
The DUNE Grid Interface

"People think that computer science is the art of geniuses but the actual reality is the
opposite, just many people doing things that build on each other, like a wall of mini

stones." - Donald E. Knuth

22 / 88

The DUNE Grid Interface
Weak formulation of boundary value problem:

with and are (bi)linear forms, e.g.,

with spatial domain

Find u ∈ U s.t. a(u, v) = l(v) ∀v ∈ V

a(u, v) l(v)

a(u, v) = ∇u ⋅∫
Ω

∇v dx, l(v) = f(x) v dx,∫
Ω

Ω ∈ Rd

23 / 88

The DUNE Grid Interface
Weak formulation of boundary value problem:

with and are (bi)linear forms, e.g.,

with spatial domain

Grids are necessary for at least three reasons:

1. Piecewise description of the complicated domain
2. Piecewise approximation of functions (by polynomials)
3. Piecewise computation of integrals (by numerical quadrature)

Find u ∈ U s.t. a(u, v) = l(v) ∀v ∈ V

a(u, v) l(v)

a(u, v) = ∇u ⋅∫
Ω

∇v dx, l(v) = f(x) v dx,∫
Ω

Ω ∈ Rd

Ω

23 / 88

The DUNE Grid Interface
The DUNE Grid Module is one of the five DUNE Core Modules.
DUNE wants to provide an interfaces for grid-based methods. Therefore the concept of
a Grid is the central part of DUNE.
dune-grid provides the interfaces, following the concept of a Grid.
Its implementation follows the three design principles of DUNE:

Flexibility: Separation of data structures and algorithms.
Efficiency: Generic programming techniques.
Legacy Code: Reuse existing finite element software.

24 / 88

Designed to support a wide range of Grids

25 / 88

DUNE Grid Interface Features
Provide abstract interface to grids with:

Arbitrary dimension embedded in a world dimension,
multiple element types,
conforming or nonconforming,
hierarchical, local refinement,
arbitrary refinement rules (conforming or nonconforming),
parallel data distribution and communication,
dynamic load balancing.

Reuse existing implementations (ALU, UG, Alberta) + special implementations (YaspGrid,
FoamGrid).
Meta-Grids built on-top of the interface (GeometryGrid, SubGrid, MultiDomainGrid,
SubdomainGrid, CurvedGrid)

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Computing. (2008)

26 / 88

The Grid
A formal specification of grids is required to enable an accurate description of the grid
interface.

In DUNE a Grid is always a hierarchic grid of
dimension d , existing in a w dimensional
space. The Grid is parametrized by

the dimension d ,
the world dimension w
and the maximum level J .

27 / 88

The Grid... A Container of Entities...

vertices
edges
faces
...
cells

28 / 88

The Grid... A Container of Entities...

vertices
edges
faces
...
cells

In order to do dimension independent programming, we need a dimension independent
naming for different entities.

28 / 88

The Grid... A Container of Entities...

vertices (Entity codim = d)
edges (Entity codim = d - 1)
faces (Entity codim = d - 2)
...
cells (Entity codim = 0)

In order to do dimension independent programming, we need a dimension independent
naming for different entities.

We distinguish entities according to their codimension. Entities of codim = c contain
subentities of codim = c + 1 . This gives a recursive construction down to codim = d .

29 / 88

The DUNE Grid Interface
The DUNE Grid Interface is a collection of classes and methods

#include <dune/grid/yaspgrid.hh>

// ...

// Create a 2d structured grid of [0,1] x [0,1]
using Grid = Dune::YaspGrid<2>;
Grid grid{ {1.0, 1.0}, {4, 4} };

// traverse the grid
auto gv = grid.leafGridView();
for (auto const& cell : elements(gv)) {
 // do something
}

30 / 88

The DUNE Grid Interface
The DUNE Grid Interface is a collection of classes and methods

#include <dune/grid/yaspgrid.hh>

// ...

// Create a 2d structured grid of [0,1] x [0,1]
using Grid = Dune::YaspGrid<2>;
Grid grid{ {1.0, 1.0}, {4, 4} };

// traverse the grid
auto gv = grid.leafGridView();
for (auto const& cell : elements(gv)) {
 // do something
}

We will now get to know the most important classes and see how they interact.

30 / 88

Modifying a Grid
The DUNE Grid interface follows the View-only Concept.

View-Only Concept
Views offer (read-only) access to the data

Read-only access to grid entities allow the consequent use of const .
Access to entities is only through iterators for a certain view.
This allows on-the-fly implementations.

Data can only be modified in the primary container (the Grid)

31 / 88

Modifying a Grid
The DUNE Grid interface follows the View-only Concept.

View-Only Concept
Views offer (read-only) access to the data

Read-only access to grid entities allow the consequent use of const .
Access to entities is only through iterators for a certain view.
This allows on-the-fly implementations.

