
EduMIPS64 User Manual

by Andrea Spadaccini

Version 1, 15 March 2007

Contents

1 Source files format 7

1.1 Sections . 7

1.1.1 The .data section . 8

1.1.2 The .code section . 10

1.1.3 The #include command 11

2 The instruction set 12

2.1 ALU Instructions . 12

2.2 Load/Store instructions . 17

2.3 Flow control instructions . 19

2.4 The SYSCALL instruction . 20

2.4.1 SYSCALL 0 - exit() . 21

2.4.2 SYSCALL 1 - open() . 21

2.4.3 SYSCALL 2 - close() . 22

2.4.4 SYSCALL 3 - read() . 22

2.4.5 SYSCALL 4 - write() . 23

2.4.6 SYSCALL 5 - printf() 23

2.5 Other instructions . 24

2.5.1 BREAK . 24

2

2.5.2 NOP . 24

2.5.3 TRAP . 24

2.5.4 HALT . 24

3 The user interface 25

3.1 The menu bar . 25

3.1.1 File . 25

3.1.2 Execute . 26

3.1.3 Configure . 27

3.1.4 Tools . 27

3.1.5 Window . 27

3.1.6 Help . 28

3.2 Frames . 28

3.2.1 Cycles . 28

3.2.2 Registers . 28

3.2.3 Statistics . 29

3.2.4 Pipeline . 29

3.2.5 Memory . 29

3.2.6 Code . 29

3.2.7 Input/Output . 29

3.3 Dialogs . 30

3.3.1 Settings . 30

3.3.2 Dinero Frontend . 31

3.3.3 Help . 31

3.4 Command line options . 31

3.5 Running EduMIPS64 . 32

3

List of Tables

1.1 Basic data types . 8

1.2 Memory status for Listing 1.2 . 9

1.3 Escaping sequences . 10

4

Listings

1.1 Sample EduMIPS64 code . 7

1.2 Adjacent bytes . 9

5

Introduction

EduMIPS64 is a MIPS64 Instruction Set Architecture (ISA) simulator. It is

designed to be used to execute small programs that use the subset of the MIPS64

ISA implemented by the simulator, allowing the user to see how instructions

behave in the pipeline, how stalls are handled by the CPU, the status of registers

and memory and much more. It is both a simulator and a visual debugger.

This manual will introduce you to EduMIPS64, and will cover some details on

how to use it.

The first chapter covers the format of source files accepted by the simulator,

describing the data types and the directives, in addition to command line pa-

rameters. In the second chapter there’s an overview of the subset of the MIPS64

instruction set that is accepted by EduMIPS64, with all the needed parameters

and indications to use them. The third chapter is a description of the user inter-

face of EduMIPS64, that explains the purpose of each frame and menu, along with

a description of the configuration dialog, the Dinero frontend dialog, the Manual

dialog and command line options.

This manual refers to EduMIPS64 version 0.4.

6

Chapter 1

Source files format

EduMIPS64 tries to follow the conventions used in other MIPS64 and DLX

simulators, so that old time users will not be confused by its syntax.

1.1 Sections

There are two sections in a source file, the data section and the code section,

introduced respectively by the .data and the .code directives. In listing 1.1 you

can see a very basic EduMIPS64 program.

To distinguish the various parts of each source code line, any combination of

spaces and tabs can be used, as the parser ignores multiple spaces and only detects

whitespaces to separate tokens.

; This is a comment

. data

label : . word 15 ; This is an inline comment

. code

daddi r1 , r0 , 0

syscall 0

Listing 1.1: Sample EduMIPS64 code

Comments can be specified using the “;” character, everything that follows

7

that character will be ignored. So a comment can be used “inline” (after the

directive) or on a row by itself.

Labels can be used in the code to reference a memory cell or an instruction.

They are case insensitive. Only a label for each source code line can be used. The

label can be specified one or more rows above the effective data declaration or

instruction, provided that there’s nothing, except for comments and empty lines,

between the label and the declaration.

