
1

1

Digital Systems Architecture
EECE 343-01 EECE 292-02

Branch Prediction Reloaded

Dr. William H. Robinson
February 13, 2004

http://eecs.vanderbilt.edu/courses/eece343/

2

Topics
Why, oh why, didn't I take the blue pill?

Cypher
The Matrix

• Administrative stuff
– Turn in Project 1
– Discussion

• Branch prediction
– Correlated prediction

3

Project 1 Description
• Write a MIPS assembly program to execute

the following matrix multiplication in floating
point double precision:

• Use this program to evaluate performance on
the WinMIPS64 simulator with various
architectural parameters

C = AB
































=

















333231

232221

131211

333231

232221

131211

333231

232221

131211

bbb
bbb
bbb

aaa
aaa
aaa

ccc
ccc
ccc

4

Class Discussion

• Thoughts on the WinMIPS64 Simulator?

• Thoughts on the assembly programming?

• Thoughts on the design space exploration?

• What insight did you gain? (i.e. what did you
learn?)

2

5

The Matrix
; matrix multiplication
; For c11

MUL.D F30, F0, F10
ADD.D F20, F20, F30
MUL.D F30, F1, F13
ADD.D F20, F20, F30
MUL.D F30, F2, F16
ADD.D F20, F20, F30

; For c12
MUL.D F30, F0, F11
ADD.D F21, F21, F30
MUL.D F30, F1, F14
ADD.D F21, F21, F30
MUL.D F30, F2, F17
ADD.D F21, F21, F30

; For c13
MUL.D F30, F0, F12
ADD.D F22, F22, F30
MUL.D F30, F1, F15
ADD.D F22, F22, F30
MUL.D F30, F2, F18
ADD.D F22, F22, F30

FP Add 3
FP Multiply 7
Forwarding Disabled

CPI 3.367

FP Add 3
FP Multiply 7
Forwarding Enabled

CPI 2.064

6

The Matrix Reloaded
; For c11, c12, and c13

MUL.D F20, F0, F10
MUL.D F21, F1, F13
MUL.D F23, F0, F11
MUL.D F24, F1, F14
MUL.D F26, F0, F12
MUL.D F27, F1, F15
MUL.D F22, F2, F16
MUL.D F25, F2, F17
MUL.D F28, F2, F18

ADD.D F20, F20, F21
ADD.D F23, F23, F24
ADD.D F26, F26, F27

DADD R2, R0, R0 ; initialize R2 for storing elements

ADD.D F20, F20, F22
ADD.D F23, F23, F25
ADD.D F26, F26, F28

FP Add 3
FP Multiply 7
Forwarding Disabled

CPI 1.604

FP Add 3
FP Multiply 7
Forwarding Enabled

CPI 1.242

7

The Matrix Revolutions

• Using a loop for matrix calculation
– Cost of loop overhead
– Accessing array rows and colums

• Architectural parameters
– Delay slot
– Load delay

• If you used a loop, how does your CPI compare?

8

Problem: “Fetch” Unit

Instruction Fetch
with

Branch Prediction

Out-Of-Order
Execution

Unit

Correctness Feedback
On Branch Results

Stream of Instructions
To Execute

• Instruction fetch decoupled from execution
• Often issue logic (plus rename) included with Fetch

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

3

9

Branches Must Be Resolved Quickly
For Loop Overlap!

• In our loop-unrolling example, we relied on the fact that
branches were under control of “fast” integer unit in order to
get overlap!

Loop: LD F0 0 R1
MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

• What happens if branch depends on result of multd??
– We completely lose all of our advantages!
– Need to be able to “predict” branch outcome.
– If we were to predict that branch was taken, this would be right most of

the time.

• Problem much worse for superscalar machines!
Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 10

• Prediction has become essential to getting good
performance from scalar instruction streams

• We will discuss predicting branches. However, architects
are now predicting everything:
data dependencies, actual data, and results of groups of
instructions:

– At what point does computation become a probabilistic operation
plus verification?

– We are pretty close with control hazards already…

• Why does prediction work?
– Underlying algorithm has regularities
– Data that is being operated on has regularities
– Instruction sequence has redundancies that are artifacts of way

that humans/compilers think about problems

• Prediction ⇒ Compressible information streams?

Prediction:
Branches, Dependencies, Data

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

11

Static Branch Prediction
• Compiler uses branch instructions that

specify the branch’s normal outcome
– Based upon the code to be compiled
– Taken (T) or Not Taken (NT)

• Program is simulated to profile the branch
behavior
– Branch statistics are given to the compiler

12

Dynamic Branch Prediction
• Branch History Table (BHT)

– CPU maintains a history of branch locations and their
previous behavior

• Branch Target Buffer (BTB)
– Stores the target location for branches predicted taken

• Use 1 bit to store history
– Stores what the branch did the last time
– With loops, you will always mispredict entering and

exiting
• Use 2 bits to store history

– Maintains a strong and weak prediction state
– Must mispredict twice to change the prediction

4

13

Need Address
at Same Time as Prediction

• Branch Target Buffer (BTB): Address of branch index to get
prediction AND branch address (if taken)
– Note: must check for branch match now, since can’t use wrong branch

address (Figure 3.19, p. 210)

Branch PC Predicted PC

=?

