi/~jarioksa/

120

http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
http://cc.oulu.fi/~jarioksa/


9 Multivariate statistics

Lakes z t P N Chl PP SD
(m) (a) (µg/l) (mg/l) (µg/l) (gCm−2a−1) m

S 23.7 40 2.5 0.2 0.7 95 8.4
NN 5.9 10 2 0.2 1.1 140 7.4
NS 7.1 10 2.5 0.1 0.9 145 6.5
BL 25.2 17 50 0.1 6.1 210 3.8
SL 7.8 2 30 0.1 4.7 200 3.7
DA 5 4 100 0.5 14.9 250 1.9
HS 6.3 4 1150 0.75 17.5 420 1.6

Principal components

First, we will perform a principal component analysis and try to interpret the results, and afterwards run a
PCO. Finally, we will apply NMDS, once with a PCO as a starting configuration (default in isoMDS) and
once with a random starting configuration.

The data set’s first column holds an identifier of the object (lake name). Via row.names it will be used
as row name of the matrix and is removed from the actual data set afterwards. The function scale does a
standardization and prcomp runs the analysis itself:

library(vegan)
library(MASS)
dat <- read.table("http://www.simecol.de/data/seen_bb.txt",header=TRUE)
# first column contains row names
row.names(dat) <- dat[,1]
# remove the first column
dat <- dat[,-1]
# principal components (with standardized data)
pca <- prcomp(scale(dat))
# proportion of variance (in percent)
summary(pca)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.2007 1.1411 0.76855 0.5006 0.11502 0.01502 4.169e-17
Proportion of Variance 0.6919 0.1860 0.08438 0.0358 0.00189 0.00003 0.000e+00
Cumulative Proportion 0.6919 0.8779 0.96228 0.9981 0.99997 1.00000 1.000e+00

biplot(pca, choices=c(1,2))

Interpretation aid

The first look goes to proportions of variance stated by summary(pca). They decide whether the reduc-
tion of dimensions was successful and how many principal components need to be considered (with the
principal components being sorted according to their proportion of variance). In our example 88% of all
variance fall upon the first two principal components. That means that a plot of PC1 and PC2 contains
already 88% of the information.

The plot created with biplot shows objects (lakes) and variables simultaneously. Depending on the algo-
rithm used, the plot may be mirrored along the x or y axis. So what is important is only the relation of the
objects and variables to each other, not if they are at the right or left, top or bottom.
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Figure 9.1: PCA of the lake data set.

First the plots are interpreted with regard to the objects, e.g.:

• Nehmitzsee Nord’ (NN) is similar to Nehmitzsee Süd (NS), they form a cluster,

• Stechlinsee (S) and Dagowsee (DG) are entirely different.

When interpreting the variables it has to be noted that only long arrows lie in the represented plane. Thus,
only long arrows can be interpreted, short arrows point to dimensions not contained in the plot:

• nitrogen (N), phosphorous (P), chlorophyll (Chl) and primary production (PP) are correlated,

• a high concentration of chlorophyll means low secchi depth (SD, depth of visibility),

• phosphorous and mean depth (z) are not correlated (at least not in our data set).

A combined interpretation is possible, too. The respective objects have to be projected onto the arrows
rectangularly:

• Stechlinsee has the largest depth (z) and the longest residence time (t).

• Haussee (HS) has the highest nutrient and chlorophyll concentrations as well as the highest planktonic
primary production.

Principal Coordinate Analysis

The PCO can be done in a similar way, but the possibility to use any measure of distance does not offer any
advantage over PCA in the example at hand, as the Euclidean distance used here is suitable for physical and
chemical data.

The difference to the example presented before is that not the original data, but a distance matrix is handed
over as input to the analysis. It can be obtained with the function dist (uses the Euclidean distance by
default) or the extended function vegdist, respectively (which gives the Bray-Curtis dissimilarity by
default, but can also deliver the Euclidean distance, among others):
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pco <- cmdscale(vegdist(dat, method="euclidean"), k=2, eig=TRUE)
plot(pco$points, type="n")
text(pco$points, row.names(dat))

The parameter k defines the number of dimensions to be extracted, parameter eig allows the return of the
eigenvalues, which are important for plotting.

NMDS

With the help of the function isoMDS we get an ordination in which the configuration of the PCO is used
as a starting point. Please set trace to TRUE in order to display intermediate results.

mds <- isoMDS(vegdist(dat, method="euclidean"), trace=FALSE)
mds$stress

[1] 1.670176e-14

plot(mds$points, type="n")
text(mds$points, row.names(dat))

An MDS can also be run with a random start (initMDS) and it is possible to scale the results with postMDS
to make them easier to interpret.

dist <- vegdist(dat, method="euclidean")
mds <- isoMDS(dist, initMDS(dist), maxit=200, trace=FALSE)
mds <- postMDS(mds, dist)
mds$stress

[1] 1.444356e-14

plot(mds$points, type="n")
text(mds$points, row.names(dat))

If a random starting configuration is used, it is usually advisable to run several ordinations and to save
the best results separately. The function metaMDS from the vegan package performs such an MDS with
multiple random starts automatically and returns the best result of all these trials. But as metaMDS is
tailored for ecological data, a suitable is shown a little below in the text.

