Logische Grundverknüpfungen

Jede logische Verknüpfung der Schaltalgebra (Sonderfall der Boolschen Algebra) lässt sich aus den in der folgenden Tabelle zusammengestellten drei Grundoperationen zusammensetzen:

Bezeichnung	Konjunktion		Disjunktion			Negation			
Funktion	UND / AND			ODER / OR			NICHT / NOT		
Formelzeichen	· ∧ &			+ V					
Formel	$Y = X_1 \wedge X_2$		$Y = X_1 \vee X_2$			$Y = \overline{X_1}$			
Funktionstabelle	X_1	X_2	Υ	X_1	X ₂	Υ	X_1	Υ	
	0	0	0	0	0	0	0	1	
	0	1	0	0	1	1			
	1	0	0	1	0	1	1	0	
	1	1	1	1	1	1			
Schaltsymbole	Х ₁ у		X ₁			х – 1 > У			

Weitere Verknüpfungsglieder

Bezeichnung							Ar	ntival	enz	Ä	quiva	lenz
Funktion	Nicht-UND /		Nicht-ODER /		Exklusiv-Oder		XNOR					
	NAND		NOR		XOR							
Formelzeichen						≠ ↔		$\equiv \leftrightarrow$				
Formel	$Y = \overline{X_1 \wedge X_2}$		$Y = \overline{X_1 \vee X_2}$			$Y = X_1 \neq X_2$ $Y = \overline{X_1} \equiv X_2$ Y		$Y = X_1 \equiv X_2$ $Y = \overline{X_1 \neq X_2}$ Y				
						$= \underbrace{X_1}_{1} \wedge X_2$ $\vee \overline{X_1} \wedge X_2$		$= \underbrace{X_1}_{\wedge} \wedge X_2 \vee X_1$				
Funktionsta-	X_1	X ₂	Υ	X_1	X ₂	Υ	X_1	X_2	Υ	X_1	X ₂	Υ
belle	0	0	1	0	0	1	0	0	0	0	0	1
	0	1	1	0	1	0	0	1	1	0	1	0
	1	0	1	1	0	0	1	0	1	1	0	0
	1	1	0	1	1	0	1	1	0	1	1	1
Schalt- symbole	x ₁	&	р- у	X ₁ X ₂	_ ≥1	Ъу	X ₁ X ₂	=1	Ъу	X ₁ X ₂	=) y

Alle Gatter können sinngemäß auf mehr als zwei Eingangsgrößen erweitert werden. Antivalenz - bzw. Äquivalenz - Gatter liefern dabei eine "1", wenn die Anzahl der Eingänge, die eine "1" aufweisen, ungeradzahlig bzw. geradzahlig ist.

Rechenregeln der Schaltalgebra

Mit den Rechenregeln der Schaltalgebra können Funktionsgleichungen umgeformt werden. Folgende Axiome stehen für die Umformung zur Verfügung:

Kommutativgesetze	$X_1 \vee X_2 = X_2 \vee X_1$	$X_1 \wedge X_2 = X_2 \wedge X_1$			
Assoziativgesetze	$X_1 \vee X_2 \vee X_3 =$	$X_1 \wedge X_2 \wedge X_3 =$			
	$(X_1 \vee X_2) \vee X_3 =$	$(X_1 \wedge X_2) \wedge X_3 =$			
	$X_1 \vee (X_2 \vee X_3)$	$X_1 \wedge (X_2 \wedge X_3)$			
Distributivgesetze	$X_1 \wedge X_2 \vee X_1 \wedge X_3 =$	$(X_1 \vee X_2) \wedge (X_1 \vee X_3) =$			
	$X_1 \wedge (X_2 \vee X_3)$	$X_1 \lor (X_2 \land X_3)$			
Neutrale Elemente	$X_1 \vee 0 = X_1$	$X_1 \wedge 1 = X_1$			
Komplementäre Elemente	$X_1 \vee \overline{X_1} = 1$	$X_1 \wedge \overline{X_1} = 0$			
De-Morgansche Gesetze	$\overline{X_1} \vee \overline{X_2} = \overline{X_1} \wedge \overline{X_2}$	$\overline{X_1 \wedge X_2} = \overline{X_1} \vee \overline{X_2}$			
Tautologie	$X_1 \vee X_1 = X_1$	$X_1 \wedge X_1 = X_1$			
Absorbtionsgesetze	$X_1 \lor (X_1 \land X_2) = X_1$	$X_1 \wedge (X_1 \vee X_2) = X_1$			
Sonstige Rechenregeln	$X_1 \vee 1 = 1$	$X_1 \wedge 0 = 0$			
Negation	$\overline{0} = 1$ $\overline{1} = 0$ $\overline{\overline{X_1}} = X_1$				

Dualitätsprinzip: Für jedes Axiom A gibt es ein duales Axiom A', bei dem UND und ODER sowie 1 und 0 vertauscht sind.

Shannonsches Theorem: Die Negation einer Funktion erhält man, indem man alle Variablen negiert und UND mit ODER vertauscht:

$$\overline{f(X_m, \overline{X_n}, \wedge, \vee)} = f(\overline{X_m}, X_n, \vee, \wedge)$$

Eine wichtige Folge der De-Morganschen Gesetze ist, dass Konjunktion und Negation bzw. Disjunktion und Negation alleine ausreichen um alle Verknüpfungen zu realisieren:

$$X_1 \lor X_2 = \overline{\overline{X_1} \lor X_2} = \overline{\overline{X_1} \land \overline{X_2}}$$

$$X_1 \wedge X_2 = \overline{\overline{X_1} \wedge \overline{X_2}} = \overline{\overline{X_1} \vee \overline{X_2}}$$