Vortrag im Hauptseminar Entwicklung des Teilcheninhalts des Universums

Klaus Steiniger

22. April 2009

Gliederung

Einführung

Motivation

Mathematischer Werkzeugkasten

Abhängigkeit der Teilchendichte in verschiedenen Epochen

Frühes Universum

Danach

Liouville'scher Satz

Boltzmann Gleichung

Anwendung

Zusammenfassung

Gliederung

Einführung

Motivation

Mathematischer Werkzeugkasten

Abhängigkeit der Teilchendichte in verschiedenen Epochei

Frühes Universum

Danach

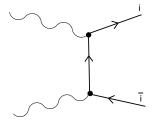
Liouville'scher Satz

Anwendung

Zusammenfassung

Rahmenbedingungen

lacktriangle Alle möglichen Teilchen entstehen durch Prozesse $\gamma\gamma
ightarrow i + ar{i}$



- Grundannahme:
 - Frühes Universum ist im thermodynamischen Gleichgewicht
 - \Rightarrow Paarerzeugung genau so häufig wie Paarvernichtung, d.h. $\langle N \rangle \equiv N = {\rm const.}$
- Gleichgewichtsthermodynamik (Quantenstatistik) ist ideale Beschreibung
- ► Teilchensorten sind ideales Quantengas

Ziel: Abhänigkeit der einzelnen Häufigkeiten in verschiedenen Epochen

Gliederung

Einführung

Motivation

Mathematischer Werkzeugkasten

Abhängigkeit der Teilchendichte in verschiedenen Epocher

Frühes Universum

Danach

Liouville'scher Satz

Boltzmann Gleichung

Anwendung

Zusammenfassung

Erinnerung an Quantenstatistik

Teilchenzahl
$$N=\sum_k \overline{n}_k$$
 \overline{n}_k - Mittlere Bestzungszahl des Zustandes k Energie $E=\sum_k \overline{n}_k \cdot \varepsilon_k$ ε_k - Einteilchenenergie des Zustandes k

Mittlere Besetzungszahlen:

$$\overline{n}_k = \frac{1}{\mathrm{e}^{(\varepsilon_k - \mu)/T} - \eta} \text{ wobei } \eta = \left\{ \begin{array}{ll} +1 & \mathrm{Bose-Einstein} \\ 0 & \mathrm{Maxwell-Boltzmann} \\ -1 & \mathrm{Fermi-Dirac} \end{array} \right.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Erinnerung an Quantenstatistik

Teilchenzahl $N = \sum_k \overline{n}_k$ \overline{n}_k - Mittlere Bestzungszahl des Zustandes k

Energie $E = \sum_k \overline{n}_k \cdot \varepsilon_k - \varepsilon_k$ - Einteilchenenergie des Zustandes k

Kontinuumslimit:

$$\sum_{k} \dots \longrightarrow \frac{gV}{(2\pi)^3} \int_{-\infty}^{\infty} \mathrm{d}^3 p \, \dots \stackrel{\varepsilon = \varepsilon (|\vec{p}|^2)}{\longrightarrow} \frac{gV}{2\pi^2} \int_{m}^{\infty} \mathrm{d}\varepsilon \, \, \varepsilon (\varepsilon^2 - m^2)^{1/2} \dots$$

mit:

$$\varepsilon^2 = p^2 + m^2$$

g - Anzahl der inneren Freiheitsgrade

→ロト →回ト → 重ト → 重 → りへ○

Erinnerung an Quantenstatistik

$$n = \frac{N}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$
$$\rho = \frac{E}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon^2 (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$

wobei
$$\overline{n}_k(\varepsilon_k, T) \rightarrow f(\varepsilon, T(t))$$

Gliederung

Einführung

Motivation

Mathematischer Werkzeugkasten

Abhängigkeit der Teilchendichte in verschiedenen Epochen Frühes Universum

Danach

Liouville'scher Satz Boltzmann Gleichung

Anwendung

Zusammenfassung

Abhänigkeiten für relativistische und nicht relativistische Teilchenarten

$$n = \frac{N}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$
$$\rho = \frac{E}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon^2 (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$

Für relativistische Teilchenarten ($m \ll T$ und $\mu \ll T$) ergibt sich:

$$n_{\text{EQ}}(T) = \begin{cases} \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Bose)} \\ \frac{3}{4} \cdot \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Fermi)} \end{cases} \zeta(3) = 1.20206...$$