A Shepard plot can be received by:

stressplot(mds, dist(dat))
mds$stress

[1] 1.444356e-14

and in order to illustrate a bad fit, let’s create also a pure random data set with 10 dimensions and uniformly
distributed random numbers U(0,1) for comparison:

set.seed(123)
rdat <- matrix(runif(100), 10)
mds <- isoMDS(d<-vegdist(rdat, method="euclid"), trace=FALSE)
stressplot(mds, d, pch=16)
mds$stress
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[1] 10.22633

The Shepard diagram plots the ordination distances against the original distances. The fit is shown as
a stepped curve. The closer the points are to the stepped curve, the better the fit. The coefficients of
determination (R2) are almost always very high and should thus be treated with caution, for details see
OKSANEN (2010).
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Figure 9.2: Shepard plot for the lake data set (left) and for uniformly distributed random numbers.

Hierarchical Cluster Analysis

Hierarchical cluster analysis is easy to apply. As the calculation of the distance is done repeatedly during
clustering, the function for distance calculation (dist or vegdist) has to be handed over directly.

Because of the different measurement units the lake data set needs to be standardized. The Euclidean
distance is the distance measure of choice, as the data are metric and the Ward method is an appropriate
agglomeration algorithm. For comparison we will use three more agglomeration methods:

par(mfrow=c(2,2))
plot(hclust(dist(scale(dat), method="euclid"), method="complete"), main="Complete")
plot(hclust(dist(scale(dat), method="euclid"), method="single"), main="Single")
plot(hclust(dist(scale(dat), method="euclid"), method="average"), main="Average")
plot(hclust(dist(scale(dat), method="euclid"), method="ward.D"), main="Ward.D")

Cluster Analysis with Mahalanobis Distance

If the Mahalanobis distance is to be used it does not suffice to calculate it in the beginning and to then
hand over the distance matrix to hclust, for the distance calculation is needed during clustering, too.
At time of writing neither dist nor vegdist did contain Mahalanobis distance. However, a perfectly
valid alternative would be to transform the original coordinates in a way that the Euclidean distance of the
transformed objects is the same as the Mahalanobis distance of the non-transformed objects. This can be
done with an eigenvalue decomposition, and is easiest to do via PCA (without standardization). Afterwards,
all principal components are re-scaled to mean zero and unit standard deviation, what in consequence gives
greater weight to the otherwise unimportant higher components. For our lake example this means that rather
unimportant differences (and measurement errors) receive a very high importance, possibly resulting in an
unexpected picture (fig. 9.4, left):
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Figure 9.3: Cluster analysis for the lake data set.

pc <- prcomp(dat)
pcdata <- as.data.frame(scale(pc$x))
cl <- hclust(dist(pcdata), method="ward.D")
plot(cl, main="PC 1...7")

To demonstrate that the unexpected behavior is caused by the last components which were given more
weight, we willingly omit the last 2 components and receive the expected picture (fig. 9.4, right):

plot(hclust(dist(pcdata[,1:4]), method="ward.D"), main="PC 1...4")
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Figure 9.4: Cluster anlysis with all (left) and only the first four principal components (right).

What can be seen here is that the Mahalanobis distance is better suited for problems in which other methods
cannot achieve a sufficient separation, as might be the case in the analysis of peaks in a chemical analysis, for
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instance. The bottom line is that the choice of a suitable measure of distance should be done very carefully,
as radically different results can occur, according to one’s choice.

Combination of NMDS and k-means Clustering

NDMS can be usefully combined with cluster analysis, e.g. by highlighting the groups created in different
colours in plots. Particularly simple is a combination of NDMS with non-hierarchical k-means clustering.
In k-means clustering he number of clusters to be created is defined beforehand, e.g. centers = 3,
depending on the result of hierarchical clustering (fig. 9.5):

dat <- read.table("http://www.simecol.de/data/seen_bb.txt",header=TRUE)
row.names(dat) <- dat[,1]
dat <- dat[,-1]
mds <- isoMDS(vegdist(dat, method="bray"))

initial value 1.486552
iter 5 value 0.589242
iter 10 value 0.012067
iter 10 value 0.000134
iter 10 value 0.000000
final value 0.000000
converged

km <- kmeans(dat, centers = 3)
plot(mds$points, type="n")
text(mds$points, row.names(dat), col=km$cluster)
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Figure 9.5: Combination of NMDS and k-Means Clustering.
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9.6.2 Example 2: A Data Set from the Vegan Package

