
SpartanMC

SpartanMC
Memory Organization

SpartanMC

SpartanMC

Memory Organization i

Table of Contents

1. Address Management .. 1

2. Peripheral Access .. 3

2.1. Memory Mapped ... 3

2.2. Direct Memory Access (DMA) ...5

2.3. Data Read Interface ..6

3. Example Memory Map ... 7

SpartanMC

Memory Organization ii

SpartanMC

Memory Organization i

List of Figures

1 Dual ported main memory ...1

2 Data address management ...2

3 Memory mapped registers .. 3

4 Peripheral register address management ... 4

5 DMA with dual ported BlockRAM ..5

6 DMA address management .. 6

7 Example memory map .. 7

SpartanMC

Memory Organization ii

SpartanMC

Memory Organization i

List of Tables

SpartanMC

Memory Organization ii

SpartanMC

Memory Organization 1

Memory Organization

The SpartanMC main memory is a compound of single memory blocks of 2k rows with
18 bit width. The number of blocks and therefore the size of the main memory is config-
urable. The memory blocks are implemented by using the FPGA internal BlockRAMs.
Each block consists of two FPGA BlockRAMs of 2k rows and 9 bit width. Since the
FPGA BlockRAMs are dual ported, one port is used to read instructions and the other
port is used to read and write data.

The SpartanMC stores data in big endian byte order.

...Mem ory

2048 x 18

Block

SpartanMC

Core

SpartanMC

Databus

Data

Fetch
Inst ruct ion

Port B

Port A

Main Mem ory

Figure 1: Dual ported main memory

1. Address Management

Each port of the main memory is connected to a 18 bit address bus. Since the main
memory consists of 2k x 18 bit blocks, there are 11 bit required to address the rows
within a block. The remaining 7 bit of the address bus are used to select the memory
block. Therefore a possible maximum of addressable memory of 256k of 18 bit words
distributed to 128 memory blocks could be instantiated. For the instruction port of the
memory, the program counter (PC) is used as address bus.

For better memory utilization of the data section the data port provides a 9 bit wise
memory access. Therefore the least significant bit (Align) of the data address bus is
used to select the upper or lower half word which is used in load and store instructions
(l9,s9). The remaining 17 bit are used to address the lower 128k of the memory. To
address the upper 128k, the content of SFR_STATUS7(MM) is used as most significant
bit of the data address bus.

SpartanMC

Memory Organization 2

OR

...
OR

...

Nr. Blocks

18

17..1MM Align

AddressSFR_STATUS [7]

...

8..0

18

17..9 8..0 18

18

0x000

l9/l18

17..9

Rd

write data read data

.....

D
a

ta

(P
o

rt
 B

)
B

lo
ck

R
A

M
2

0
4

8
 x

 9

A
d

d
r

A
cc

e
ss

D
a

ta

(P
o

rt
 B

)
B

lo
ck

R
A

M
2

0
4

8
 x

 9

A
d

d
r

A
cc

e
ss

W
E

_h
ig

h

W
E

_l
o

w

Align

addressing

17..11

10..0

BlockRAM
Select

Access
Mem ory

SpartanMC

8..0

9

17..9

18

Register/ ALU_Result

s9/s18Align

Cont rol

Figure 2: Data address management

Note: Due to the 9 bit wise data access, the correct address assignment of data
addresses in assembler code has to be assured. The address value of the
data address has to be twice the size of the regular instruction address.

SpartanMC

Memory Organization 3

2. Peripheral Access

2.1. Memory Mapped

Peripherals are connected to the regular data and address bus of the SpartanMC.
Thus, peripheral devices are mapped to the SpartanMC address space at a dedicated
address (IO_BASE_ADR). For exchanging small amounts of data between processor
and peripheral, peripherals can provide a set of 18 bit registers. These registers are
implemented as distributed memory on the FPGA.

SpartanMC

Core

SpartanMC
Databus

Data

Peripheral

Register

Figure 3: Memory mapped registers

The upper 8 bit part of the 18 bit address is used to select the peripheral address space.
The selection is carried out by comparing the upper 8 bit part of the current address
with the upper 8 bit of the configured base address (IO_BASE_ADR). The lower 10 bit
are used to select the peripheral register within this address space. Therefore the 10
bit are divided into two parts: the first 9..n bit to access the correct peripheral module
according to the BASE_ADR of the module and the second n-1..0 bit to access the
18 bit register within this peripheral module. The value of n depends on the number
of registers provided by the peripheral (e.g. a value of n=3 implies a maximum of 8
registers for that module).

Note: The base address of the peripheral modules should be sorted by the num-
ber of registers. Starting with the peripheral using the most registers. This
scheme avoids the overlapping of address spaces between different pe-
ripherals.

The data access to the registers is similar to the access to the main memory. For
reading data (l9/l18) the align bit (LSB of the address) can be used to select the upper
or lower half word of the register. For writing data the align bit is meaningless therefore
only the s18 operation can be performed on peripheral memory.

SpartanMC

Memory Organization 4

OR

...
OR

...

18

17..1MM Align

AddressSFR_STATUS [7]

18

Register/ ALU_Result

8..0

18

17..9 8..0 18

18

0x000

l9/l18

17..9

Rd

write data read data

Align

addressing

17..10

...

