
SpartanMC

SpartanMC
Quick Guide

SpartanMC

SpartanMC

Quick Guide i

Table of Contents

1. Overview ..1

2. Getting Started with SpartanMC ... 1

2.1. Requirements .. 1

2.2. Downloading SpartanMC SoC Kit ... 2

2.3. Unpacking the Archives .. 2

2.4. Setting Up Your Environment ... 2

2.5. Configuring the SpartanMC SoC Kit ... 3

3. Hello World ... 4

3.1. Creating a SpartanMC Project .. 4

3.2. JConfig .. 4

3.3. Customizing the SpartanMC System .. 5

3.4. Creating the Firmware ...12

3.5. Downloading the SoC into FPGA ..13

4. Pseudo Random Number Generator .. 14

4.1. Customizing the SpartanMC System .. 15

4.2. Creating the Firmware ...19

4.3. Downloading the SoC into the FPGA ... 20

SpartanMC

Quick Guide ii

SpartanMC

Quick Guide i

List of Figures

1 JConfig .. 5

2 Selecting Target Device .. 6

3 Selecting SpartanMC Core ... 6

4 Selecting System Clock Generator ... 7

5 Selecting UART Light ..8

6 System Manager after Adding Hardware Components ...8

7 Configuring Connections of System Clock Generator ...9

8 Configuring Parameters of System Clock Generator .. 9

9 Configuring Connections of UART Light ... 10

10 Configuring Parameters of UART Light ...10

11 Configuring Connections of Local Memory ... 10

12 Configuring Parameters of Local Memory ...11

13 Configuring Firmware of Local Memory .. 11

14 Defining IO Pins .. 11

15 Show Schematic ..11

16 Schematic ..12

17 Connections of Spartan-601 ..13

18 Default Output ... 14

19 System Manager of PRNG ... 15

20 Setting the firmware in the memory .. 15

21 Configuring Parameters of System Clock Generator .. 16

22 Configuring Connections of System Clock Generator ...16

23 Configuring Parameters of Interrupt Controller ... 17

24 Configuring Connections of Interrupt Controller .. 17

25 Configuring partial connection of the interrupt sources 17

26 Configuring Parameters of USB 1.1 Controller ... 18

27 Configuring Connections of USB 1.1 Controller ..18

28 Defining IO Pins .. 19

29 Connections of Spartan-601 ..21

SpartanMC

Quick Guide ii

30 USB PHY .. 21

31 Default Output ... 22

32 Output after Pushing BUTTON0 ... 22

SpartanMC

Quick Guide i

List of Tables

0 Supported Linux Distributions ... 1

0 Software for Configuring SpartanMC Toolchain ..1

SpartanMC

Quick Guide ii

SpartanMC

Quick Guide 1

Quick Guide

1. Overview

This quick start guide is meant to walk you through the basic steps to configure Spar-
tanMC SoC Kit and to build two sample system-on-chips (SoC), using SpartanMC tool-
chain.

Note: The SpartanMC toolchain supports synthesis tools for both Xilinx (ISE) and
Lattice (Synplify) FPGAs, but only under Linux. Because of this, it could be a
little hard to read and understand this manual for those who do not use Linux,
or have neither of the two synthesis tools installed on their machines.

2. Getting Started with SpartanMC

2.1. Requirements

Before you enter the world of SpartanMC, you should first review the following require-
ments. This may save you some trouble by knowing ahead of time what software you
will need.

As mentioned above, the SpartanMC SoC Kit currently only supports Linux, and is
known to work on the following distributions:

Distribution Architecture Version

CentOS x86, x64 CentOS 6 or newer

Fedora x86, x64 Fedora 15 or newer

Ubuntu x86, x64 Ubuntu 10 or newer

Debian x86, x64 Debian 6 or newer

Table 1: Supported Linux Distributions

Configuring the SpartanMC toolchain requires that you have several software packages
installed, which are listed in the table below:

Package Version Notes

GNU Make 3.8 or newer Makefile/build process

GCC 4.6 or newer C/C++ Comiler

JDK 1.8 or newer Java Development Kit

SpartanMC

Quick Guide 2

Package Version Notes

Apache Ant 1.8 or newer Java build process

GNU Autoconf 2.5 or newer Configuration script builder

Table 2: Software for Configuring SpartanMC Toolchain

2.2. Downloading SpartanMC SoC Kit

The SpartanMC SoC Kit is distributed as a set of three pieces. The first piece is the
SpartanMC suite that contains all of Verilog source files, libraries and tools needed to
construct a SpartanMC system. The other two pieces are the GNU C Compiler and
GNU binutils that have been ported to the specific 18-bit SpartanMC architecture.

