
  Page 1 

Using WinMIPS64 Simulator 
 
 
A Simple Tutorial 
 
This exercise introduces WinMIPS64, a Windows based simulator of a pipelined implementation of 
the MIPS64 64-bit processor. 
 
 
1. Starting and configuring WinMIPS64 
 
Start WinMIPS64 from the task bar. 
 
A window (denoted the main window) appears with seven child windows and a status line at the 
bottom. The seven windows are Pipeline, Code, Data, Registers, Statistics, Cycles and Terminal.  
 

 
 
 
 
 
 
 
 

 
 



  Page 2 

Pipeline window 
 
 

This window shows a schematic representation of the five pipeline 
stages of the MIPS64 processor and the units for floating point 
operations (addition / subtraction, multiplication and division). It 
shows which instruction is in each stage of the pipeline. 

Code window This window shows a three column representation of the code 
memory, showing from left to right 1) a byte address, 2) a hex 
number giving the 32-bit machine code representation of the 
instruction, and 3) the assembly language statement. Double-left-
clicking on an instruction sets or clears break-points. 

Data window This window shows the contents of data memory, byte addressable, 
but displayed in 64-bit chunks, as appropriate for a 64-bit processor. 
To edit an integer value double-left-click. To display and edit as a 
floating-point number, double-right-click.  

Register window This window shows the values stored in the registers. If the register is 
displayed in grey, then it is in the process of being written to by an 
instruction. If displayed using a colour, the colour indicates the stage 
in the pipeline from which this value is available for forwarding. This 
window allows you to interactively change the contents of those 64-
bit integer and floating-point registers that are not in the process of 
being written to, or being forwarded. To do this, double-left-click on 
the register you want to change and a pop-up window will ask you for 
new content. Press OK to confirm the change.

Clock Cycle diagram This window gives a representation of the timing behaviour of the 
pipeline. It records the history of instructions as they enter and 
emerge from the pipeline. An instruction that causes a stall is 
highlighted in blue: instructions held up as a result of a stall are 
grayed. 

Statistics This window provides statistics on the number of simulation cycles, 
instructions, the average Cycles Per Instruction (CPI), the types of 
stalls, and numbers of conditional branches and Load/Store-
instructions.  

Terminal 
 

This window mimics a dumb terminal I/O device with some limited 
graphics capability. 

Status Line The status line at the bottom normally displays "Ready", but will 
during program simulation provide useful information on the current 
status of the simulation. 

 
 
To make sure the simulation is reset, click on the File menu and click Reset MIPS64. 
 
WinMIPS64 can be configured in many ways. You can change the structure and time requirements of 
the floating-point pipeline, and the code/data memory size. To view or change standard settings click 
Configure/Architecture (read this as: click Configure to open the menu, then clicking on 
Architecture) and you will see the following settings: 
 



  Page 3 

 
 
You can change the settings by clicking in the appropriate field and editing the given numbers. Any 
changes to the Floating-point latencies will be reflected in the Pipeline window. The Code Address 
Bus refers to the actual number of wires in the address bus. So a value of 10 means that 210 = 1024 
bytes of code memory will be displayed in the Code window. When you are finished, click OK to 
return to the main window. 
 
Three more options in the Configuration menu can be selected: Multi-Step, Enable Forwarding, 
Enable Branch Target Buffer and Enable Delay Slot. Of these Enable Forwarding should be 
enabled, that is, a small hook should be shown beside it. If this is not the case, click on the option.  
 
You can change the size and/or position of child windows or bring up only one window using the 
maximise option for that window. 
 
 
2. Loading a test program. 
 
Use a standard text editor to create this file sum.s, which is a MIPS64 program that calculates the sum 
of two integers A and B from memory, and stores the result into the memory on location C. 
 
 
      .data 
A:    .word 10 
B:    .word 8 
C:    .word 0 
 
      .text 
main: 
      ld r4,A(r0) 
      ld r5,B(r0) 
      dadd r3,r4,r5 
      sd r3,C(r0) 
      halt           
 
A small command line utility asm.exe is provided to test a program for syntactical correctness. To 
check this program type 
 
H:>asm sum.s 
 
 
In order to be able to start the simulation, the program must be loaded into the main memory. To 
accomplish this, select File/Open. A list of assembler programs in current directory appears in a 
window, including sum.s.  



  Page 4 

 
 
To load this file into WinMIPS64, do the following: 
 
 Click on sum.s 
 Click the Open button 

 
The program is now loaded into the memory and the simulation is ready to begin.  
 
You can view the content of code memory using the Code window, and observe the program data in 
the Data Window. 
 