The following section is a short summary of some examples contained within the online help and the ve-
gan tutorial (OKSANEN, 2010). The data set consists of two matrices, a species list (community matrix)
varespec and the environmental matrix varechem. It is a test data set contained directly within the
vegan package and has been taken from a publication by VÄRE et al. (1995):

library(vegan)
data(varechem)
data(varespec)

NMDS

An MDS can be got fully automatic by:

mds <- metaMDS(varespec)
plot(mds, type = "t")

in which the built-in automatism does the following steps:

1. if ”necessary“, a square root transformation and a Wisconsin double standardization are performed
(initially for each species: abundances by maximum abundance of the species, afterwards for sampling
sites: abundance by total abundance),

2. the Bray-Curtis dissimilarity is applied,

3. several random starts are performed, and the result is compared to the best solution with a Procrustes
test,

4. to make interpretation easier a rotation is done, so the greatest variance of the site-scores lies on axis
1,

5. A scaling is done, so 1 unit equals 50% of the community similarity and replicate “similarity”,

6. the species scores are added to the final configuration as weighted means of the environmental vari-
ables. This yields a biplot.

Although, by all means, most steps make a lot of sense, I strongly recommend to take full responsibility
for transformation and standardization in order to achieve reprodcuible results, to determine yourself if you
want standardization and transformation:

mds <- metaMDS(varespec, distance = "bray", autotransform = FALSE)

or with square root and Wisconsin transformation:

mds <- metaMDS(wisconsin(sqrt(varespec)), distance = "bray",
autotransform = FALSE, trace=FALSE)

mds

Call:
metaMDS(comm = wisconsin(sqrt(varespec)), distance = "bray", autotransform = FALSE, trace = FALSE)

global Multidimensional Scaling using monoMDS
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Data: wisconsin(sqrt(varespec))
Distance: bray

Dimensions: 2
Stress: 0.1825658
Stress type 1, weak ties
Two convergent solutions found after 20 tries
Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on 'wisconsin(sqrt(varespec))'

Intermediate results can be displayed using the trace function (highly recommended), or can be turned off
(to prevent this tutorial from becoming too long).

To see if a transformation is reasonable on could simply “ask” the automatism.

Graphical output can be produced by using the generic plotting function or a special function ordiplot.
function ordiplot

plot(mds)
plot(mds, type="t")
plot(mds, display="sites")
plot(mds, display="species")

To find a detailed description see the online help and in particular the vegan tutorial (OKSANEN, 2010).

mds <- metaMDS(varespec, distance = "bray", autotransform = FALSE, k = 3)
ordirgl(mds, type = "t", col = "yellow")
orgltext(mds, text = names(varespec), display = "species",col = "cyan")
axes3d()

In this context the parameter k=3 allows a three-dimensional NMDS

Vector Fitting

The effect of environmental variables can be studied with the help of so-called vector fitting (fig. 9.6), which
includes a permutation test (e.g. with 1000 randomizations):

mds <- metaMDS(varespec, trace = FALSE)
ef <- envfit(mds, varechem, permu = 1000)
ef

***VECTORS

NMDS1 NMDS2 r2 Pr(>r)
N -0.05726 -0.99836 0.2537 0.046953 *
P 0.61966 0.78487 0.1938 0.100899
K 0.76639 0.64238 0.1809 0.096903 .
Ca 0.68513 0.72842 0.4119 0.002997 **
Mg 0.63247 0.77459 0.4270 0.002997 **
S 0.19130 0.98153 0.1752 0.125874
Al -0.87164 0.49014 0.5269 0.000999 ***
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Fe -0.93606 0.35184 0.4450 0.001998 **
Mn 0.79873 -0.60169 0.5231 0.000999 ***
Zn 0.61752 0.78656 0.1879 0.097902 .
Mo -0.90309 0.42946 0.0609 0.519481
Baresoil 0.92494 -0.38012 0.2508 0.056943 .
Humdepth 0.93286 -0.36024 0.5200 0.000999 ***
pH -0.64803 0.76161 0.2308 0.073926 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation: free
Number of permutations: 1000

plot(mds, type = "t")
plot(ef, p.max = 0.1)
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Figure 9.6: NMDS of the varespec data set wit fitted environmental vectors.

The result is a triplot. In the above case initially (and naively) all possible environmental variables were
fitted, but in the plot only variables with a p-value < 0.1 were drawn. It is better to specify the variables we
are interested in beforehand, and to describe them with a model formula:

ef <- envfit(mds ~ Al + Ca, varechem, permu = 1000)
ef
plot(mds, type = "t")
plot(ef)

A problem of vector fitting is that in doing so a linear relationship between the environmental vectors and
the ordination is assumed. This is not always the case, the more so as the NMDS creates a non-metrical
distortion.