Und nicht-relativistische Arten ($m - \mu \gg T$):

$$n_{\text{EQ}}(T) = g \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \cdot e^{-(m-\mu)/T} \text{(Bose und Fermi)}$$

10 / 26

Klaus Steiniger Entwicklung des Teilcheninhalts 22. April 2009

Abhänigkeiten für relativistische und nicht relativistische Teilchenarten

$$n = \frac{N}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$
$$\rho = \frac{E}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon^2 (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$

Für relativistische Teilchenarten ($m \ll T$ und $\mu \ll T$) ergibt sich:

$$n_{\text{EQ}}(T) = \begin{cases} \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Bose)} \\ \frac{3}{4} \cdot \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Fermi)} \end{cases} \zeta(3) = 1.20206...$$

Und nicht-relativistische Arten ($m - \mu \gg T$):

$$n_{\text{EQ}}(T) = g \left(\frac{mT}{2\pi}\right)^{\frac{\pi}{2}} \cdot e^{-(m-\mu)/T} \text{(Bose und Fermi)}$$

10 / 26

Klaus Steiniger Entwicklung des Teilcheninhalts 22. April 2009

Abhänigkeiten für relativistische und nicht relativistische Teilchenarten

$$n = \frac{N}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$
$$\rho = \frac{E}{V} = \frac{g}{2\pi^2} \int_m^{\infty} d\varepsilon \ \varepsilon^2 (\varepsilon^2 - m^2)^{1/2} f(\varepsilon, t)$$

Für relativistische Teilchenarten ($m \ll T$ und $\mu \ll T$) ergibt sich:

$$n_{\text{EQ}}(T) = \begin{cases} \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Bose)} \\ \frac{3}{4} \cdot \frac{\zeta(3)}{\pi^2} g T^3 & \text{(Fermi)} \end{cases} \zeta(3) = 1.20206...$$

Und nicht-relativistische Arten ($m - \mu \gg T$):

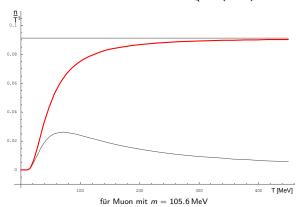
$$n_{\text{EQ}}(T) = g \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \cdot e^{-(m-\mu)/T} \text{(Bose und Fermi)}$$

10 / 26

Klaus Steiniger Entwicklung des Teilcheninhalts 22. April 2009

Nocheinmal relativistisch $n_{\text{EQ}} \propto T^3$

nicht-relativistisch $n_{\text{EQ}} \propto (mT)^{3/2} \mathrm{e}^{-m/T}$



Interpretation:

Anzahl der schweren Teilchen nimmt exponentiall ab mit fallender Temperatur

Gliederung

Einführung
Motivation
Mathematischer Werkzeugkasten

Abhängigkeit der Teilchendichte in verschiedenen Epochen

Frühes Universum

Danach Liouville'scher Satz Boltzmann Gleichung Anwendung

Zusammenfassung

Wir haben:

Gleichung die n(T) für thermisches Gleichgewicht beschreibt, aber

- ▶ thermisches Gleichgewicht \Leftrightarrow Reaktionsrate $\Gamma = \sigma \cdot L$ ist groß (typischer Gleichgewichtserhaltender Prozess: $\overline{\nu}\nu \to e^+e^-$)
- ho $\Gamma \propto L \propto n(t) \propto a(t)^{-3}$ ist abhängig von der Expansion
- ▶ thermisches Gleichgewicht wenn $\Gamma \ge H(t)$ $(H(t) = \dot{a}/a$ Hubbleparameter)

Der Fall $\Gamma \ll H$ (keine Reaktionen) einfach:

- ▶ *N* ist erhalten
- ▶ n(t) fällt mit $a(t)^{-3}$ (werden wir als Zwischenergebnis erhalten)

Wir haben:

Gleichung die n(T) für thermisches Gleichgewicht beschreibt, aber

- ▶ thermisches Gleichgewicht \Leftrightarrow Reaktionsrate $\Gamma = \sigma \cdot L$ ist groß (typischer Gleichgewichtserhaltender Prozess: $\overline{\nu}\nu \rightarrow e^+e^-$)
- ho $\Gamma \propto L \propto n(t) \propto a(t)^{-3}$ ist abhängig von der Expansion
- ▶ thermisches Gleichgewicht wenn $\Gamma \geq H(t)$ $(H(t) = \dot{a}/a$ Hubbleparameter)

Der Fall $\Gamma \ll H$ (keine Reaktionen) einfach:

- ► *N* ist erhalten
- ▶ n(t) fällt mit $a(t)^{-3}$ (werden wir als Zwischenergebnis erhalten)

Wir haben:

Gleichung die n(T) für thermisches Gleichgewicht beschreibt, aber

- ▶ thermisches Gleichgewicht \Leftrightarrow Reaktionsrate $\Gamma = \sigma \cdot L$ ist groß (typischer Gleichgewichtserhaltender Prozess: $\overline{\nu}\nu \rightarrow e^+e^-$)
- ho $\Gamma \propto L \propto n(t) \propto a(t)^{-3}$ ist abhängig von der Expansion
- ▶ thermisches Gleichgewicht wenn $\Gamma \ge H(t)$ $(H(t) = \dot{a}/a$ Hubbleparameter)

Der Fall $\Gamma \ll H$ (keine Reaktionen) einfach:

- ▶ *N* ist erhalten
- ▶ n(t) fällt mit $a(t)^{-3}$ (werden wir als Zwischenergebnis erhalten)

Wir haben:

Gleichung die n(T) für thermisches Gleichgewicht beschreibt, aber

- ▶ thermisches Gleichgewicht \Leftrightarrow Reaktionsrate $\Gamma = \sigma \cdot L$ ist groß (typischer Gleichgewichtserhaltender Prozess: $\overline{\nu}\nu \to e^+e^-$)
- ho $\Gamma \propto L \propto n(t) \propto a(t)^{-3}$ ist abhängig von der Expansion
- ▶ thermisches Gleichgewicht wenn $\Gamma \ge H(t)$ $(H(t) = \dot{a}/a$ Hubbleparameter)

Der Fall $\Gamma \ll H$ (keine Reaktionen) einfach:

- ▶ N ist erhalten
- ▶ n(t) fällt mit $a(t)^{-3}$ (werden wir als Zwischenergebnis erhalten)

Wir haben:

Gleichung die n(T) für thermisches Gleichgewicht beschreibt, aber

- ▶ thermisches Gleichgewicht \Leftrightarrow Reaktionsrate $\Gamma = \sigma \cdot L$ ist groß (typischer Gleichgewichtserhaltender Prozess: $\overline{\nu}\nu \to e^+e^-$)
- ho $\Gamma \propto L \propto n(t) \propto a(t)^{-3}$ ist abhängig von der Expansion
- ▶ thermisches Gleichgewicht wenn $\Gamma \ge H(t)$ $(H(t) = \dot{a}/a$ Hubbleparameter)

Der Fall $\Gamma \ll H$ (keine Reaktionen) einfach:

- ▶ N ist erhalten
- ▶ n(t) fällt mit $a(t)^{-3}$ (werden wir als Zwischenergebnis erhalten)

Fahrplan

- Liouville'scher Satz für Bewegungsgleichung von $f(\varepsilon, t)$ ohne Erzeugung und Vernichtung von Teilchen (durch inelastische Streuung)
- Erzeugung und Vernichtung einbauen
- Diskussion

Liouville'scher Satz

'Phasenraumdichte ist inkompressibel!'

$$0 \stackrel{!}{=} \frac{\mathrm{d}}{\mathrm{d}t} f = \frac{\partial}{\partial t} f + \{f, H\} = \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}}\right) f = \widehat{\mathbf{L}}_{NR}[f]$$

Die relativistische Verallgemeinerung

$$\widehat{f L}=p^lpharac{\partial}{\partial x^lpha}-\Gamma^lpha_{eta\gamma}p^eta p^\gammarac{\partial}{\partial p^lpha}$$

Mit Robertson-Walker Metrik und f=f(arepsilon,t) vereinfacht sich das zu:

$$\widehat{\mathbf{L}}[f(\varepsilon,t)] = \varepsilon \frac{\partial}{\partial t} f(\varepsilon,t) - \frac{\dot{\mathbf{a}}}{a} |\mathbf{p}|^2 \frac{\partial}{\partial \varepsilon} f(\varepsilon,t) \stackrel{!}{=} 0$$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ○

Liouville'scher Satz

'Phasenraumdichte ist inkompressibel!'

$$0 \stackrel{!}{=} \frac{\mathrm{d}}{\mathrm{d}t} f = \frac{\partial}{\partial t} f + \{f, H\} = \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}}\right) f = \widehat{\mathbf{L}}_{NR}[f]$$