Data can only be modified in the primary container (the Grid)

Modification Methods:
Global Refinement
Local Refinement & Adaption
Load Balancing

31 / 88

Views to the Grid
A Grid offers two major views:

levelwise: all entities associated with the
same level.

leafwise: all leaf entities (entities which are
not refined).

32 / 88

Views to the Grid
A Grid offers two major views:

levelwise: all entities associated with the
same level.

Note: not all levels must cover the whole
domain.

leafwise: all leaf entities (entities which are
not refined).

The leaf view can be seen as the projection of
a levels onto a flat grid. It again covers the
whole domain.

33 / 88

Views to the Grid

Dune::GridView
The Dune::GridView class consolidates all information depending on the current
View.

34 / 88

Views to the Grid

Dune::GridView
The Dune::GridView class consolidates all information depending on the current
View.
Every Grid must provide

Grid::LeafGridView and
Grid::LevelGridView .

34 / 88

Views to the Grid

Dune::GridView
The Dune::GridView class consolidates all information depending on the current
View.
Every Grid must provide

Grid::LeafGridView and
Grid::LevelGridView .

The Grid creates a new view every time you ask it for one, so you need to store a copy of
it.
Accessing the Views:

Grid::leafGridView() and
Grid::levelGridView(int level) .

34 / 88

Iterating over grid entities
Typically, most code uses the grid to iterate over some of its entities (e.g. cells) and
perform some calculations with each of those entities.

GridView supports iteration over all entities of one codimension.
Iteration uses C++11 range-based for loops:

for (auto const& cell : elements(gv)) {
 // do some work with cell
}

35 / 88

Iteration functions
You can do similar calls for other entity types:

// Iterates over cells (codim = 0)
for (const auto& c : elements(gv))
// Iterates over vertices (dim = 0)
for (const auto& v : vertices(gv))
// Iterates over facets (codim = 1)
for (const auto& f : facets(gv))
// Iterates over edges (dim = 1)
for (const auto& e : edges(gv))

// Iterates over entities with a given codimension (here : 2)
for (const auto& e : entities(gv, Dune::Codim<2>{}))
// Iterates over entities with a given dimension (here : 2)
for (const auto& e : entities(gv, Dune::Dim<2>{}))

36 / 88

Entities

37 / 88

Entities
Iterating over a grid view, we get access to the entities.

for (const auto& cell : elements(gv)) {
 cell.?????(); // what can we do here ?
}

Entities cannot be modified.
Entities can be copied and stored (but copies might be expensive!).
Entities provide topological and geometrical information.

38 / 88

Entities
An Entity T provides both topological information

Type of the entity (triangle, quadrilateral, etc.).
Relations to other entities.

and geometrical information
Position of the entity in the grid.

Entity T is defined by...

Reference Element
Transformation

GridView::Codim<c>::Entity
implements the entity
concept.

T ref

F T

39 / 88

Storing Entities
GridView::Codim<c>::Entity

Entities can be copied and stored like any normal object.
Important: There can be multiple entity objects for a single logical grid entity (because
they can be copied)
Memory expensive, but fast.

40 / 88

Storing Entities
GridView::Codim<c>::Entity

Entities can be copied and stored like any normal object.
Important: There can be multiple entity objects for a single logical grid entity (because
they can be copied)
Memory expensive, but fast.

GridView::Codim<c>::EntitySeed

Store minimal information to find an entity again.
Create like this:
auto entity_seed = entity.seed();

The grid can create a new Entity object from an EntitySeed:
auto entity = grid.entity(entity_seed);

Memory efficient, but run-time overhead to recreate entity.

40 / 88

Reference Elements
Dune::GeometryType identifies the type of the entity's reference element.
cell.type() returns the GeometryType of an entity.

41 / 88

Geometry Types
GeometryType is a simple identifier for a reference element

Obtain from entity or geometry object using .type()
GeometryType for specific reference elements in namespace Dune::GeometryTypes :

#include <dune/geometry/type.hh>
...
namespace GeometryTypes = Dune::GeometryTypes;
Dune::GeometryType gt;

gt = GeometryTypes::vertex;
gt = GeometryTypes::line;
gt = GeometryTypes::triangle;
gt = GeometryTypes::square;
gt = GeometryTypes::hexahedron;
gt = GeometryTypes::cube(dim);
gt = GeometryTypes::simplex(dim);

GeometryTypes are cheap, always store and pass around copies (don't use references)

42 / 88

ReferenceElement (I)
A reference element provides topological and geometrical information about the
embedding of subentities:

Numbering of subentities within the reference element
Geometrical mappings from reference elements of subentities to the current reference
element

43 / 88

ReferenceElement (II)
Reference elements are templated on the dimension and the coordinate field type
#include <dune/geometry/referenceelement.hh>
...
Dune::ReferenceElement<double, dim> ref_el = ...;

The function Dune::referenceElement() will extract the reference element from
most objects that have one:
auto ref_el = Dune::referenceElement(entity.geometry()); // or
auto ref_el = Dune::referenceElement(entity);

When using this function, you don’t have to figure out the template parameters.
ReferenceElements are cheap, always store and pass around copies (don't use
references)

44 / 88

Geometry
Transformation

Maps from one space to an other.
Main purpose is to map from the reference element to global coordinates.
Provides transposed inverse of the Jacobian .
Gramian determinant of transformation Jacobian for quadrature.