Each of the three pieces is a TAR archive that is compressed with the gzip program,
as shown below.

• spartanmc.tar.gz

• spartanmc-gcc.tar.gz

• spartanmc-binutils.tar.gz

You can obtain the whole SoC Kit from the official website of SpartanMC project at
http://www.spartanmc.de

2.3. Unpacking the Archives

You should create a directory for the SpartanMC SoC Kit to live (e.g. ~/spartan-
mc-soc-kit), move the three downloaded archives to this directory and unpack them
there using the following command:

find ./ -name '*.tar.gz' -exec tar -xvzf {} \;

2.4. Setting Up Your Environment

After successfully unpacking the archives, two new subdirectories should have already
been created:

• bin

• spartanmc

Before configuring the SpartanMC suite, you may need to set some environment vari-
ables in ~/.bashrc as follows.

• export SPMC_SOC_KIT=/path/to/current/direcory

• export SPMC_BIN=$SPMC_SOC_KIT/bin

• export PATH=$SPMC_BIN:$PATH

SpartanMC

Quick Guide 3

• export JAVA_HOME=/path/to/jdk

• export SPARTANMC_ROOT=$SPMC_SOC_KIT/spartanmc

After setting up your environment, you should log out and log in again, or you may use
the following command as well:

source ~/.bashrc

2.5. Configuring the SpartanMC SoC Kit

Now, you need to change directory to where the SpartanMC suite lives:

cd $SPARTANMC_ROOT

and run the autogen.sh script that generates the configure script automatically.

./autogen.sh

The configure script accepts many command line options that enable or disable
optional features. Before you run the configure script, we highly recommend you
to take a look at the list of the acceptable options, using the -h option:

./configure -h

You should choose suitable options from the list, depending on which synthesis tool
you use. In case of ISE , there is one obligatory option: --with-ise-dir , which
specifies the full pathname of where ISE binaries has been installed. Additionally, you
need to run the Xilinx settings-script at first before you start configuring the SpartanMC
SoC Kit, as shown below:

source /path/to/ise/ISE_DS/settings64.sh

./configure --with-ise-dir=/path/to/ise/ISE_DS/ISE/bin/lin64

Note: By default, we assume that you have installed ModelSim and set up its envi-
ronment variables already. If this is not the case, you need to disable support
for it, using --disable-modelsim .

For Synplify , there are two obligatory options instead: --with-diamond-dir and
--enable-diamond . The former one has the same usage as --with-ise-dir ,
and the latter one turns support for Synplify tools on.This implies that the SpartanMC
SoC Kit was intended to be developed for Xilinx FPGAs and therefore uses ISE as
default synthesis tool. In addition to ISE and Synplify , we are currently trying to add
support for FPGAs from other vendors (e.g. Altera) into the SpartanMC SoC Kit as well.

SpartanMC

Quick Guide 4

3. Hello World

This section gives a traditional hello world example in which a simple SoC is to be
designed using the SpartanMC toolchain. This SoC sends a "hello world" message
to your host computer via serial port. For this purpose, it is designed to consist of a
SpartanMC core, a UART, a clock generator and a firmware. From this example, you
will learn the following:

• How to create a new SpartanMC project.

• How to customize a SoC using JConfig .

• How to create a new firmware for the SoC.

• How to build your project and download it into a FPGA device.

Note: The target device used in this example is a Spartan-601 Evaluation Board
(SP601) from Xilinx, which means ISE will be used as the synthesis tool.

3.1. Creating a SpartanMC Project

In order to create a new SpartanMC project, you need to run the following command
under $SPARTANMC_ROOT :

make newproject +path=/path/to/new/project

After running the command above, the project directory including a makefile should be
created. The next step is to specify the hardware configuration of the SoC. Therefore,
the created makefile provides a target to run JConfig .

3.2. JConfig

JConfig is a software tool that aims to provide a user-friendly GUI for configuring indi-
vidual SpartanMC systems. Before starting JConfig you should create a new firmware
that will be used for the SoC. To do this, first go to the the newly created project direc-
tory and execute:

cd /path/to/new/project

make newfirmware +path=firmware

You can now start JConfig in the project directory by executing the following command:

make jconfig

As Figure 1 illustrates, the GUI of JConfig consists of four major parts:

• Toolbar includes New , Open , Save , Build and Schematic buttons located from
left to right.