Die relativistische Verallgemeinerung

$$\widehat{\mathbf{L}} = \mathbf{p}^{\alpha} \frac{\partial}{\partial x^{\alpha}} - \Gamma^{\alpha}_{\beta\gamma} \mathbf{p}^{\beta} \mathbf{p}^{\gamma} \frac{\partial}{\partial \mathbf{p}^{\alpha}}$$

Mit Robertson-Walker Metrik und f=f(arepsilon,t) vereinfacht sich das zu:

$$\widehat{\mathbf{L}}[f(\varepsilon,t)] = \varepsilon \frac{\partial}{\partial t} f(\varepsilon,t) - \frac{\dot{\mathbf{a}}}{a} |\mathbf{p}|^2 \frac{\partial}{\partial \varepsilon} f(\varepsilon,t) \stackrel{!}{=} 0$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Liouville'scher Satz

'Phasenraumdichte ist inkompressibel!'

$$0 \stackrel{!}{=} \frac{\mathrm{d}}{\mathrm{d}t} f = \frac{\partial}{\partial t} f + \{f, H\} = \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} + \frac{\mathbf{F}}{m} \cdot \nabla_{\mathbf{v}}\right) f = \widehat{\mathbf{L}}_{NR}[f]$$

Die relativistische Verallgemeinerung

$$\widehat{\mathbf{L}} = p^{\alpha} \frac{\partial}{\partial x^{\alpha}} - \Gamma^{\alpha}_{\beta \gamma} p^{\beta} p^{\gamma} \frac{\partial}{\partial p^{\alpha}}$$

Mit Robertson-Walker Metrik und $f = f(\varepsilon, t)$ vereinfacht sich das zu:

$$\widehat{\mathbf{L}}[f(\varepsilon,t)] = \varepsilon \frac{\partial}{\partial t} f(\varepsilon,t) - \frac{\dot{a}}{a} |\mathbf{p}|^2 \frac{\partial}{\partial \varepsilon} f(\varepsilon,t) \stackrel{!}{=} 0$$

- (ロ) (個) (差) (差) (差) (2) (2) (2)

Boltzmann Gleichung ohne Erzeugung und Vernichtung

Integrieren

$$\frac{g}{(2\pi)^3} \int_{-\infty}^{+\infty} d^3p \cdot \left[\frac{\partial}{\partial t} f(\varepsilon, t) - \frac{\dot{a}}{a} \frac{p^2(\varepsilon)}{\varepsilon} \frac{\partial}{\partial \varepsilon} f(\varepsilon, t) \right]$$

$$=\frac{g}{2\pi^2}\int_m^\infty d\varepsilon \cdot \varepsilon (\varepsilon^2-m^2)^{1/2} \cdot \left[\frac{\partial}{\partial t} f(\varepsilon,t) - \frac{\dot{a}}{a} \frac{(\varepsilon^2-m^2)}{\varepsilon} \frac{\partial}{\partial \varepsilon} f(\varepsilon,t)\right]$$

liefert

$$\frac{\mathrm{d}}{\mathrm{d}t}n(t) + 3\frac{\dot{a}}{a}n(t) \stackrel{!}{=} 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}(n(t) \cdot a^{3}(t)) \stackrel{!}{=} 0$$

Beschreibt die Entwicklung der Teilchendichte nur aufgrund der Ausdehnung des Universums.

- **◆ □ ▶ ◆ □ ▶ ◆ 豆 ▶ ◆ 豆 ● ◆ ○ ○ ○**

Boltzmann Gleichung ohne Erzeugung und Vernichtung

Integrieren

$$\frac{g}{(2\pi)^3} \int_{-\infty}^{+\infty} \mathrm{d}^3 p \cdot \left[\frac{\partial}{\partial t} f(\varepsilon, t) - \frac{\dot{a}}{a} \frac{p^2(\varepsilon)}{\varepsilon} \frac{\partial}{\partial \varepsilon} f(\varepsilon, t) \right]$$

$$=\frac{g}{2\pi^2}\int_m^\infty d\varepsilon \cdot \varepsilon (\varepsilon^2-m^2)^{1/2} \cdot \left[\frac{\partial}{\partial t} f(\varepsilon,t) - \frac{\dot{a}}{a} \frac{(\varepsilon^2-m^2)}{\varepsilon} \frac{\partial}{\partial \varepsilon} f(\varepsilon,t)\right]$$

liefert

$$\frac{\mathrm{d}}{\mathrm{d}t}n(t) + 3\frac{\dot{a}}{a}n(t) \stackrel{!}{=} 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}(n(t) \cdot a^{3}(t)) \stackrel{!}{=} 0$$

Beschreibt die Entwicklung der Teilchendichte nur aufgrund der Ausdehnung des Universums.

