
Parallel Grids and Parallel Solvers

225 / 240

Parallel Grids and Parallel Solvers
AMDiS is by default aware of parallelization
Parallel grid and parallel linear algebra backend required

Decomposition of an adaptively refined grid into eight subdomains

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

226 / 240

Parallel Grids

Distributed Grids
Grids with ghost elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

227 / 240

Parallel Grids and Parallel Solvers

Distributed Grids
Grids with overlapping elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

228 / 240

Parallel Grids

Creating a Parallel Grid
Some grids can be constructed distributed directly

Structured grids (YaspGrid or SPGrid) with parameters for overlap
Unstructured grid ALUGrid from special distributed grid files, e.g., with dune-vtk

Other grids require the initial construction on rank 0 and perform a distribution
afterwards, using grid.loadBalance() .

Example: UGGrid
Some grids are not parallel on its own, e.g. AlbertaGrid , FoamGrid

Require "parallelization wrapper" in form of a Meta-Grid, see dune-metagrid.

Example 1
std::bitset<dim> periodic("00"); // Not periodic in either of the two directions
int overlapSize = 1; // Thickness of the overlap layer
Dune::YaspGrid<2> grid({1.0,1.0}, {10,10}, periodic, overlapSize, MPI_COMM_WORLD)

229 / 240

https://gitlab.mn.tu-dresden.de/iwr/dune-vtk
https://gitlab.dune-project.org/extensions/dune-metagrid

Parallel Grids

Creating a Parallel Grid
Some grids can be constructed distributed directly

Structured grids (YaspGrid or SPGrid) with parameters for overlap
Unstructured grid ALUGrid from special distributed grid files, e.g., with dune-vtk

Other grids require the initial construction on rank 0 and perform a distribution
afterwards, using grid.loadBalance() .

Example: UGGrid
Some grids are not parallel on its own, e.g. AlbertaGrid , FoamGrid

Require "parallelization wrapper" in form of a Meta-Grid, see dune-metagrid.

Example 2
using Factory = Dune::StructuredGridFactory< Dune::UGGrid<2> >;
auto gridPtr = Factory::createSimplexGrid({0.0,0.0}, {1.0,1.0}, {10u,10u});
gridPtr->loadBalance();

230 / 240

https://gitlab.mn.tu-dresden.de/iwr/dune-vtk
https://gitlab.dune-project.org/extensions/dune-metagrid

Parallel Grids

Partition Type of Entities
Each entity in a process has a partition type assigned to it.
There are five different possible partition types: interior (grey), border (blue),
overlap (green), front (magenta), and ghost (yellow).

Partition with interior , overlap , and ghost elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

231 / 240

Parallel Grids

Partition Type of Entities
Each entity in a process has a partition type assigned to it.
There are five different possible partition types: interior (grey), border (blue),
overlap (green), front (magenta), and ghost (yellow).

Partition with interior and overlap elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

232 / 240

Parallel Grids

Partition Type of Entities
Each entity in a process has a partition type assigned to it.
There are five different possible partition types: interior (grey), border (blue),
overlap (green), front (magenta), and ghost (yellow).

Partition with interior and ghost elements

(4) Image from: O. Sander, DUNE - The Distributed and Unified Numerics Environment, 2020

233 / 240

Parallel Grids

Partition Type of Entities
You can traverse all entities of a specific group of partition types
Groups are defined as (unions of) sets: e.g. Partititons::interior ,
Partititons::border , or the union Partititons::interior +
Partititons::border , or all (local) entities: Partititons::all

std::size_t counter = 0;
for (const auto& vertex : vertices(gridView, Partitions::interior + Partitions::border))
{
 if (vertex.partitionType() == InteriorEntity)
 counter++;
}

Note: gridView.indexSet() enumerates the entities of the all partition!

234 / 240

Parallel Grids

Grid Partititoning
Grids provide default partititon, when calling loadBalance()
Sometimes, you want to use a more powerful partitioning algorithms
Some grids provide extended interface (not unified)

Example: UGGrid
bool loadBalance(const std::vector<Rank>& targetProcesses,
 unsigned int fromLevel);

Create initial partitioning using ParMETIS

#include <dune/grid/utility/parmetisgridpartitioner.hh>
...
std::vector<unsigned int> part
 = ParMetisGridPartitioner<GridView>::partition(gridView, mpiHelper);
gridPtr->loadBalance(part, 0);

235 / 240

Parallel Grids

Grid Partititoning
Grids provide default partititon, when calling loadBalance()
Sometimes, you want to use a more powerful partitioning algorithms
Some grids provide extended interface (not unified)

Example: UGGrid
bool loadBalance(const std::vector<Rank>& targetProcesses,
 unsigned int fromLevel);

Refine partititoning by redistribution:

#include <dune/grid/utility/parmetisgridpartitioner.hh>
...
std::vector<unsigned int> part
 = ParMetisGridPartitioner<GridView>::repartition(gridView, mpiHelper, 1000f);
gridPtr->loadBalance(part, 0);

236 / 240

Parallel Grids and Parallel Solvers
Data structures and linear algebra backend must be aware of distributed grids
Two paradigms:

1. Domain decomposition (local data structures, solvers handle parallelization)
2. Distributed data structures (data structures handle parallelization, "standard"

solvers)

In the first category falls dune-istl, in the second category PETSc (and in the future PMTL)

In AMDiS, domain decomposition requires grid overlap:
grid.overlapSize() > 0
In AMDiS, distributed data structured allows grids with ghost cells:
grid.ghostSize() >= 0

237 / 240

Parallel Grids and Parallel Solvers

ISTL Backend
Create a parallel grid with overlap, e.g. Dune::YaspGrid , Dune::SPGrid .
Assembling happens on the Partition::all (local) entities.
Only iterative solvers can be used!
Local data structures are always up-to-date, since overlapping ensures synchronization

Examples
Choose parallel preconditioner: ParSSOR (pssor), BlockJacobi (bjacobi), or AMG

prob->solver: pcg
prob->solver->precon: bjacobi
prob->solver->precon->sub precon: ilu % precon to be applied on subdomains

238 / 240

Parallel Grids and Parallel Solvers

PETSc Backend
Create a parallel grid w/ or w/o overlap/ghost, e.g. Dune::UGGrid , Dune::ALUGrid ,...
Basis provides DistributedCommunication that holds a parallel DOF-map, mapping
local to global indices.
Assembling happens on the Partition::interior entities.
Ghost/Overlapping entities are used to collect data from neighbouring processors
during synchronization.
Classification of each DOF as owner and non-owner DOF on each processor, i.e., a DOF
belongs to exactly one process.
Vectors and Matrices perform communication of data on insertion and before access.
Data is automatically synchronized. But: Do not mix read and write access to data
expensive

→

239 / 240

Parallel Grids and Parallel Solvers

PETSc Backend

Examples
PETSc Matrix type: MATMPIAIJ (parallel sparse matrix), PETSc Vector type: VECMPI (parallel
vector with ghost padding)
Support all solvers and preconditioners for these matrix/vector types

prob->solver: cg
prob->solver->pc: bjacobi
prob->solver->pc->sub ksp: preonly % solver to be applied on subdomains
prob->solver->pc->sub ksp->pc: ilu % preconditioner to use for ths sub solver

240 / 240