• System Manager shows all hardware components of a SoC in a tree structure.

• Component Editor is used to configure each component respectively.

SpartanMC

Quick Guide 5

• Message Window displays current operational status while configuring a SoC,
such as warnings or errors.

System Manager

Toolbar

Com ponent Editor

Error Log / Script Term inal

Figure 1: JConfig

3.3. Customizing the SpartanMC System

The first step is to select the target device. You should do this as follows:

• Click the New button in the toolbar .

• Choose SP601 as Target in pop-up windows drop down list.

• Click OK

SpartanMC

Quick Guide 6

Figure 2: Selecting Target Device

In the next step, you need to select hardware components used in the SoC.

• Right click the Configuration node in the System Manager .

• Verify that the auto-script button is activated. If the Auto-Script button in the toolbar
is activated, for example a local memory is automatically added to each new
spartanmc core and many connections will automatically be set. Otherwise this
has to be done manually.

• Choose Subsystem module -> Processor -> SpartanMC core from
the pop-up menu.

Figure 3: Selecting SpartanMC Core

SpartanMC

Quick Guide 7

• Right click Configuration again.

• Choose Common modules -> Clocks -> Xilinx DCM Clock

Figure 4: Selecting System Clock Generator

• Right click spartanmc_0 .

• Choose Peripheral -> Bus -> UART Light

SpartanMC

Quick Guide 8

Figure 5: Selecting UART Light

The diagram below shows how the System Manager should look so far:

Figure 6: System Manager after Adding Hardware Components

In the third step, you should configure each of the three hardware components, using
the Component Editor . If you click a hardware component in the System Manager ,
the Component Editor will be adapted to the component accordingly.

Note: Only the Parameters and Connections tab of a hardware component
need to be edited in examples from this manual.

First, you need to configure the system clock generator. The current version of the
SpantanMC core can run stable at 75 MHz on the SP601 board. However, the SP601
board provides only a 27 MHz oscillator for the purpose of generating a user clock. In

SpartanMC

Quick Guide 9

order to create a higher clock frequency, the Digital Clock Manager (DCM) of Xilinx
must be used. The clock generator of SpartanMC is actually a simple wrapper module
of the DCM and therefore has the same input and output signals as the DCM. The
signal used to drive the SpartanMC core, namely clkfx , is generated based on the
ratio of two user-defined integers, a multiplier (CLKFX_MULTIPLY) and a divisor (
CLKFX_DIVIDE). Its frequency is derived from the input clock (clk_gen) as follows.

Fclkfx= (Fclk_gen* CLKFX_MULTIPLY)/CLKFX_DIVIDE

The diagrams below illustrate how to configure the system clock generator.

Figure 7: Configuring Connections of System Clock Generator

Figure 8: Configuring Parameters of System Clock Generator

SpartanMC

Quick Guide 10

To configure the UART, do exactly the same as shown in the following Figures. Most of
the parameters and connections are already set. The UART clock frequency parameter
is automatically derived from the clock connected to the spartanmc core.

Figure 9: Configuring Connections of UART Light

Figure 10: Configuring Parameters of UART Light

The added memory needs no configuration for now and can remain with the default
configuration.

Figure 11: Configuring Connections of Local Memory

SpartanMC

Quick Guide 11

Figure 12: Configuring Parameters of Local Memory

Figure 13: Configuring Firmware of Local Memory

According to the settings of the two components above, the SpartanMC core will be
configured automatically. This means that customizing your first SpartanMC system
has almost been accomplished. The last thing you should do is define the IO pins.

• Click the Configuration node in the System Manager .

• Choose the tab I/O-Configuration in the Component Editor .

• Invert the reset button as shown in the following Figure

Figure 14: Defining IO Pins

After all these steps above have been completed successfully, you can save the cus-
tomizations by clicking the Save button on the Toolbar and build the system by simply
clicking the Build All button. Also, you can display the top-level design of the system
by clicking the Show Schematic button, as shown below.

Figure 15: Show Schematic

SpartanMC

Quick Guide 12

Figure 16: Schematic

Now, you may close JConfig or just let it run in the background.

3.4. Creating the Firmware

If not already done, you can create a firmware by running the following command under
the project directory (i.e. where you have started JConfig).

make newfirmware +path=firmware

Once the new firmware has been created, the firmware directory should contain:

• config-build.mk is used to specify GCC options.

• include folder is where all local header files are to be placed.

• src folder is where all C source files are to be placed.