1.1.1 The .data section

The data section contains commands that specify how the memory must be

filled before program execution starts. The general form of a .data command is:

[label:] .datatype value1 [, value2 [, ...]]

EduMIPS64 supports different data types, that are described in table 1.1.

Type Directive Bits required
Byte .byte 8
Half word .word16 16
Word .word32 32
Double Word .word or .word64 64

Table 1.1: Basic data types

Please note that a double word can be introduced either by the .word directive

or by the .word64 directive.

There’s a big difference between declaring a list of data elements using a single

directive or by using multiple directives of the same type. EduMIPS64 starts

writing from the next 64-bit double word as soon as it finds a datatype identifier,

so the first .byte statement in listing 1.2 will put the numbers 1, 2, 3 and 4 in

8

the space of 4 bytes, taking 32 bits, while code in the next four rows will put each

number in a different memory cell, occupying 32 bytes, as in table 1.2.

. data

. byte 1 , 2 , 3 , 4

. byte 1

. byte 2

. byte 3

. byte 4

Listing 1.2: Adjacent bytes

In table 1.2, the memory is represented using byte-sized cells and each row is

64 bits wide. The address on the left side of each row of the table refers to the

right-most memory cell, that has the lowest address of the eight cells in each line.

0 0 0 0 0 4 3 2 1
8 0 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 2
24 0 0 0 0 0 0 0 3
36 0 0 0 0 0 0 0 4

Table 1.2: Memory status for Listing 1.2

There are some special directives that need to be discussed: .space, .ascii

and .asciiz. The .space directive is used to leave some free space in memory. It

accepts as a parameter an integer, that indicates the number of bytes that must

be left empty. It is handy when you must save some space in memory for the

results of your computations.

The .ascii directive accepts strings containing any of the ASCII characters,

and some special C-like escaping sequences, that are described in table 1.3, and

puts those strings in memory.

The .asciiz directive behaves exactly like the .ascii command, with the

difference that it automatically ends the string with a null byte.

9

Escaping sequence Meaning ASCII encoding
\0 Null byte 0
\t Horizontal tabulation 9
\n Newline character 10
\" Literal quote character 34
\\ Literal backslash character 92

Table 1.3: Escaping sequences

1.1.2 The .
ode section

The code section contains commands that specify how the memory must be

filled when the program will start. The general form of a .code command is:

[label:] instru
tion [param1 [, param2 [, param3]]]

The code section can be specified with the .text alias.

The number and the type of parameters depends on the instruction itself.

Instructions can take three types of parameters:

• Registers a register parameter is indicated by an uppercase or lowercase

“r”, or a $, followed by the number of the register (between 0 and 31), as in

“r4”, “R4” or “$4”;

• Immediate values an immediate value can be a number or a label; the

number can be specified in base 10 or in base 16: base 10 numbers are

simply inserted by writing the number, while base 16 number are inserted

by putting before the number the prefix“0x”

• Address an address is composed by an immediate value followed by a reg-

ister name enclosed in brackets. The value of the register will be used as

the offset.

10

The size of immediate values is limited by the number of bits that are available

in the bit encoding of the instruction.

The instructions that can be used in this section will be discussed in section 2

1.1.3 The #in
lude command

Source files can contain the #in
lude filename command, which has the

effect of putting in place of the command row the content of the file filename.

It is useful if you want to include external routines, and it comes with a loop-

detection algorithm that will warn you if you try to do something like “#include

A.s” in file B.s and “#include B.s” in file A.s.

11

Chapter 2

The instruction set

In this section we will the subset of the MIPS64 instruction set that Edu-

MIPS64 recognizes. We can operate two different taxonomic classification: one

based on the functionality of the instructions and one based on the type of the

parameters of the instructions.