 
3. Simulation 
 
3.1 Cycle-by-cycle Simulation 
 
 
At any stage you can press F10 to restart the simulation from the beginning. 
 
At the start you will note that the first line in the Code window with the address 0000 is coloured 
yellow. The IF stage in the Pipeline window is also coloured in yellow and contains the assembler 
mnemonic of the first instruction in the program. Now inspect the Code window and observe the first 
instruction ld r4,A(r0). Look in the Data window to find the program variable A. 
 
Clock 1: 
 
Pressing Execute/Single Cycle (or simply pressing F7) advances the simulation for one time step or 
one clock tick; in the Code Window, the colour of the first instruction is changed to blue and the 
second instruction is coloured in yellow. These colours indicate the pipeline stage the instruction is in 
(yellow for IF, blue for ID, red for EX, green for MEM, and purple for WB).  
 
If you look in the IF stage in the Pipeline window, you can see that the second instruction ld r5, 
B(r0) is in the IF stage and the first instruction ld r4,A(r0)  has advanced to the  second stage, 
ID.  
 
Clock 2: 
 
Pressing F7 again will re-arrange the colours in the Code window, introducing red for the third 
pipeline stage EX. Instruction dadd r3,r4,r5 enters the pipeline. Note that the colour of an 
instruction indicates the stage in the pipeline that it will complete on the next clock tick.  
 
Clock 3: 
 
Pressing F7 again will re-arrange the colours in the Code window, introducing green for the fourth 
pipeline stage MEM. Instruction sd r3,C(r0) enters the pipeline. Observe the Clock Cycle 
Diagram which shows a history of which instruction was in each stage before each clock tick. 
 
Clock 4: 
 
Press F7 again. Each stage in the pipeline is now active with an instruction. The value that will end up 
in r4 has been read from memory, but has not yet been written back to r4. However it is available for 
forwarding from the MEM stage. Hence observe that r4 is displayed as green (the colour for MEM) 
in the Registers window. Can you explain the value of r4? Note that the last instruction halt has 
already entered the pipeline. 



  Page 5 

 
Clock 5: 
 
Press F7 again. Something interesting happens. The value destined for r5 becomes available for 
forwarding. However the value for r5 was not available in time for the dadd r3,r4,r5 instruction 
to execute in EX. So it remains in EX, stalled. The status line reads "RAW stall in EX (R5)", 
indicating where the stall occurred, and which register's unavailability was responsible for it.  
 
The picture in the Clock Cycle Diagram and the Pipeline window clearly shows that the dadd 
instruction is stalled in EX, and that the instructions behind it in the pipeline are also unable to 
progress. In the Clock Cycle Diagram, the dadd instruction is highlighted in blue, and the instructions 
behind are shown in gray. 
  
Clock 6: 
 
Press F7. The dadd r3,r4,r5 instruction executes and its output, destined for r3, becomes 
available for forwarding. This value is 12 hex, which is the sum of 10+8 = 18 in decimal. This is our 
answer. 
 
Clock 7: 
 
Press F7. The halt instruction entering IF has had the effect of "freezing" the pipeline, so no new 
instructions are accepted into it. 
 
Clock 8: 
 
Press F7. Examine Data memory, and observe that the variable C now has the value 12 hex. The sd 
r3,C(r0) instruction wrote it to memory in  the MEM stage of the pipeline, using the forwarded 
value for r3. 
 
Clock 9: 
 
Press F7.  
 
Clock 10: 
 
Press F7. The program is finished 
 
 
Look at the Statistics window and note that there has been one RAW stall. 10 clock cycles were 
needed to execute 5 instructions, so CPI=2. This is artificially high due to the one-off start-up cost in 
clock cycles needed to initially fill the pipeline.  
 
The statistics window is extremely useful for comparing the effects of changes in the configuration. 
Let us examine the effect of forwarding in the example. Until now, we have used this feature; what 
would the execution time have been without forwarding? 
 
 
To accomplish this, click on Configure. To disable forwarding, click on Enable Forwarding (the 
hook must vanish).  



  Page 6 

Repeat the cycle-by-cycle program execution, re-examine the Statistics window and compare the 
results. Note that there are more stalls as instructions are held up in ID waiting for a register, and 
hence waiting for an earlier instruction to complete WB. The advantages of forwarding should be 
obvious. 
 
 
3.2 Other execution modes 
 
Click on File/Reset MIPS64. If you click on File/Full Reset, you will delete the data memory, so you 
will have to repeat the procedure for program loading. Clicking on File/Reload or F10 is a handy way 
to restart a simulation. 
 