F T

J F
−T

45 / 88

Geometry Interface (I)
Obtain Geometry from entity
auto geo = entity.geometry();

Convert local coordinate to global coordinate
auto x_global = geo.global(x_local);

Convert global coordinate to local coordinate
auto x_local = geo.local(x_global);

46 / 88

Geometry Interface (I)
Obtain Geometry from entity
auto geo = entity.geometry();

Convert local coordinate to global coordinate
auto x_global = geo.global(x_local);

Convert global coordinate to local coordinate
auto x_local = geo.local(x_global);

Get center of geometry in global coordinates
auto center = geo.center();

Get number of corners of the geometry (e.g. 3 for a triangle)
auto num_corners = geo.corners();

Get global coordinates of i-th geometry corner (geo.corners())
auto corner_global = geo.corner(i);

0 ≤ i <

46 / 88

Geometry Interface (II)
Get type of reference element
auto geometry_type = geo.type(); // square , triangle , ...

Find out whether geometry is affine
if (geo.affine()) {
// do something optimized
}

Get volume of geometry in global coordinate system
auto volume = geo.volume();

Get integration element for a local coordinate (required for numerical integration)
auto mu = geo.integrationElement(x_local);

47 / 88

Gradient Transformation
Assume

evaluated on a cell , i.e., .

The gradient of is then given by

auto x_global = geo.global(x_local);
auto J_inv = geo.jacobianInverseTransposed(x_local);
auto tmp = grad(f)(x_global); // grad(f) supplied by user
<grad_type> gradient; // something like FieldVector<double,dimworld>
J_inv.mv(tmp, gradient);

f : Ω → R
T f(F ())T x̂

f

J () f(F ())F
−T x̂ ∇̂ T x̂

48 / 88

Obtaining Quadrature Rules
Numerical quadrature rules given by

dune-geometry provides pre-defined quadrature rules for common geometry types:
#include <dune/geometry/quadraturerules.hh>
...
Dune::GeometryType gt = ...;
auto const& rule = Dune::QuadratureRules<double, dim>::rule(gt, order);

The rule factory is parameterized by the number type (typically use Grid::ctype) and
the dimension of the integration domain, e.g. Entity::mydimension
The rule is exact for polynomials up to the given order
Use auto const& for the type of the rule to avoid expensive copies
Optional third parameter to select type of rule (Jacobi, Legendre, Lobatto)

 () d ≈∫
T ref

f̂ x̂ x̂ w ()
i=0

∑
N

if̂ x̂i

49 / 88

Using Quadrature Rules
A QuadratureRule is a range of QuadraturePoint s.
QuadraturePoint provides weight and position:

QuadraturePoint::weight()
QuadraturePoint::position()

50 / 88

Using Quadrature Rules
A QuadratureRule is a range of QuadraturePoint s.
QuadraturePoint provides weight and position:

QuadraturePoint::weight()
QuadraturePoint::position()

Example
auto fLocal = some_function_to_integrate(...);
double integral = 0.0;
auto geo = cell.geometry();
for (const auto& qp : rule)
{
 integral += fLocal(qp.position()) ⁎ qp.weight() * geo.integrationElement(qp.position());
}

50 / 88

Using Quadrature Rules
A QuadratureRule is a range of QuadraturePoint s.
QuadraturePoint provides weight and position:

QuadraturePoint::weight()
QuadraturePoint::position()

Example
auto fLocal = some_function_to_integrate(...);
double integral = 0.0;
auto geo = cell.geometry();
for (const auto& qp : rule)
{
 integral += fLocal(qp.position()) ⁎ qp.weight() * geo.integrationElement(qp.position());
}

Attention: When integrating over cells in a grid, keep in mind that the quadrature
point coordinates are local to the reference element.

50 / 88

Exercise 2

51 / 88

Exercise 2
1. Create a new dune module dune-grid-exercise using the tool duneproject
2. Create a structured grid for the domain with 8 elements in each

direction. Therefore, use either YaspGrid or SPGrid .
3. Implement a function that computes the numerical integration of a given function

 over the domain . Therefore, traverse the grid and create a
QuadratureRule on each grid entity. For each quadrature point, evaluate the function

 in global coordinates by mapping element-local coordinates using the element
geometry.

Ω = [0, 2] × [0, 2]

f :
Ω → R Ω

f

52 / 88

Exercise 2
Concrete setup:

Compute the numerical quadrature of the function

f(x) = sin(x) ⋅0 cos(x)1

53 / 88

