
Department of Electrical Engineering and Computer Science
 Ohio University Spring 2010

1

EE 468/568: Microcomputers - 2
Project # 1

Due Date: Monday May 17, 2010 by 11:59 PM EST

Instructions:
1) Use WinMIPS64 to solve all the problems for this project.
2) Submit your code <lastname.p1.s> and <lastname.p2.s> for the first two problems. For
problem 3, submit lastname.p3.pdf i.e. I do not want an executable for the last problem. Write a
complete report on all your observations and the associated code within the PDF document.
Submit all three files to kodi@ohio.edu. In addition, please drop a hardcopy of the simulation
code and word document into my mailbox.

Problem 1 (35 Points)
Write a WinMIPS64 code to determine whether a given number is an Armstrong number.

The n-digit numbers equal to sum of nth powers of their digits (a finite sequence), called
Armstrong numbers. They first few are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407,
1634, 8208, 9474, 54748,….

For example, consider 371, 371 = 33 + 73+ 13 = 27 + 343 + 1 = 371. A sample C code for your
assistance is given below:

#include <stdio.h>

int main(){
int num,i;
float digit,sum,capture;
sum = 0.0;
capture = 0.0;
printf("Enter the total number of digits\n");
scanf("%d", &num);

for(i = 0; i < num; i++) {
 printf("Enter the %d digit:\n", i+1);
 scanf("%f", &digit);
 sum = sum + (digit*digit*digit);
 capture = capture * 10 + digit;
}
printf("Entered Number: %f\n", capture);
printf("Sum of Product: %f\n", sum);
if(capture == sum)
 printf("Armstrong number");
else
 printf("Not an Armstrong number");
}

Department of Electrical Engineering and Computer Science
 Ohio University Spring 2010

2

All examples can be used for manipulation. Note that the numbers displayed are in floating
point. Display the numbers using double format in WinMIPS64. You need to test the code only
for 1-4 digit numbers from 0 to 9999. It is sufficient to follow the mentioned C logic that checks
for 4-digit Armstrong numbers, even though more digits can be specified. Provide a complete
report of your code i.e. stall count, code size, CPI.

Problem 2: (30 Points)
Fibonacci numbers are: 0,1,1,2,3,5,8,13,21,34,55,etc i.e. two consecutive numbers are added to
generate the next number. If the user enters 6, then the display should be 0, 1, 1, 2, 3, 5 i.e. 6
fibonacci numbers should be displayed. Generate the numbers and display it. The sample C
code is:

#include <stdio.h>

main()

{

int x,y,z,num,count;
printf("Enter the number of fibonacci numbers > 2:\n");
scanf("%d",&num);
x = 0;
y = 1;
count = 2;
printf("The numbers are:\n");
printf("%d\n%d\n",x,y);
while(count<num)
{

z = x + y;
printf("%d\n",z);
x = y;
y = z;
count++;

}

}

Again all examples can be used for manipulation. Note that the numbers displayed are integers.
Provide a complete report of your code i.e. stall count, code size, CPI.

Department of Electrical Engineering and Computer Science
 Ohio University Spring 2010

3

Problem 3 (20 Points)
Consider the following code and answer the following questions. Note that F2 register holds a
scalar constant that cannot be changed for the computation (see MUL.D instruction)

 .data
 .text
main:

 DADDI R3,R0,8
 DADDI R1,R0,1024
 DADDI R2,R0,1024
Loop: L.D F0,0(R1)
 MUL.D F0,F0,F2
 L.D F4,0(R2)
 ADD.D F0,F0,F4
 S.D F0,0(R2)
 DSUB R1,R1,R3
 DSUB R2,R2,R3
 BNEZ R1,Loop

 HALT

(a) Enable forwarding (check under the Configure tab). Run the code. How many stalls do you
see? Can you identify where these stalls occur (the pair of instructions) that cause this stall.
Hint: Run in Single Cycle mode using F7. What is the CPI?

(b) Execute the code by enabling Enable Branch Target Buffer (check under the Configure tab).
How many stalls do you see? How many stalls do you see and what exactly does the Enable
Branch Target Buffer do? What is the CPI and what is the speedup when compared to (a)?

(c) Execute the code by enabling Enable Delay Slot (check under the Configure tab). You will
need to put one instruction to be executed, else HALT instruction will stop the code from
executing. What is the CPI and the speedup compared to (a). Which scheme is better, branch
target buffer or delay slot?

(d) Re-arrange the loop without unrolling. You can move individual instructions, however the
output of this dummy loop should be exactly the same i.e. adjust the offset for memory
instructions (load/store). Can you reduce the stalls for this code? What is the new CPI and the
speedup when compared to (a)?

(e) Now, transform the loop by unrolling the loop, reschedule the instructions, enable delay slot
or branch target buffer to completely minimize the stalls. What is the CPI and what is the
speedup when compared to (a)?