Next, you need to create a C file as shown in the following, name it main.c and save
it under src .

#include "peripherals.h"
#include <stdio.h>

FILE * stdout = &UART_LIGHT_0_FILE;

void main() {
printf("hello world\n");

SpartanMC

Quick Guide 13

}
UART_LIGHT_0 is a defined alias for the structure of the type uart_light_regs_t with
the name spartanmc_0_uart_light_0. The code for that is located in /path/to/your/
project/system/subsystems/subsystem_0/peripherals.h . Each periph-
eral is automatically assigned to such a constant. The name will be the upper case
peripheral name used in JConfig .

Up to now, your first SpartanMC system has been completely finished.

3.5. Downloading the SoC into FPGA

First, you need to connect the USB JTAG port and the USB UART port on the
Spartan-601 Evaluation Board to your computer, using mini-B USB cable. After you
power on the board, the USB UART port will be recognized as one of TTY devices
such as /dev/ttyUSB0 .

Figure 17: Connections of Spartan-601

Next, open a new console and run the following two commands:

stty -F /dev/ttyUSB0 115200 cs8 -echo raw

cat /dev/ttyUSB0

SpartanMC

Quick Guide 14

Note: If the USB UART port is not recognized as /dev/ttyUSB0 , you need to
replace /dev/ttyUSB0 in the commands above with its actual device name.

Finally, open another console and run the following command under the project direc-
tory:

make all program

After waiting around two minutes for synthesizing and downloading the SoC, you should
see "hello world" in the first console. Every time you push the CPU RESET button on
the board, "hello world" will be printed once again.

Figure 18: Default Output

Note: If you use CentOS 6.5 , you have to assert another option of stty manually,
namely clocal , in the following manner:

stty -F /dev/ttyUSB0 115200 cs8 -echo raw clocal

Sometimes, maybe you just want to change your firmware a little bit and use the same
hardware system further, for example, let the SoC built above greet the world in german
(i.e. print "Hallo Welt" instead of "hello world"). In this case, you can avoid resynthe-
sizing the whole system and save a lot of time by typing the command shown below,
which will replace the old firmware with the new one directly.

make updateRam program

4. Pseudo Random Number Generator

This section describes a more complex SpartanMC system that generates pseudo ran-
dom numbers, namely a pseudo random number generator (PRNG). The random seed
of the PRNG can be set at runtime via USB, and the generated random numbers are
sent to the host computer via USB as well. This example is intended as an exercise
for readers who want to dig a little deeper into the SpartanMC SoC Kit, and does not
explain every detail. If you are not ready for this yet, just skip this section.

SpartanMC

Quick Guide 15

4.1. Customizing the SpartanMC System

Assuming that you have created a new SpartanMC project for this example already,
you can now begin customizing the SoC, using JConfig . This system is composed of
a SpartanMC core, a USB 1.1 controller, an interrupt controller, a clock generator and
a firmware. After selecting the hardware components needed, the System Manager
should look like the following.

Note: Before starting jConfig please remember to create an empty firmware to be
used in the configuration.

Figure 19: System Manager of PRNG

At first the created firmware has to be registered in the memory module of the spar-
tanmc.

Figure 20: Setting the firmware in the memory

The system clock generator needs to be configured in the almost same way as in the
hello world example, except that clkfx is also employed to drive the USB 1.1 con-
troller.

SpartanMC

Quick Guide 16

Figure 21: Configuring Parameters of System Clock Generator

Figure 22: Configuring Connections of System Clock Generator

Note: By clicking the green add button on the right side of clkfx , a second textbox
can be inserted to connect to the USB controller.

The following figures illustrate how to configure the interrupt controller. For connecting
the interrupt sources you need partial connections. Those can be configures by clicking
the partial button.

SpartanMC

Quick Guide 17

Figure 23: Configuring Parameters of Interrupt Controller

Figure 24: Configuring Connections of Interrupt Controller

Figure 25: Configuring partial connection of the interrupt sources

The USB 1.1 controller is designed to operate at 48 MHz so that the full bandwidth (12
Mbit/s) can be reached. It supports Direct Memory Access (DMA) to reduce processor
usage while transmitting data via USB. In contrast to a normal peripheral like UART,
it adopts an extra DMA interface to the SpartanMC core. To configure the USB 1.1
controller, you need to edit its Parameters and Connections tab as follows.

SpartanMC

Quick Guide 18

Figure 26: Configuring Parameters of USB 1.1 Controller

Figure 27: Configuring Connections of USB 1.1 Controller

Note: You do not need to configure any signal of the USB 1.1 controller, which is
tagged with Controller debug interface or Controller status .