The first classification divides instruction into three categories: ALU instruc-

tions, Load/Store instructions, Flow control instructions. The next three sub-

sections will describe each category and every instruction that belongs to those

categories.

The fourth subsection will describe instructions that do not fit in any of the

three categories.

2.1 ALU Instructions

The Arithmetic Logic Unit (in short, ALU) is a part of the execution unit of a

CPU, that has the duty of doing arithmetical and logic operations. So in the ALU

instructions group we will find those instructions that do this kind of operations.

ALU Instructions can be divided in two groups: R-Type and I-Type.

Four of those instructions make use of two special registers: LO and HI. They

12

are internal CPU registers, whose value can be accessed through the MFLO and

MFHI instructions.

Here’s the list of R-Type ALU Instructions.

• AND rd, rs, rt

Executes a bitwise AND between rs and rt, and puts the result into rd.

• DADD rd, rs, rt

Sums the content of rs and rt, considering them as signed values, and puts

the result into rd.

• DADDU rd, rs, rt

Sums the content of rs and rt, considering them as unsigned values, and

puts the result into rd.

• DDIV rs, rt

Executes the division between rs and rt, putting the quotient in LO and the

remainder in HI.

• DMULT rs, rt

Executes the multiplication between rs and rt, putting the result in LO.

• DSLL rd, rt, sa

Does a left shift to of rt, by the amount specified in the immediate value sa,

and puts the result into rd. Empty bits are padded with zeros.

• DSLLV rd, rs, rt

Does a left shift to of rs, by the amount specified in rt, and puts the result

into rd. Empty bits are padded with zeros.

13

• DSRA rd, rs, sa

Does a right shift to of rs, by the amount specified in the immediate value

sa, and puts the result into rd. Empty bits are padded with zeros if the

leftmost bit of rs is zero, otherwise they are padded with ones.

• DSRAV rd, rs, rt

Does a right shift to of rs, by the amount specified in rt, and puts the result

into rd. Empty bits are padded with zeros if the leftmost bit of rs is zero,

otherwise they are padded with ones.

• DSRL rd, rs, sa

Does a right shift to of rs, by the amount specified in the immediate value

sa, and puts the result into rd. Empty bits are padded with zeros.

• DSRLV rd, rs, rt

Does a right shift to of rs, by the amount specified in rt, and puts the result

into rd. Empty bits are padded with zeros.

• DSUB rd, rs, rt

Subtracts the value of rt to rs, considering them as signed values, and puts

the result in rd.

• DSUBU rd, rs, rt

Subtracts the value of rt to rs, considering them as unsigned values, and

puts the result in rd.

• MFLO rd

Moves the content of the special register LO into rd.

14

• MFHI rd

Moves the content of the special register HI into rd.

• MOVN rd, rs, rt

If rt is different from zero, then moves the content of rs into rd.

• MOVZ rd, rs, rt

If rt is equal to zero, then moves the content of rs into rd.

• OR rd, rs, rt

Executes a bitwise OR between rs and rt, and puts the result into rd.

• SLT rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt, otherwise

sets it to 0. This instruction performs a signed comparison.

• SLTU rd, rs, rt

Sets the value of rd to 1 if the value of rs is less than the value of rt, otherwise

sets it to 0. This instruction performs an unsigned comparison.

• XOR rd, rs, rt

Executes a bitwise exclusive OR (XOR) between rs and rt, and puts the

result into rd.

Here’s the list of I-Type ALU Instructions.

• ANDI rt, rs, immediate

Executes the bitwise AND between rs and the immediate value, putting the

result in rt.

15

• DADDI rt, rs, immediate

Executes the sum between rs and the immediate value, putting the result in

rt. This instruction considers rs and the immediate value as signed values.

• DADDUI rt, rs, immediate

Executes the sum between rs and the immediate value, putting the result

in rt. This instruction considers rs and the immediate value as unsigned

values.

• LUI rt, immediate

Loads the constant defined in the immediate value in the upper half (16 bit)

of the lower 32 bits of rt, sign-extending the upper 32 bits of the register.