- 4日ト4回ト4至ト4至ト 至 りQC

Entwicklung der Teilchendichte ohne Streuung

$$\frac{\mathrm{d}}{\mathrm{d}t}(n(t)\cdot a^3(t))\Rightarrow n(t)=n(a_0)\cdot \left(\frac{a_0}{a}\right)^3$$

- Die Teilchendichte fällt mit 1/a³
- Entspricht dem Verhalten der Teilchendichten heute
- ▶ ohne Erzeugung in Sternen...

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $c(ij \to kl) \equiv n_i \cdot n_i \langle \sigma_{ij \to kl} v_{ij} \rangle$
- Nur stabile Teilchen $\rightarrow i\overline{i} \rightleftharpoons k\overline{k}$
- im thermischen GG ist Paarzeugung genauso h\u00e4ufig wie Paarvernichtung

$$c_{\text{EQ}}(i\overline{i} \to k\overline{k}) = c_{\text{EQ}}(k\overline{k} \to i\overline{i})$$

$$n_{i, \text{EQ}} \cdot n_{\overline{i}, \text{EQ}} \left\langle \sigma_{i \overline{i} \to k \overline{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k, \text{EQ}} \cdot n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k \overline{k} \to i \overline{i}} v \right\rangle_{\text{EQ}}$$

 $ightharpoonup \langle \sigma v \rangle_{\sf EQ} \cong \langle \sigma v \rangle$ und Spezies k ist im GG mit restlichem Gas

$$\Rightarrow n_k n_{\overline{k}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle = n_{k, \text{EQ}} n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

Es wird:

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle$$

◆ロ > ← 個 > ← 差 > ← 差 > 一差 ● からで

18 / 26

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $c(ij \to kl) \equiv n_i \cdot n_j \langle \sigma_{ij \to kl} v_{ij} \rangle$
- Nur stabile Teilchen $\rightarrow i\bar{i} \rightleftharpoons k\bar{k}$
- ▶ im thermischen GG ist Paarzeugung genauso häufig wie Paarvernichtung

$$c_{\mathsf{EQ}}(i\overline{i} \to k\overline{k}) = c_{\mathsf{EQ}}(k\overline{k} \to i\overline{i})$$

$$n_{i,\text{EQ}} \cdot n_{\bar{i},\text{EQ}} \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k,\text{EQ}} \cdot n_{\bar{k},\text{EQ}} \left\langle \sigma_{k\bar{k} \to i\bar{i}} v \right\rangle_{\text{EQ}}$$

 $ightharpoonup \langle \sigma v \rangle_{\mathsf{EQ}} \cong \langle \sigma v \rangle$ und Spezies k ist im GG mit restlichem Gas

$$\Rightarrow n_k n_{\overline{k}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle = n_{k, \text{EQ}} n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

Es wird

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ からで

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $c(ij \to kl) \equiv n_i \cdot n_j \langle \sigma_{ij \to kl} v_{ij} \rangle$
- ▶ Nur stabile Teilchen $\rightarrow i\bar{i} \rightleftharpoons k\bar{k}$
- ▶ im thermischen GG ist Paarzeugung genauso häufig wie Paarvernichtung

$$c_{\mathsf{EQ}}(i\bar{i} \to k\bar{k}) = c_{\mathsf{EQ}}(k\bar{k} \to i\bar{i})$$

$$n_{i,\text{EQ}} \cdot n_{\overline{i},\text{EQ}} \left\langle \sigma_{i\overline{i} \to k\overline{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k,\text{EQ}} \cdot n_{\overline{k},\text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

 $ightharpoonup \langle \sigma v \rangle_{\mathsf{EQ}} \cong \langle \sigma v \rangle$ und Spezies k ist im GG mit restlichem Gas

$$\Rightarrow n_k n_{\overline{k}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle = n_{k, \text{EQ}} n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

Es wird:

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $ightharpoonup c(ij \rightarrow kl) \equiv n_i \cdot n_i \langle \sigma_{ij \rightarrow kl} v_{ij} \rangle$
- ▶ Nur stabile Teilchen $\rightarrow i\bar{i} \rightleftharpoons k\bar{k}$
- ▶ im thermischen GG ist Paarzeugung genauso häufig wie Paarvernichtung

$$c_{\mathsf{EQ}}(i\bar{i} \to k\bar{k}) = c_{\mathsf{EQ}}(k\bar{k} \to i\bar{i})$$

$$n_{i, \text{EQ}} \cdot n_{\overline{i}, \text{EQ}} \left\langle \sigma_{i\overline{i} \to k\overline{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k, \text{EQ}} \cdot n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

$$\Rightarrow n_k n_{\overline{k}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle = n_{k, \mathsf{EQ}} n_{\overline{k}, \mathsf{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\mathsf{EQ}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle$$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $ightharpoonup c(ij \rightarrow kl) \equiv n_i \cdot n_i \langle \sigma_{ij \rightarrow kl} v_{ij} \rangle$
- ▶ Nur stabile Teilchen $\rightarrow i\bar{i} \rightleftharpoons k\bar{k}$
- ▶ im thermischen GG ist Paarzeugung genauso häufig wie Paarvernichtung

$$c_{\mathsf{EQ}}(i\bar{i} \to k\bar{k}) = c_{\mathsf{EQ}}(k\bar{k} \to i\bar{i})$$

$$n_{i, \text{EQ}} \cdot n_{\bar{i}, \text{EQ}} \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k, \text{EQ}} \cdot n_{\bar{k}, \text{EQ}} \left\langle \sigma_{k\bar{k} \to i\bar{i}} v \right\rangle_{\text{EQ}}$$

- $\triangleright \langle \sigma v \rangle_{FO} \cong \langle \sigma v \rangle$ und Spezies k ist im GG mit restlichem Gas
- $\Rightarrow n_k n_{\overline{k}} \langle \sigma_{k\overline{k} \to i\overline{i}} v \rangle = n_{k,EQ} n_{\overline{k},EQ} \langle \sigma_{k\overline{k} \to i\overline{i}} v \rangle_{EQ}$

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i} \to k\bar{k}} v \right\rangle$$

18 / 26

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) - c(ij \to kl) + c(kl \to ij)$$

Annahmen:

- $c(ij \to kl) \equiv n_i \cdot n_j \langle \sigma_{ij \to kl} v_{ij} \rangle$
- ▶ Nur stabile Teilchen $\rightarrow i\bar{i} \rightleftharpoons k\bar{k}$
- ▶ im thermischen GG ist Paarzeugung genauso häufig wie Paarvernichtung

$$c_{\mathsf{EQ}}(i\bar{i} \to k\bar{k}) = c_{\mathsf{EQ}}(k\bar{k} \to i\bar{i})$$

$$n_{i, \text{EQ}} \cdot n_{\overline{i}, \text{EQ}} \left\langle \sigma_{i\overline{i} \to k\overline{k}} v \right\rangle_{\text{EQ}} \stackrel{!}{=} n_{k, \text{EQ}} \cdot n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$$

- $ightharpoonup \langle \sigma v \rangle_{\sf EQ} \cong \langle \sigma v \rangle$ und Spezies k ist im GG mit restlichem Gas
- $\Rightarrow n_k n_{\overline{k}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle = n_{k, \text{EQ}} n_{\overline{k}, \text{EQ}} \left\langle \sigma_{k\overline{k} \to i\overline{i}} v \right\rangle_{\text{EQ}}$

Es wird:

Klaus Steiniger

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i}\to k\bar{k}}v \right\rangle$$

Diskussion

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i}\to k\bar{k}}v \right\rangle$$

Vereinfachen mit $n_i = n_{\overline{i}}$ und umschreiben zu Ableitung nach a

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

mit $\Gamma_{iar{i} o kar{k}}$ - Übergangsrate

Man erkennt

- ▶ wenn $\Gamma_{i\overline{i} \to k\overline{k}}$ nicht vernachlässigbar $n_i \to n_{i,EQ}$

Diskussion

$$\frac{\mathrm{d}}{\mathrm{d}t}n_{i}(t) = -3\frac{\dot{a}}{a}n_{i}(t) + (n_{i,\mathsf{EQ}} \cdot n_{\bar{i},\mathsf{EQ}} - n_{i}n_{\bar{i}}) \left\langle \sigma_{i\bar{i}\to k\bar{k}}v \right\rangle$$

Vereinfachen mit $n_i = n_{\overline{i}}$ und umschreiben zu Ableitung nach a

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

mit $\Gamma_{i \overline{i}
ightarrow k \overline{k}}$ - Übergangsrate

Man erkennt

- ▶ wenn $\Gamma_{i\overline{i} \to k\overline{k}}$ nicht vernachlässigbar $n_i \to n_{i,EQ}$

