Parallel Grids and Parallel Solvers

TECHNISCHE
UNIVERSITAT
DRESDEN

225/ 240

DDDDDDD

Parallel Grids and Parallel Solvers

e AMDIS is by default aware of parallelization
e Parallel grid and parallel linear algebra backend required

Decomposition of an adaptively refined grid into eight subdomains

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

L N
TECHNISCHE - \

ggé\g%%leT;&T 226 /240 e ot \v)

Parallel Grids

Distributed Grids

e Grids with ghost elements

A|B A|B
C|D C|(D
AlB
C|D
A|B A|B
C|D C|[D

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

.

TECHNISCHE ‘
UNIVERSITAT DRESDEN
DRESDEN 227 1 240 concert S

Parallel Grids and Parallel Solvers

Distributed Grids

e Grids with overlapping elements

N

\ N
N

t s

\\\\\ \\ \\\\\\\
AN \\\\‘%

N

\ N

N N

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 228/ 240 concert Rl

Parallel Grids

Creating a Parallel Grid

e Some grids can be constructed distributed directly

o Structured grids (YaspGrid or SPGrid) with parameters for overlap

o Unstructured grid ALUGrid from special distributed grid files, e.g., with dune-vtk
e Other grids require the initial construction on rank 0 and perform a distribution

afterwards, using grid.loadBalance().

o Example: UGGrid
e Some grids are not parallel on its own, e.g. AlbertaGrid, FoamGrid

o Require "parallelization wrapper" in form of a Meta-Grid, see dune-metagrid.

Example 1

std::bitset<dim> periodic("00"); // Not periodic in either of the two directions
int overlapSize = 1; // Thickness of the overlap layer
Dune::YaspGrid<2> grid({1.0,1.0}, {10,10}, periodic, overlapSize, MPI_COMM_WORLD)

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 229/240 cone Pt

https://gitlab.mn.tu-dresden.de/iwr/dune-vtk
https://gitlab.dune-project.org/extensions/dune-metagrid

Parallel Grids

Creating a Parallel Grid

e Some grids can be constructed distributed directly

o Structured grids (YaspGrid or SPGrid) with parameters for overlap

o Unstructured grid ALUGrid from special distributed grid files, e.g., with dune-vtk
e Other grids require the initial construction on rank 0 and perform a distribution

afterwards, using grid.loadBalance().

o Example: UGGrid
e Some grids are not parallel on its own, e.g. AlbertaGrid, FoamGrid

o Require "parallelization wrapper" in form of a Meta-Grid, see dune-metagrid.

Example 2

using Factory = Dune::StructuredGridFactory< Dune: :UGGrid<2> >;
auto gridPtr = Factory::createSimplexGrid({0.0,0.0}, {1.0,1.0}, {10u,10u});
gridPtr->loadBalance();

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 230,240 cone S

https://gitlab.mn.tu-dresden.de/iwr/dune-vtk
https://gitlab.dune-project.org/extensions/dune-metagrid

Parallel Grids

Partition Type of Entities

e Each entity in a process has a partition type assigned to it.
e There are five different possible partition types: interior (grey), border (blue),
overlap (green), front (magenta), and ghost (yellow).

L . 4 . 2 . 4 . 4
L & L 4 L 2
L 4 . L . 2
o & . 1
elements edges vertices

Partition with interior, overlap, and ghost elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 231,240 cone pt N4

Parallel Grids

Partition Type of Entities

e Each entity in a process has a partition type assigned to it.
e There are five different possible partition types: interior (grey), border (blue),
overlap (green), front (magenta), and ghost (yellow).

. & . 4 . -
i & . ¥ »
i L 2 L .
o . g L .
elements edges vertices

Partition with interior and overlap elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 232/24¢0 cone pt N4

Parallel Grids

Partition Type of Entities

e Each entity in a process has a partition type assigned to it.

e There are five different possible partition types: interior (grey), border (blue),

overlap (green), front (magenta), and ghost (yellow).

elements

edges

Partition with interior and ghost elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

&

4

vertices

TECHNISCHE
UNIVERSITAT
DRESDEN

233/ 240

L N

DRESDEN ‘

CCCCC

Parallel Grids

Partition Type of Entities

e You can traverse all entities of a specific group of partition types

e Groups are defined as (unions of) sets: e.g. Partititons::interior,
Partititons: :border, or the union Partititons::interior +
Partititons: :border, or all (local) entities: Partititons::all

std::size_t counter = 0;

for (const auto& vertex : vertices(gridView, Partitions::interior + Partitions: :border))

{

if (vertex.partitionType() == InteriorEntity)
counter++;
}

l Note: gridView.indexSet () enumerates the entities of the all partition!