• ORI rt, rs, immediate

Executes the bitwise OR between rs and the immediate value, putting the

result in rt.

• SLTI rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the imme-

diate, otherwise sets it to 0. This instruction performs a signed comparison.

• SLTUI rt, rs, immediate

Sets the value of rt to 1 if the value of rs is less than the value of the

immediate, otherwise sets it to 0. This instruction performs an unsigned

comparison.

• XORI rt, rs, immediate

Executes a bitwise exclusive OR (XOR) between rs and the immediate value,

and puts the result into rt.

16

2.2 Load/Store instructions

This category contains all the instructions that operate transfers between reg-

isters and the memory. All of these instructions are in the form

[label:] INSTRUCTION rt, offset(base)

Where rt is the source or destination register, depending if we are using a store

or a load instruction; offset is a label or an immediate value and base is a register.

The address is obtained by adding to the value of the register base the immediate

value offset.

The address specified must be aligned according to the data type that is

treated. Load instructions ending with “U” treat the content of the register rt as

an unsigned value.

List of load instructions:

• LB rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as a signed byte.

• LBU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as an unsigned byte.

• LD rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as a double word.

17

• LH rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as a signed half word.

• LHU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as an unsigned half word.

• LW rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as a signed word.

• LWU rt, offset(base)

Loads the content of the memory cell at address specified by offset and base

in register rt, treating it as a signed word.

List of store instructions:

• SB rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and

base, treating it as a byte.

• SD rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and

base, treating it as a double word.

• SH rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and

base, treating it as a half word.

18

• SW rt, offset(base)

Stores the content of register rt in the memory cell specified by offset and

base, treating it as a word.

2.3 Flow control instructions

Flow control instructions are used to alter the order of instructions that are

fetched by the CPU. We can make a distinction between these instructions: R-

Type, I-Type and J-Type.

Those instructions effectively executes the jump in the ID stage, so often an

useless fetch is executed. In this case, two instructions are removed from the

pipeline, and the branch taken stalls counter is incremented by two units.

List of R-Type flow control instructions:

• JALR rs

Puts the content of rs into the program counter, and puts into R31 the

address of the instruction that follows the JALR instruction, the return

value.

• JR rs

Puts the content of rs into the program counter.

List of I-Type flow control instructions:

• BEQ rs, rt, offset

Jumps to offset if rs is equal to rt.

• BEQZ rs, offset

Jumps to offset if rs is equal to zero.

19

WARNING: This is a deprecated instruction, that does not belong to the

MIPS64 instruction set, but it is included in the instruction set in order to

maintain compatibility with other simulators.

• BNE rs, rt, offset

Jumps to offset if rs is not equal to rt.

• BNEZ rs

Jumps to offset if rs is not equal to zero.

WARNING: This is a deprecated instruction, that does not belong to the

MIPS64 instruction set, but it is included in the instruction set in order to

maintain compatibility with other simulators.

List of J-Type flow control instructions:

• J target

Puts the immediate value target into the program counter.

• JAL target

Puts the immediate value target into the program counter, and puts into

R31 the address of the instruction that follows the JAL instruction, the

return value.

2.4 The SYSCALL instruction

The SYSCALL instruction offers to the programmer an operating-system-like

interface, making available six different system calls.

System calls expect that the address of their parameters is stored in register

R14, and will put their return value in register R1.

System calls follow as much as possible the POSIX convention.

20

2.4.1 SYSCALL 0 - exit()
SYSCALL 0 does not expect any parameter, nor it returns anything. It simply

stops the simulator.

Note that if the simulator does not find SYSCALL 0 in the source code, or

any of its equivalents (HALT - TRAP 0), it will be added automatically at the

end of the source.

2.4.2 SYSCALL 1 - open()
The SYSCALL 1 expects two parameters: a zero-terminated string that indi-

cates the pathname of the file that must be opened, and a double word containing

an integer that indicates the flags that must be used to specify how to open the

file.