The following figure shows how to define the IO pins used by this system.

SpartanMC

Quick Guide 19

Figure 28: Defining IO Pins

After you have saved and built the hardware part, you may close JConfig or just let it
run in the background.

4.2. Creating the Firmware

Before compiling the firmware, you should set the Flag LIB_OBJ_FILES in con-
fig-build.mk to the following, since the interrupt library shall be used:

LIB_OBJ_FILES:=peri interrupt

Now, copy the following C source code into main.c .

#include #include "peripherals.h"
#include <interrupt.h>
#include "usb_init.h"

#define PACKET_SIZE 32

struct usb_ep tx = USB_ENDPOINT(&USB11_0_DMA,1);
struct usb_ep intr = USB_ENDPOINT(&USB11_0_DMA,2);

unsigned int lfsr;

unsigned int get_random_number() {
unsigned int i, bit;

for (i=0; i<16; i++) {
bit = (lfsr^(lfsr>>2)^(lfsr>>3)^(lfsr>>5))&1;
lfsr = (lfsr>>1)|(bit<<15);

}

return lfsr;
}

SpartanMC

Quick Guide 20

void main() {
unsigned int i;

lfsr = 0xACE1;

usb_init(&USB11_0_DMA, 1);
usb_ep_intr_en(&intr);
usb_ep_packet_receive(&intr);
interrupt_enable();
while(1) {

usb_ep_wait_txready(&tx);
for(i=0; i<PACKET_SIZE; i++) {

tx.data[i] = get_random_number();
}
usb_ep_packet_send(&tx, PACKET_SIZE);

}
}
void isr00() {

usb_ep_intr_clear(&intr);
lfsr = intr.data[0];
usb_ep_packet_receive(&intr);

}

/* The last unknown 'strong' corresponds always unknown
'strong' */
void isr01() {

lfsr = 0;
}
Furthermore, the descriptors of the USB 1.1 controller are defined in a header file called
usb_init.h , which needs to be placed in the firmware/include folder. This file
can be found under $SPARTANMC_ROOT/examples/prng/firmware/include .

4.3. Downloading the SoC into the FPGA

Since the Spartan-601 Evaluation Board does not have the USB 1.1 physical layer
controller (PHY) integrated, you need a custom PHY as shown in the schematic. One
such PHY is integrated in our custom board.

SpartanMC

Quick Guide 21

Figure 29: Connections of Spartan-601

DPLUS

DMINUS

DISC

CONNECTED

VBUS1

D-2

D+3

ID4

GND5

GND

22.0

22.0

1K5

10K10K

GND

Not used here

Figure 30: USB PHY

In addition, a computer-side software has been developed, which is intended to test
the USB 1.1 controller and USB 1.1 PHY. This software hides low level details of how
to communicate with a USB port. Due to this, after the SoC has been synthesized
and downloaded into the FPGA, the only thing you need to do is type the following
commands in one console.

make -C $SPARTANMC_ROOT/examples/prng/firmware/util

SpartanMC

Quick Guide 22

export PATH=$SPARTANMC_ROOT/examples/prng/firmware/util:$PATH

usbcat -v 0x6666 -p 0xaffe | hexdump -Cv

Consequently, an infinite sequence of random numbers will be printed in the console.

Figure 31: Default Output

If you push BUTTON0 , the interrupt routine isr01 will be invoked, which sets the
random seed to 0 . As a result, the output will change to an infinite sequence of 0 .

Figure 32: Output after Pushing BUTTON0

If you want to set a new random seed, you need to abort the currently running command
(i.e. press Ctrl-C), and to type the following command that invokes the interrupt
service routine isr00 , which resets the random seed to 0x3031 .

echo "01" | usbcat -v 0x6666 -p 0xaffe | hexdump -Cv

Note: In this example, the ASCII codes of two arbitrary characters are used as 16-
bit random seed.

	Quick Guide
	Overview
	Getting Started with SpartanMC
	Requirements
	Downloading SpartanMC SoC Kit
	Unpacking the Archives
	Setting Up Your Environment
	Configuring the SpartanMC SoC Kit

	Hello World
	Creating a SpartanMC Project
	JConfig
	Customizing the SpartanMC System
	Creating the Firmware
	Downloading the SoC into FPGA

	Pseudo Random Number Generator
	Customizing the SpartanMC System
	Creating the Firmware
	Downloading the SoC into the FPGA