Diskussion

$$\frac{\mathrm{d}}{\mathrm{d}t}n_i(t) = -3\frac{\dot{a}}{a}n_i(t) + (n_{i,\mathsf{EQ}}\cdot n_{\bar{i},\mathsf{EQ}} - n_i n_{\bar{i}}) \left\langle \sigma_{i\bar{i}\to k\bar{k}}v \right\rangle$$

Vereinfachen mit $n_i = n_{\overline{i}}$ und umschreiben zu Ableitung nach a

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

mit $\Gamma_{iar{i} o kar{k}}$ - Übergangsrate

Man erkennt

- $ightharpoonup \Gamma_{i\bar{i}\to k\bar{k}} \ll H \Rightarrow \mathrm{d}(n_i a^3)/\mathrm{d} a \cong 0 \Rightarrow n \propto a^{-3}$
- wenn $\Gamma_{i\overline{i} \to k\overline{k}}$ nicht vernachlässigbar: $n_i \to n_{i,EQ}$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- \triangleright errechnen der Temperatur des Ausfrierens T_f

für $T \gg m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- Aus Friedmann-Gleichung: $\dot{a}/a \sim T^2/m_{\rm Pl}$ $(m_{\rm Pl}$ - Planckmasse)
- ▶ Aus Quantenmechanischen Betrachtungen: $\Gamma_{ii \rightarrow \nu \overline{\nu}} \sim n_e(T) \alpha^2 / T^2 \sim \alpha^2 T$ für $T \gg m_e$ $(\alpha - \text{Feinstrukturkonstante})(n \propto T^3)$

für $T \gg m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- Aus Friedmann-Gleichung: $\dot{a}/a \sim T^2/m_{\rm Pl}$ $(m_{\rm Pl}$ - Planckmasse)
- Aus Quantenmechanischen Betrachtungen: $\Gamma_{ii \rightarrow \nu \overline{\nu}} \sim n_e(T) \alpha^2 / T^2 \sim \alpha^2 T$ für $T \gg m_e$ $(\alpha - \text{Feinstrukturkonstante})(n \propto T^3)$
- ho $\Gamma > \dot{a}/a$ für $T < \alpha^2 m_{\rm Pl} \sim 10^{14} \, {\rm GeV}$ Obergrenze

21 / 26

für $T \gg m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- Aus Friedmann-Gleichung: $\dot{a}/a \sim T^2/m_{\rm Pl}$ $(m_{\rm Pl}$ - Planckmasse)
- Aus Quantenmechanischen Betrachtungen: $\Gamma_{ii} \sim n_e(T)\alpha^2/T^2 \sim \alpha^2 T$ für $T \gg m_e$ $(\alpha - \text{Feinstrukturkonstante})(n \propto T^3)$
- ho $\Gamma > \dot{a}/a$ für $T < \alpha^2 m_{\rm Pl} \sim 10^{14} \, {\rm GeV}$ Obergrenze
- für $T = m_e$ ist $\Gamma \sim (\alpha^2 m_{\rm Pl}/m_e) \dot{a}/a \sim 10^{18}/H^{-1}$ entspricht also 10^{18} Reaktionen pro Hubble-Zeit

für $T\gg m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- Aus Friedmann-Gleichung: $\dot{a}/a \sim T^2/m_{\text{PL}}$ (m_{PL} Planckmasse)
- ► Aus Quantenmechanischen Betrachtungen: $\Gamma_{i\bar{i}\to k\bar{k}}\sim n_{\rm e}(T)\alpha^2/T^2\sim \alpha^2T$ für $T\gg m_{\rm e}$ $(\alpha$ Feinstrukturkonstante) $(n\propto T^3)$
- ho $\Gamma > \dot{a}/a$ für $T < lpha^2 m_{
 m PL} \sim 10^{14}\,{
 m GeV}$ Obergrenze
- für $T=m_e$ ist $\Gamma\sim (\alpha^2 m_{\rm PL}/m_e)\dot{a}/a\sim 10^{18}/H^{-1}$ entspricht also 10^{18} Reaktionen pro Hubble-Zeit
- ▶ Thermisches Gleichgewicht sicher für $m_e < T < 10^{14}\,\mathrm{GeV}$