This integer must be built summing the flags that you want to use, choosing

them from the following list:

• O RDONLY (0x01) Opens the file in read only mode;

• O WRONLY (0x02) Opens the file in write only mode;

• O RDWR (0x03) Opens the file in read/write mode;

• O CREAT (0x04) Creates the file if it does not exist;

• O APPEND (0x08) In write mode, appends written text at the end of the file;

• O TRUNC (0x08) In write mode, deletes the content of the file as soon as it

is opened.

21

It is mandatory to specify one of the first three modes. The fourth and the fifth

modes are exclusive, you can not specify O APPEND if you specify O TRUNC

(and vice versa).

You can specify a combination of modes by simply adding the integer values

of those flags. For instance, if you want to open a file in write only mode and

append the written text to the end of file, you should specify the mode 2+8 = 10.

The return value of the system call is the new file descriptor associated with

the file, that can be further used with the other system calls. If there is an error,

the return value will be -1.

2.4.3 SYSCALL 2 -
lose()
SYSCALL 2 expects only one parameter, the file descriptor of the file that is

closed.

If the operation ends successfully, SYSCALL 2 will return 0, otherwise it will

return -1. Possible causes of failure are the attempt to close a non-existent file

descriptor or the attempt to close file descriptors 0, 1 or 2, that are associated

respectively to standard input, standard output and standard error.

2.4.4 SYSCALL 3 - read()
SYSCALL 3 expects three parameters: the file descriptor to read from, the

address where the read data must be put into, the number of bytes to read.

If the first parameter is 1, the simulator will prompt the user for an input, via

an input dialog. If the length of the input is greater than the number of bytes

that have to be read, the simulator will show again the message dialog.

It returns the number of bytes that have effectively been read, or -1 if the

read operation fails. Possible causes of failure are the attempt to read from a

22

non-existent file descriptor, the attempt to read from file descriptors 1 (standard

output) or 2 (standard error) or the attempt to read from a write-only file de-

scriptor.

2.4.5 SYSCALL 4 - write()
SYSCALL 4 expects three parameters: the file descriptor to write to, the

address where the data must be read from, the number of bytes to write.

If the first parameter is two or three, the simulator will pop the input/output

frame, and write there the read data.

It returns the number of bytes that have been written, or -1 if the write

operation fails. Possible causes of failure are the attempt to write to a non-

existent file descriptor, the attempt to write to file descriptor 0 (standard input)

or the attempt to write to a read-only file descriptor.

2.4.6 SYSCALL 5 - printf()
SYSCALL 5 expects a variable number of parameters, the first being the

address of the so-called “format string”. In the format string can be included

some placeholders, described in the following list:

• %s indicates a string parameter;

• %i indicates an integer parameter;

• %d behaves like %i;

• %% literal %

For each %s, %d or %i placeholder, SYSCALL 5 expects a parameter, starting

from the address of the previous one.

23

When the SYSCALL finds a placeholder for an integer parameter, it expects

that the corresponding parameter is an integer value, when if it finds a placeholder

for a string parameter, it expects as a parameter the address of the string.

The result is printed in the input/output frame, and the number of bytes

written is put into R1.

If there’s an error, -1 is written to R1.

2.5 Other instructions

In this section there are instructions that do not fit in the previous categories.

2.5.1 BREAK
The BREAK instruction throws an exception that has the effect to stop the

execution if the simulator is running. It can be used for debugging purposes.

2.5.2 NOP
The NOP instruction does not do anything, and it’s used to create gaps in the

source code.

2.5.3 TRAP
The TRAP instruction is a deprecated alias for the SYSCALL instruction.

2.5.4 HALT
The HALT instruction is a deprecated alias for the SYSCALL 0 instruction,

that halts the simulator.