The function ordisurf (surface fitting) applies a GAM approach (generalized additive model) to represent
a possible non-linearity. In the following example vector fitting and surface fitting are presented for the
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variables Al and Ca (fig. 9.7):

ef <- envfit(mds ~ Al + Ca, varechem)
plot(mds, display = "sites", type = "t")
plot(ef)
tmp <- with(varechem, ordisurf(mds, Al, add = TRUE))
with(varechem, ordisurf(mds, Ca, add = TRUE,
col = "green4"))

Family: gaussian
Link function: identity

Formula:
y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)

Estimated degrees of freedom:
4.72 total = 5.72

REML score: 156.6552
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Figure 9.7: NMDS of the varespec data set with fitted environmental vectors and GAM isolines for Al (red)
and Ca (green).

A three-dimensional plot can be achieved with vis.gam(tmp).

Mantel Test

The Mantel test can be used to examine if there is a relation between an environmental factor and a species
list:
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veg.dist <- vegdist(varespec)
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)

Mantel statistic based on Pearson's product-moment correlation

Call:
mantel(xdis = veg.dist, ydis = env.dist)

Mantel statistic r: 0.3047
Significance: 0.002

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%

0.110 0.138 0.160 0.194
Permutation: free
Number of permutations: 999

Please note that the Bray-Curtis dissimilarity was used for the species list (default) and the Euclidean dis-
tance (after scaling) for the environmental factors. Instead of standardized environmental variables it is
possible to use a distance matrix of the most important principal components.

For visualization the distances can be plotted directly against each other:

plot(veg.dist, env.dist)

at which the relationship should look more or less linear or monotonous.

BIOENV

Bioenv is a method used to select the best subset of environmental variables, in which the Euclidean distance
has the highest rank correlation with the species dissimilarity matrix:

sol <- bioenv(wisconsin(varespec) ~ log(N) +
P + K + Ca + pH + Al, varechem)
summary(sol)

size correlation
P 1 0.2513
P Al 2 0.4004
P Ca Al 3 0.4005
P Ca pH Al 4 0.3619
log(N) P Ca pH Al 5 0.3216
log(N) P K Ca pH Al 6 0.2822

Thus, in our example that subset is P and Al or P, Ca and Al, respectively.

CCA

Canonical Correspondence Analysis is a two-matrix method, which on the one hand uses the Chi-square
distance, and on the other hand produces two kinds of axes. One type are the so-called constrained axes,
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which contains only the portion of total information (named Total Inertia) that can be explained by the
environmental variables. The other type are the remaining unconstrained axes. So it has to be noted that, in
contrast to NMDS, the plot normally contains only that portion of the species list that can be explained by
the environmental matrix.

vare.cca <- cca(varespec, varechem)
vare.cca

Call: cca(X = varespec, Y = varechem)

Inertia Proportion Rank
Total 2.0832 1.0000
Constrained 1.4415 0.6920 14
Unconstrained 0.6417 0.3080 9
Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 CCA8 CCA9 CCA10 CCA11

0.4389 0.2918 0.1628 0.1421 0.1180 0.0890 0.0703 0.0584 0.0311 0.0133 0.0084
CCA12 CCA13 CCA14
0.0065 0.0062 0.0047

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9

0.19776 0.14193 0.10117 0.07079 0.05330 0.03330 0.01887 0.01510 0.00949

plot(vare.cca)

The number of constrained axes is equal to the number of environmental variables. This means that a high
number of environmental variables leads to more and more degrees of freedom and the CCA approaches the
CA, ultimately. Many constraints mean “no constraints”, practically. Therefore, it makes sense to specify
possible explanatory variables a priori.

vare.cca <- cca(varespec ~ P + Ca + Al, varechem)
vare.cca

Call: cca(formula = varespec ~ P + Ca + Al, data = varechem)

Inertia Proportion Rank
Total 2.0832 1.0000
Constrained 0.5243 0.2517 3
Unconstrained 1.5589 0.7483 20
Inertia is scaled Chi-square

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3

0.3453 0.1489 0.0301

Eigenvalues for unconstrained axes:
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CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
0.3694 0.2230 0.2049 0.1793 0.1342 0.1008 0.0853 0.0772
(Showed only 8 of all 20 unconstrained eigenvalues)

plot(vare.cca)
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Figure 9.8: CCA of the varespec data set with the complete environmental matrix as constraint (left) or P,
Ca and Al only (right).

An RDA is performed following the same pattern. As this method makes use of the Euclidean distance
for the species matrix, it is nowadays advisable in exceptional cases only, ans should rather be applied for
problems with two matrices with metric data.
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