PC of instruction
FETCH

Predict taken or untaken

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 14

Flow Chart for BTB (Fig 3.20 p. 212)
Send PC

to memory
and BTB

Entry
found in
BTB?

IF

EX

ID

Is
instruction

a taken
branch?

No

Normal
execution

No

Place
entry into

BTB

Yes

Send out
predicted

PC

Yes

Taken
branch?

Recover from
misprediction

No

Normal
execution

Yes

15

• BHT is a table of “Predictors”
– Usually 2-bit, saturating counters
– Indexed by PC address of Branch – without tags

• In Fetch state of branch:
– BTB identifies branch
– Predictor from BHT used to make prediction

• When branch completes
– Update corresponding Predictor

Predictor 0

Predictor 7

Predictor 1

Branch PC

Branch History Table

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 16

Dynamic Branch Prediction
(Standard Technologies)

• Combine Branch Target Buffer and History Tables
– Branch Target Buffer (BTB): identify branches and hold taken

addresses
• Trick: identify branch before fetching instruction!
• Must be careful not to misidentify branches or destinations

– Branch History Table makes prediction
• Can be complex prediction mechanisms with long history
• No address check: Can be good, can be bad (aliasing)

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

5

17

• Solution: 2-bit scheme where change prediction only if
get misprediction twice: (Figure 3.7, p. 198)

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction
(Jim Smith, 1981)

T

T

NT

Strong
Predict Taken

Weak
Predict Not

Taken

Weak
Predict Taken

Strong
Predict Not

Taken
T

NT

T

NT

NT

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 18

BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18% (eqntott),
with spice at 9% and gcc at 12%

• 4096 about as good as infinite table
(in Alpha 211164)

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

19

Correlating Branches
• Hypothesis:

– Recent branches are correlated

– Behavior of recently executed branches affects prediction of
current branch

• Two possibilities; current branch depends on:
– Last m most recently executed branches anywhere in program

Produces a “GA” (for “global adaptive”) in the Yeh and Patt
classification (e.g. GAg)

– Last m most recent outcomes of same branch.
Produces a “PA” (for “per-address adaptive”) in same
classification (e.g. PAg)

– Little “g” means global pattern history table

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 20

Correlating Branches
• Idea: record m most recently executed branches as

taken or not taken, and use that pattern to select the
proper branch history table (BHT) entry

– A single history table shared by all branches (appends a “g” at
end), indexed by history value.

– Address is used along with history to select table entry
(appends a “p” at end of classification)

– If only portion of address used, often appends an “s” to indicate
“set-indexed” tables (i.e. GAs)

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

6

21

Correlating Branches

(2,2) GAs predictor
– First 2 means that we keep two

bits of history
– Second means that we have 2 bit

counters in each slot.
– Then behavior of recent

branches selects between, say,
four predictions of next branch,
updating just that prediction

– Note that the original two-bit
counter solution would be a (0,2)
GAs predictor

– Note also that aliasing is possible
here...

Branch address

2-bits per branch predictors

PredictionPrediction

2-bit global branch history register

• For instance, consider global history, set-indexed BHT.
That gives us a GAs history table.

Each slot is
2-bit counter

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 22

Calculating Number of State Bits

• General case (m,n) predictor
– Uses behavior of last m branches
– Selects among 2m branch predictors
– Each predictor is n bits

• Number of bits in (m,n) predictor:
– 2m × n × (Number of prediction entries selected by branch address)

23

Accuracy of Different Schemes

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

na
sa

7

m
at

rix
30

0

to
m

ca
tv

do
du

cd

sp
ic

e

fp
pp

p gc
c

es
pr

es
so

eq
nt

ot
t li

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 24

• Avoid branch prediction by turning branches into
conditionally executed instructions:
if (x) then A = B op C else NOP

– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following
instruction

– IA-64: 64 1-bit condition fields selected so conditional
execution of any instruction

– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

x

A =
B op C

Predicated Execution

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB.

7

25

Summary
• Prediction becoming important part of scalar execution.

– Prediction is exploiting “information compressibility” in execution

• Branch History Table: 2 bits for loop accuracy

• Correlation: Recently executed branches correlated with
next branch.

– Either different branches (GA)
– Or different executions of same branches (PA).

• Branch Target Buffer: include branch address &
prediction

• Predicated Execution can reduce number of branches,
number of mispredicted branches

Adapted from John Kubiatowicz’s CS 252 lecture notes. Copyright © 2003 UCB. 26

Things to Do
• Study for Exam 1

– Covers material up to today’s lecture (branch prediction)
– See sample problems on web site

• Homework Assignment #2 due Monday
– Solutions posted after class on Monday