24

Chapter 3

The user interface

The GUI of EduMIPS64 is inspired to WinMIPS64 user interface. In fact, the

main window is identical, except for some menus. Please refer to

The EduMIPS64 main window is composed by a menu bar and six frames,

showing different aspects of the simulation. There’s also a status bar, that has

the double purpose to show the content of memory cells and registers when you

click them and to notify the user that the simulator is running when the simulation

has been started but verbose mode is not selected. There are more details in the

following section.

3.1 The menu bar

The menu bar contains six menus:

3.1.1 File

The File menu contains menu items about opening files, resetting or shutting

down the simulator, writing trace files.

• Open... Opens a dialog that allows the user to choose a source file to open.

25

• Open recent Shows the list of the recent files opened by the simulator,

from which the user can choose the file to open

• Reset Resets the simulator, keeping open the file that was loaded but re-

setting the execution.

• Write Dinero Tracefile... Writes the memory access data to a file, in

xdin format.

• Exit Closes the simulator.

The Write Dinero Tracefile... menu item is only available when a whole source

file has been executed and the end has been already reached.

3.1.2 Execute

The Execute menu contains menu items regarding the execution flow of the

simulation.

• Single Cycle Executes a single simulation step

• Run Starts the execution, stopping when the simulator reaches a SYSCALL

0 (or equivalent) or a BREAK instruction, or when the user clicks the Stop

menu item (or presses F9).

• Multi Cycle Executes some simulation steps. The number of steps ex-

ecuted can be configured through the Setting dialog. See 3.3.1 for more

details.

• Stop Stops the execution when the simulator is in “Run” or “Multi cycle”

mode, as described previously.

26

This menu is only available when a source file is loaded and the end of the simu-

lation is not reached. The Stop menu item is available only in “Run” or “Multi

Cycle” mode.

3.1.3 Configure

The Configure menu provides facilities for customizing EduMIPS64 appear-

ance and behavior.

• Settings... Opens the Settings dialog, described in 3.3.1

• Change Language Allows the user to change the language used by the user

interface. Currently only English and Italian are supported. This change

affects every aspect of the GUI, from the title of the frames to the online

manual and warning/error messages.

The Settings... menu item is not available when the simulator is in “Run” or

“Multi Cycle” mode, because of potential race conditions.

3.1.4 Tools

This menu contains only an item, used to invoke the Dinero Frontend dialog.

• Dinero Frontend... Opens the Dinero Frontend dialog. See 3.3.2.

This menu is not available until you have not executed a program and the execu-

tion has reached its end.

3.1.5 Window

This menu contains items related to operations with frames.

27

• Tile Sorts the visible windows so that no more that three frames are put in

a row. It tries to maximize the space occupied by every frame.

The other menu items simply toggle the status of each frame, making them visible

or minimizing them.

3.1.6 Help

This menu contains help-related menu items.

• Manual... Shows the Help dialog. See 3.3.3

• About us... Shows a cute dialog that contains the names of the project

contributors, along with their roles.

3.2 Frames

The GUI is composed by seven frames, six of which are visible by default, and

one (the I/O frame) is hidden.

3.2.1 Cycles

The Cycles frame shows the evolution of the execution flow during time, show-

ing for each time slot which instructions are in the pipeline, and in which stage

of the pipeline they’re located.

3.2.2 Registers

The Registers frame shows the content of each register. By left-clicking on

them you can see in the status bar their decimal (signed) value, while double-

clicking on them will pop up a dialog that allows the user to change the value of

the register.

28

3.2.3 Statistics

The Statistics frame shows some statistics about the program execution.

3.2.4 Pipeline

The Pipeline frame shows the actual status of the pipeline, showing which

instruction is in which pipeline stage. Different colors highlight different pipeline

stages.

3.2.5 Memory

The Memory frame shows memory cells content, along with labels and com-

ments taken from the source code. Memory cells content, like registers, can be

modified double-clicking on them, and clicking on them will show their decimal

value in the status bar. The first column shows the hexadecimal address of the

memory cell, and the second column shows the value of the cell. Other columns

show additional info from the source code.