You can run simulation for a specified number of cycles. Use Execute/Multi cycle... for this. The 
number of cycles stepped through can be changed via Configure/Multi-step. 
 
You can run the whole program by a single key-press - press F4. Alternatively click on Execute/Run 
to. 
 
Also, you can set breakpoints. Press F10. To set a break-point, double-left-click on the instruction, for 
example on dadd r3,r4,r5. Now press F4. The program will halt when this instruction enters IF. 
To clear the break-point, double-left-click on the same instruction again. 
 
 
3.3 Terminal Output 
 
The simulator supports a simple I/O device, which works like a simple dumb terminal screen, with 
some graphical capability. The output of a program can appear on this screen. To output the result of 
the previous program, modify it like this 
 
      .data 
A: .word 10 
B: .word 8 
C: .word 0 
CR: .word32 0x10000 
DR: .word32 0x10008 
 
 
      .text 
main: 
      ld r4,A(r0) 
      ld r5,B(r0) 
      dadd r3,r4,r5 
      sd r3,C(r0) 
 
      lwu r1,CR(r0)  ;Control Register 
      lwu r2,DR(r0)  ;Data Register 
      daddi r10,r0,1  
      sd r3,(r2)     ;r3 output.. 
      sd r10,(r1)    ;.. to screen 
 
      halt           
 
After this program is executed you can see the result of the addition printed in decimal on the 
Terminal window. For a more complete example of the I/O capabilities, see the testio.s and hail.s 
example programs. 
 



  Page 7 

The Instruction set 
 
The following assembler directives are supported 
 
.data                 - start of data segment 
.text                 - start of code segment 
.code                 - start of code segment (same as .text)   
.org    <n>           - start address 
.space  <n>           - leave n empty bytes 
.asciiz <s>           - enters zero terminated ascii string 
.ascii  <s>           - enter ascii string 
.align  <n>           - align to n-byte boundary 
.word   <n1>,<n2>..   - enters word(s) of data (64-bits) 
.byte   <n1>,<n2>..   - enter bytes 
.word32 <n1>,<n2>..   - enters 32 bit number(s) 
.word16 <n1>,<n2>..   - enters 16 bit number(s) 
.double <n1>,<n2>..   - enters floating-point number(s) 
 
where <n> denotes a number like 24, <s> denotes a string like "fred", and <n1>,<n2>.. denotes 
numbers separated by commas. The integer registers can be referred to as r0-r31, or R0-R31, or $0-
$31 or using standard MIPS pseudo-names, like $zero for r0, $t0 for r8 etc. Note that the size of an 
immediate is limited to 16-bits. The maximum size of an immediate register shift is 5 bits (so a shift 
by greater than 31 bits is illegal). 
 
Floating point registers can be referred to as f0-f31, or F0-F31 
 
The following instructions are supported. Note reg is an integer register, freg is a floating-point (FP) 
register, and imm is an immediate value. 
 
lb reg,imm(reg)     - load byte 
lbu reg,imm(reg)    - load byte unsigned 
sb reg,imm(reg)     - store byte 
lh reg,imm(reg)     - load 16-bit half-word 
lhu reg,imm(reg)    - load 16-bit half word unsigned 
sh reg,imm(reg)     - store 16-bit half-word 
lw reg,imm(reg)     - load 32-bit word 
lwu reg,imm(reg)    - load 32-bit word unsigned 
sw reg,imm(reg)     - store 32-bit word 
ld reg,imm(reg)     - load 64-bit double-word 
sd reg,imm(reg)     - store 64-bit double-word 
l.d freg,imm(reg)   - load 64-bit floating-point 
s.d freg,imm(reg)   - store 64-bit floating-point 
halt                - stops the program 
daddi reg,reg,imm   - add immediate 
daddui reg,reg,imm  - add immediate unsigned 
andi reg,reg,imm    - logical and immediate 
ori reg,reg,imm     - logical or immediate 
xori reg,reg,imm    - exclusive or immediate 
lui  reg,imm        - load upper half of register immediate 
slti reg,reg,imm    - set if less than immediate 
sltiu reg,reg,imm   - set if less than immediate unsigned 
beq reg,reg,imm     - branch if pair of registers are equal 
bne reg,reg,imm     - branch if pair of registers are not equal 
beqz reg,imm        - branch if register is equal to zero 
bnez reg,imm        - branch if register is not equal to zero 
j imm               - jump to address 
jr reg              - jump to address in register 