9..0

Module BASE_ADR

IO_BASE_ADR

9..n n-1..0

9
..

n

1
7

..
1

0
Address Decode

Address Decode

access_peri

select

A
cc

e
ss

A
d

d
r

Data (High) Data (Low)

Register Set 1

Register Set n

Register Set 2

...

...
...

...

SpartanMC
Mem ory
Access

access
peripheral m odule

17..9 8..0

18 Bit per Register

im plem ented by peripheral

Figure 4: Peripheral register address management

SpartanMC

Memory Organization 5

2.2. Direct Memory Access (DMA)

Peripherals that work on large volumes of data can use BlockRAMs as data interface
to the processor. In this case the first port is connected to the SpartanMC address and
data bus and the second port is connected to the peripheral which works autonomously
on the data in the memory block. This can be regarded as DMA style operation.

SpartanMC

Core

SpartanMC
Databus

Port B

BlockRAM

Port A

Data

Peripheral
DMA

18 x 1024

Figure 5: DMA with dual ported BlockRAM

Note: Due to the SpartanMC memory management which uses the second port
of the BlockRAM as instruction fetch, the processor can not execute code
from the DMA memory since the second port is used as peripheral inter-
face. This missing master mode DMA would lead to copying overhead if
data needs to be buffered between processing it with different peripherals.

The upper 8 bit part of the 18 bit address is used to select the DMA device. The selection
is carried out by comparing the upper 8 bit part of the current address with the upper
8 bit of the configured base address (DMA_BASE_ADR). The lower 10 bit are used to
select the row within the DMA BlockRAM.

The data access to the DMA memory is similar to the access to the main memory. For
reading data (l9/l18) the align bit (LSB of the address) can be used to select the upper
or lower half word of the register. For writing data, the half word to be written is selected
by the store_access_low and store_access_high lines.

SpartanMC

Memory Organization 6

OR

...
OR

...

18

Register/ ALU_Result

8..0

18

17..9 8..0 18

18

0x000

l9/l18

17..9

Rd

write data read data

Align

Data (High) Data (Low)

access
peripheral m odule

(Port A)

18

17..1MM Align

AddressSFR_STATUS [7]

17..10 9..0

1
7

..
1

0

Address Decode

SpartanMC
Mem ory
Access

select

addressing

... ...DMA_BASE_ADR
Module

BlockRAM

A
cc

e
ss

A
d

d
r

1024 x 18

17..9 8..0

im plem ented by peripheral

Figure 6: DMA address management

2.3. Data Read Interface

The main memory blocks and the peripheral memory are connected to the data memory
interface of the processor core. In order to avoid tri-state buffers, all incoming data is
combined through a wide or-gate. Thus, all memory blocks and peripherals that are
currently not addressed must provide a value of zero on their outputs.

SpartanMC

Memory Organization 7

3. Example Memory Map

The following image describes a memory map for an SpartanMC example system and
an application using traps and interrupts. The specfic addresses of the different appli-
cation parts (ISR, Traps, IRQ Handler etc.) are automatically defined through compiler
tools. The start addresses of DMA memory (in this example 0x19000) can be defined
in the hardware configuraion generated through jConfig.

0
x

3
FF

FF

0
x

1
9

0
0

0

0
x

1
A

0
0

0

0
x

2
0

0
0

0

0
x

0
0

0
0

5

0
x

0
0

0
0

0

S
e

tu
p

 V
e

ct
o

rs

A
p

p
lic

a
ti

o
n

IS
R

T
ra

p
s

IR
Q

 H
a

n
d

le
r

IR
Q

 T
a

b
le

T
ra

p
 T

a
b

le

u
p

p
e

r
1

2
8

k

D
M

A

P
ri

p
h

e
ra

ls

S
ta

rt
u

p

Figure 7: Example memory map

Startup: The startup code is generated by compiler tools at address 0x0000.
It contains a branch to the application specific Setup Vectors -subroutine. The
required branch address is defined within the system headers generated via
jConfig.

Setup Vectors: Setup the address for the interrupt handler and the trap base
address for this application.

Application: Contains the application code.

ISR: The interrupt service routines for the defined interrupts

Traps: The trap code for the defined traps.

IRQ Handler: Performs the IRQ prolog and epilog and links the IRQ table of the
application.

IRQ Table: The interrupt branch table. Each 18 bit address contains the jump
instructions to the interrupt code. The table length depends on the number of
configured interrupts.

Trap Table: The branch table for traps. Each 18 bit address contains the jump
instructions to a specific trap code. Since the the upper 10 bit are used as trap
base address a maximum of 255 traps can be defined using the lower 8 bit.
The implemented table length depends on the number of traps defined in the
application

SpartanMC

Memory Organization 8

DMA: The memory section for DMA capable peripherals. This memory section is
18 bit aligned and contains data only.

Peripherals: The memory section for memory mapped peripherals. The start
address of this section has to be set beyond the actual configured main memory
section.

	Memory Organization
	Address Management
	Peripheral Access
	Memory Mapped
	Direct Memory Access (DMA)
	Data Read Interface

	Example Memory Map