3.2.6 Code

The Code window shows the instructions loaded in memory. The first column

shows the address of the instruction, while the second column shows the hexadec-

imal representation of the instructions. Other columns show additional info taken

from the source code.

3.2.7 Input/Output

The Input/Output window provides an interface for the user to see the output

that the program creates through the SYSCALLs 4 and 5. Actually it is not used

29

for input, as there’s a dialog that pops up when a SYSCALL 3 tries to read from

standard input, but future versions will include an input text box.

3.3 Dialogs

Dialogs are used by EduMIPS64 to interact with the user in many ways. Here’s

a summary of the most important dialogs:

3.3.1 Settings

In the Settings dialog various aspects of the simulator can be configured.

The Main Settings tab allow to configure forwarding and the number of steps

in the Multi Cycle mode.

The Behavior tab allow to enable or disable warnings during the parsing phase,

the “Sync graphics with CPU in multi-step execution” option, when checked, will

synchronize the frames’ graphical status with the internal status of the simulator.

This means that the simulation will be slower, but you’ll have an explicit graphical

feedback of what is happening during the simulation. If this option is checked,

the “Interval between cycles” option will influence how many milliseconds the

simulator will wait before starting a new cycle. Those options are effective only

when the simulation is run using the “Run” or the “Multi Cycle” options from

the Execute menu.

The last two options set the behavior of the simulator when a synchronous

exception is raised. If the “Mask synchronous exceptions” option is checked,

the simulator will ignore any Division by zero or Integer overflow exception. If

the “Terminate on synchronous exception” option is checked, the simulation will

be halted if a synchronous exception is raised. Please note that if synchronous

30

exceptions are masked, nothing will happen, even if the termination option is

checked. If exceptions are not masked and the termination option is not checked,

a dialog will pop out, but the simulation will go on as soon as the dialog is closed.

If exceptions are not masked and the termination option is checked, the dialog

will pop out, and the simulation will be stopped as soon as the dialog is closed.

The last tab allows to change the colors that are associated to the different

pipeline stages through the frames. It’s pretty useless, but it’s cute.

3.3.2 Dinero Frontend

The Dinero Frontend dialog allows to feed a DineroIV process with the trace

file internally generated by the execution of the program. In the first text box

there is the path of the DineroIV executable, and in the second one there must

be the parameters of DineroIV.

The lower section contains the output of the DineroIV process, from which

you can take the data that you need.

3.3.3 Help

The Help dialog contains three tabs with some indications on how to use the

simulator. The first one is a brief introduction to EduMIPS64, the second one

contains informations about the GUI and the third contains a summary of the

supported instructions.

3.4 Command line options

Three command line options are available. They are described in the following

list, with the long name enclosed in round brackets. Long and short names can

be used in the same way.

31

• -h (--help) shows a help message containing the simulator version and a

brief summary of command line options

• -f (--file) filename opens filename in the simulator

• -d (--debug) enters Debug mode

The --debug flag has the effect to activate Debug mode. In this mode, a new

frame is available, the Debug frame, and it shows the log of internal activities of

EduMIPS64. It is not useful for the end user, it is meant to be used by EduMIPS64

developers.

3.5 Running EduMIPS64

The EduMIPS64 .jar file can act both as a stand-alone executable .jar file

and as an applet, so it can be executed in both ways. Both methods need the

Java Runtime Environment, version 5 or later.

To run it as a stand-alone application, the java executable must be issued in

this way: java -jar edumips64-version.jar, where the version string must

be replaced with the actual version of the simulator. On some systems, you may

be able to execute it by just clicking on the .jar file.

To embed it in an HTML, the <applet> tag must be used. The EduMIPS64

web site contains a page that already contains the applet, so that everyone can

execute it without the hassle of using the command line.

32