L N

TECHNISCHE N\
UNIVERSITAT DRESDEN
DRESDEN 234 / 240 ccccc Pt R

Parallel Grids

Grid Partititoning

e Grids provide default partititon, when calling 1loadBalance()
e Sometimes, you want to use a more powerful partitioning algorithms
e Some grids provide extended interface (not unified)

Example: UGGrid

bool loadBalance(const std::vector<Rank>& targetProcesses,
unsigned int fromLevel);

Create initial partitioning using ParMETIS
#include <dune/grid/utility/parmetisgridpartitioner.hh>
ééd::vector<unsigned int> part

= ParMetisGridPartitioner<GridView>::partition(gridView, mpiHelper);
gridPtr->loadBalance(part, 0);

e
DRESDEN 235 / 240

DRESDEN
concept

L N

N
Sy

Parallel Grids

Grid Partititoning

e Grids provide default partititon, when calling 1loadBalance()
e Sometimes, you want to use a more powerful partitioning algorithms
e Some grids provide extended interface (not unified)

Example: UGGrid

bool loadBalance(const std::vector<Rank>& targetProcesses,
unsigned int fromLevel);

Refine partititoning by redistribution:
#include <dune/grid/utility/parmetisgridpartitioner.hh>
ééd::vector<unsigned int> part

= ParMetisGridPartitioner<GridView>: :repartition(gridView, mpiHelper, 1000f);
gridPtr->loadBalance(part, 0);

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 236/ 240 concert el

Parallel Grids and Parallel Solvers

e Data structures and linear algebra backend must be aware of distributed grids
e Two paradigms:
1. Domain decomposition (local data structures, solvers handle parallelization)
2. Distributed data structures (data structures handle parallelization, "standard"
solvers)

In the first category falls dune-istl, in the second category PETSc (and in the future PMTL)

e In AMDIS, domain decomposition requires grid overlap:
grid.overlapSize() > 0

e In AMDIS, distributed data structured allows grids with ghost cells:
grid.ghostSize() >= 0

/N
TECHNISCHE 4 \

UNIVERSITAT DRESDEN
DRESDEN 237/240 conce Pt

Parallel Grids and Parallel Solvers

ISTL Backend

e Create a parallel grid with overlap, e.g. Dune: :YaspGrid, Dune: :SPGrid.
e Assembling happens on the Partition::all (local) entities.
e Only iterative solvers can be used!

e | ocal data structures are always up-to-date, since overlapping ensures synchronization

Examples
e Choose parallel preconditioner: ParSSOR (pssor), Blockjacobi (bjacobi), or AMG

prob->solver: pcg
prob->solver->precon: bjacobi
prob->solver->precon->sub precon: ilu % precon to be applied on subdomains

TECHNISCHE VA‘
UNIVERSITAT DRESDEN
DRESDEN 238/240 conce =

Parallel Grids and Parallel Solvers

PETSc Backend

e Create a parallel grid w/ or w/o overlap/ghost, e.g. Dune: :UGGrid, Dune: :ALUGrid,...

e Basis provides DistributedCommunication that holds a parallel DOF-map, mapping
local to global indices.

e Assembling happens on the Partition::interior entities.

e Ghost/Overlapping entities are used to collect data from neighbouring processors
during synchronization.

e (lassification of each DOF as owner and non-owner DOF on each processor, i.e., a DOF
belongs to exactly one process.

e Vectors and Matrices perform communication of data on insertion and before access.

e Data is automatically synchronized. But: Do not mix read and write access to data —
expensive

L N

TECHNISCHE \
UNIVERSITAT DRESDEN
DRESDEN 239/24¢0 conce S

Parallel Grids and Parallel Solvers

PETSc Backend

Examples

e PETSc Matrix type: MATMPIAI/ (parallel sparse matrix), PETSc Vector type: VECMPI (parallel

vector with ghost padding)
e Support all solvers and preconditioners for these matrix/vector types

prob->solver: cg

prob->solver->pc: bjacobi

prob->solver->pc->sub ksp: preonly % solver to be applied on subdomains
prob->solver->pc->sub ksp->pc: 1ilu % preconditioner to use for ths sub solver

TECHNISCHE

UNIVERSITAT DRESDEN
DRESDEN 240/240 conce PN g

L N

\