  Page 8 

jal imm              - jump and link to address (call subroutine) 
jalr reg             - jump and link to address in register 
dsll reg,reg,imm     - shift left logical 
dsrl reg,reg,imm     - shift right logical 
dsra reg,reg,imm     - shift right arithmetic 
dsllv reg,reg,reg    - shift left logical by variable amount  
dsrlv reg,reg,reg    - shift right logical by variable amount 
dsrav reg,reg,reg    - shift right arithmetic by variable amount 
movz reg,reg,reg     - move if register equals zero 
movn reg,reg,reg     - move if register not equal to zero 
nop                  - no operation 
and reg,reg,reg      - logical and 
or reg,reg,reg       - logical or 
xor reg,reg,reg      - logical xor 
slt reg,reg,reg      - set if less than 
sltu reg,reg,reg     - set if less than unsigned 
dadd reg,reg,reg     - add integers 
daddu reg,reg,reg    - add integers unsigned 
dsub reg,reg,reg     - subtract integers 
dsubu reg,reg,reg    - subtract integers unsigned 
dmul reg,reg,reg     - signed integer multiplication 
dmulu reg,reg,reg    - unsigned integer multiplication 
ddiv reg,reg,reg     - signed integer division 
ddivu reg,reg,reg    - unsigned integer division 
add.d freg,freg,freg - add floating-point 
sub.d freg,freg,freg - subtract floating-point 
mul.d freg,freg,freg - multiply floating-point 
div.d freg,freg,freg - divide floating-point 
mov.d freg,freg      - move floating-point 
cvt.d.l freg,freg    - convert 64-bit integer to a double FP format 
cvt.l.d freg,freg    - convert double FP to a 64-bit integer format 
c.lt.d freg,freg     - set FP flag if less than 
c.le.d freg,freg     - set FP flag if less than or equal to 
c.eq.d freg,freg     - set FP flag if equal to 
bc1f imm             - branch to address if FP flag is FALSE 
bc1t imm             - branch to address if FP flag is TRUE  
mtc1 reg,freg       - move data from integer register to FP register 
mfc1 reg,freg       - move data from FP register to integer register 
 
Memory Mapped I/O area 
 
Addresses of CONTROL and DATA registers 
 
CONTROL: .word32 0x10000 
DATA:    .word32 0x10008 
 
Set CONTROL = 1, Set DATA to Unsigned Integer to be output 
Set CONTROL = 2, Set DATA to Signed Integer to be output 
Set CONTROL = 3, Set DATA to Floating Point to be output 
Set CONTROL = 4, Set DATA to address of string to be output 
Set CONTROL = 5, Set DATA+5 to x coordinate, DATA+4 to y coordinate, 
and DATA to RGB colour to be output 
Set CONTROL = 6, Clears the terminal screen 
Set CONTROL = 7, Clears the graphics screen 
Set CONTROL = 8, read the DATA (either an integer or a floating-
point) from the keyboard 
Set CONTROL = 9, read one byte from DATA, no character echo. 



  Page 9 

 
Notes on the Pipeline Simulation 
 
 
The pipeline simulation attempts to mimic as far as possible that described in Appendix A of 
Computer Architecture: A Quantitative Approach. 
 
However in a few places alternative strategies were suggested, and we had to choose one or the other.  
 
Stalls are handled where they arise in the pipeline, not necessarily in ID. 
 
We decided to allow floating-point instructions to issue out of ID into their own pipelines, if available. 
There they either proceed or stall, waiting for their operands to become available. This has the 
advantage of allowing out-of-order completion to be demonstrated, but it can cause WAR hazards to 
arise. However the student can thus learn the advantages of register renaming. 
 
Consider this simple program fragment:- 
 
    .text 
    add.d f7,f7,f3 
    add.d f7,f7,f4 
    mul.d f4,f5,f6   ; WAR on f4 
 
If the mul.d is allowed to issue, it could "overtake" the second add.d and write to f4 first. Therefore in 
this case the mul.d must be stalled in ID. 
 
Structural hazards arise at the MEM stage bottleneck, as instructions attempt to exit more than one of 
the execute stage pipelines at the same time. Our simple rule is longest latency first. See page A-52 
 
 
Installation 
 
 
On your own computer, just install anywhere convenient, and create a short-cut to point at it. Note that 
winmips64 will write two initialisation files into this directory, one winmips64.ini which stores 
architectural details, one winmips64.las which remembers the last .s file accessed. 
 
On a network drive, install winmips64.exe into a suitable system directory. Then use a standard text 
editor to create a file called winmips64.pth, and put this file in the same directory. 
 
The read-only file winmips64.pth should contain a single line path to a read-write directory private to 
any logged-in user. This directory will then be used to store their .ini and .las files. 
 
For example winmips64.pth might contain 
 
H: 
 
or 
 
c:\temp 
 
But remember only a single line - don't press return at the end of it! 