4 □ Þ 4 ∰ Þ 4 Ē Þ 4 Ē Þ \$ *)Q(*

für $T \ll m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- $\Gamma_{i\overline{i} \to k\overline{k}} \sim n_{\rm e}(T)\alpha^2/T^2 \sim \alpha^2(T^3/m)^{1/2} \exp[-m/t]$ $(n \propto (mT)^{3/2} \exp[-m/t])$
- ▶ Vergleich mit $a/a \sim I^2/m_{PL}$ liefert (numerische Berechnung)
- $ightharpoonup \Gamma < \dot{a}/a ext{ für } T < T_f \sim m_e/40$

$$\Rightarrow n_e(a) = n_e(T_f) \left(\frac{a_f}{a}\right)^3$$

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

für $T \ll m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- $\Gamma_{i\overline{i} \to k\overline{k}} \sim n_{\rm e}(T)\alpha^2/T^2 \sim \alpha^2(T^3/m)^{1/2} \exp[-m/t]$ $(n \propto (mT)^{3/2} \exp[-m/t])$
- ▶ Vergleich mit $\dot{a}/a \sim T^2/m_{\text{PL}}$ liefert (numerische Berechnung):
- $ightharpoonup \Gamma < \dot{a}/a$ für $T < T_f \sim m_e/40$

$$\Rightarrow n_e(a) = n_e(T_f) \left(\frac{a_f}{a}\right)^3$$

→ロト → □ ト → 三 ト → 三 ・ りへで

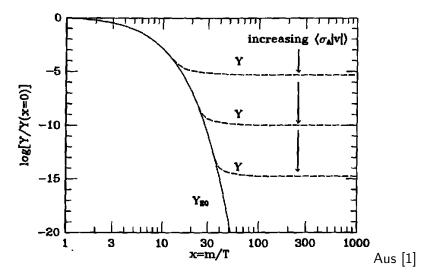
für $T \ll m_e$

$$\frac{\mathrm{d}}{\mathrm{d}a}(n_i a^3) = \frac{1}{3} \frac{n_{i,\mathsf{EQ}}^2 - n_i^2}{n_i} \frac{\Gamma_{i\bar{i} \to k\bar{k}}}{\dot{a}/a}$$

- $\Gamma_{i\overline{i} \to k\overline{k}} \sim n_{\rm e}(T)\alpha^2/T^2 \sim \alpha^2(T^3/m)^{1/2} \exp[-m/t]$ $(n \propto (mT)^{3/2} \exp[-m/t])$
- ▶ Vergleich mit $\dot{a}/a \sim T^2/m_{\text{PL}}$ liefert (numerische Berechnung):
- $ightharpoonup \Gamma < \dot{a}/a$ für $T < T_f \sim m_e/40$
- $\Rightarrow n_e(a) = n_e(T_f) \left(\frac{a_f}{a}\right)^3$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

Nochmal ein Bild als Zusammenfassung



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● めぐぐ

Zusammenfassung

- ▶ rel. und n.-rel. Teilchendichten für thermisches Gleichgewicht
- Boltzmann Gleichung zur Beschreibung des Übergangs vom Gleichgewicht zum Ausfrieren
- Ausdünnung der Teilchen durch Ausdehnung des Universums, keine Neuentstehung

Was fehlt (und wir noch hören):

- ► Quark-Hadron Übergang
- ▶ Bildung von Kernen und später Atomen
- ► Teilchenasymmetrie über Leptogenese und Baryogenese

Literatur

- Kolb E.W., Turner M., The Early Universe, Westview Press, 1994
- James Rich, Fundamentals of Cosmology, Springer, 2001
- Gerhard Börner, The Early Universe Facts and Fiction, Springer, 2004
- Peter Coles, Francesco Lucchin, Cosmology, John Wiley & Sons, 1995

Thermisch gemittelter Wirkungsquerschnitt

quantenmechanisch

$$-c(ij \to kl) + c(kl \to ij) = -\int d\Pi_i d\Pi_j d\Pi_k d\Pi_l$$
$$\times (2\pi)^4 \delta(p_k + p_l - p_i - p_j)$$
$$\times |\mathcal{M}|^2 [f_i f_j - f_k f_l]$$

$$\langle \sigma_{i\bar{i}\to k\bar{k}} v_{i\bar{i}} \rangle = (n_{i,\text{EQ}})^{-2} \int d\Pi_{i} d\Pi_{\bar{i}} d\Pi_{k} d\Pi_{\bar{k}}$$
$$\times (2\pi)^{4} \delta(p_{k} + p_{\bar{k}} - p_{i} - p_{\bar{j}})$$
$$\times |\mathcal{M}|^{2} \exp[(\varepsilon_{i} - \varepsilon_{\bar{i}})/T]$$

$$\mathrm{d}\Pi = \frac{g}{(2\pi)^3} \frac{\mathrm{d}^3 p}{2\varepsilon}$$

