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ABSTRACT

The property of an operation to preserve a relation induces
a Galois connection between sets of operations and relations,
resp. This Galois connection (Pol ~ Inv) for operations and
relations on an arbitrary sget will be investigated in the
present. paper{(part 1). The Galois closed sets can be charac-
terized as local closures of clones of operations or rela-
tions, resp. These results are applied to concrete characte-
rization problems (part 2). In particulsr, the concrete cha-
racterization of automorphism groups, endomorphism semigroups,
subalgebra lattices and congruence lattices of universal (or
relational) algebras is treated in detailed form.

ZUSANMMENFASSUNG

Die Eigenschaft einer Funktion, eine Relation zu bewahren
induziert eine Galoisverbindung zwischen Funktionen- und
‘Relationenmengen. In der vorliegenden Arbeit wird diese Ga-
loisverbindung (Pol - Inv) fir Operationen und Relationen auf
einer beliebigen Menge untersucht (Teil 1), Die Galois-abge-
gchlossenen Mengen werden als lokale AbschlieBungen von
Operationen- bzw. Relationenklons characterisiert. Diese
Ergebnisse werden auf konkrete Charakterisierungsprobleme
angewendet (Teil 2). Dabei wird besonders auf die konkrete
Charakterisierung von Automorphismengruppe, Endomorphismen-
halbgruppe, Unteralgebrenverband und Kongruenzrelationen-
verband universaler (z.T. auch relationaler) Algebren ein-
gegangen.



PE3DIME

CsoilcTBO PyHKOIUU COXPAHATH OTHOVEHHE WHAYNUDYET COOTHONEHNE
larya Mexny mMHozmecTBaum OGyHKOUH 1 orromeHnd. B mamuo# padbore
necenexyerca 3To coornomenue larya (LPol-Inv) Ina omepannit

7 OTHONEHU! Ha mpPom3BOIBHOM Muomecrtre /gacts 1/.
lNarya-saMHHYTHE MHORCCTBS XADAKTEPHAYDTCH KaK JNTOKATBHHE 3a-
MHKOHUSA KJOHOB onepansi urmM, cooTBeTCTBEHHO, OoTHomeHui,

oTH peayﬁbmamu OpUMEeHADLTCA ANA HIpofiseu xowkpernHolft xapaxrepu-
sanun /wacts 2/. Ilpu 2TOoM ocOoB0€ BHUMAHME VAENAETCA KOHKDET-
Ho#l xapaxkTepmsanny TDYNIT a&BTOMODPMIB¥OB, TOAYDIDYHOI DHILOMOP-
PUBMOB, CTPYKTYD MOZANresp U KOHTPYEHTNN YHUBEDCANBUHX /Uin
penammonansuax,/ arresp.
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INTRODUCTION

Every universal algebra (I ={A;F) is associated with so-
called related structures, e.g., with the lattices
Sub@ and Con8{ of its subalgebras and congruences respec-
tively or with its group AutO of automorphisms.

Such related structures have a common property: for in-
stance, BeSub(l, 6€Con(l and feAutfl can be considered as
relations of a special kind (here unary or equivalence rela-
tions and permutations f: A —%» A considered as subsets of
AxA ) which are preserved by all (fundamental) operations
geF of Eiu(A;E>. Therefore, in general, we are interested in
relations on A which are invariant for (i.e. preserved
by) all geF.

The property "operation preserves relation" induces a
Galois connection between sets of operations and relations,
resp. For a set Q (I, resp.) of relations (operations), let
Pol Q (Inv F) be the set of all operations (relations) which
preserve (are invariant for) all relations in Q (operations
in F, respectively). Then the operators Pol - Inv establish
the mentioned Galois connection.

That what we call "General Galois theory for operations
and relations" includes mainly the following topics:

a) Investigation of the Galois connection ©Pol - Inv (and

geveral modifications and restrictions of it);

b) Characterization of the Galois closed sets;

c) Investigation of properties of operational systems by

means of properties of related systems of invariant
relations (and vice versa).

It turns out that there are close connections (in particu-
lar of b)) to so-called concrete characterization
problems , that means, e.g., the characterization of the
lattices Sub®@ , Con{! and of the group Aut@ for all al-
gebras with underlying set A as sets of subsets of A, gsets
of partitions on A and sets of permutations on A, resp.



In fact, a set Q of relations is the set of all invari-
ant relations of a universal algebra @ ={A;F) iff Q=
Inv Pol Q. The only problem now consists in finding suitable
closure operations to define "clones of relations" [Q] in
such a way that they coincide with the Galols closure
Inv Pol Q.

Note that - by the above obgervations (for more details
see §15) ~ every solution of a concrete characterization
problem provides a characterization of a Galois closure and
vice versa.

In the present paper we are mainly concerned with results
on the Galois connection Pol -Inv (Part 1) and the appli-
cation of these reésults to concrete characterization pro-
blems (Part 2). First of all we will list some references
which also reflect the historical developement of our topic.
___________________________________________ )

KRASNER (1938, eee ,1976) (nainly for permutation groups and

transformation semigroups); KUZNECOV(1959); GEIGER(1968);

BODNARCUK/KALUZNIN/KOTOV/ROMOV(1969); POSCHEL/KALUZNIN

(1979) (for finite sets A); ROSENBERG(1972,..,1979);

POTIZAT (1971 5 eee ,1979), KRASNER/POIZAT(1976) (most general

case); POSCHEL(1973)(for heterogeneous algebras); LECOMTE

(1976/77); SAUER/STOWE(1977/78); ROMOV(1977); POSCHEL(1979)%
FLEISCHER(1978).

related structures "up to isomorphism"):

BIRKHOFF(1946); BIRKHOFF/FRINK(1948); GRATZER/SCHMIDT
(1963); E.T.SCHMIDT(1963/64); GRATZER/LAMPE(1967);
JONSSON(1974); SCHEIN/TROHIMENKO(1979).

. — AP S - o A D G ——— S — - G o —— ——— e s

Automorphism group: KRASNER(1950); ARMBRUST/SCHMIDT(1970);
JéNSSON(1968); PEONKA(1968); JéHSSON(1972); GOULD(1972a)

(for algebras of finite type); SZABO(1975), BREDIHIN(1976)
T . (for local automorphisms).
) ¢f. also §4, p.32.




Endomorphism semigroup (Problem 3 in /Gr/):  LAMPE(1968);
GRATZER/LAMPE(1968); JEZEK(1972); STONE(1969/75);
szaBO(1978); (cf./T6n74]).

Subalgebra lattice:  BIRKHOFF/FRINK(1948) (cf./JbnT727);
JOBNSON/SEIFERT(1967) (for unary algebras); GOULD(1968)
(in particular for algebras of finite type).

Congruence lattice(Problem 2 in /Gr/):  ARMBRUST(1970);
S.BURRS/H.,CRAPO/A.DAY/D.HIGGS/W.NICKOLS(cf./36n72(p. 174
QUACKENBUSH/WOLK(1971); JONSSON(1972(Thm. 4.4.1)); DrRASKO-~
vIZOVA(1974); WERNER(1974).

Automorphism group & subalgebra lattices STONE(1972);
GOULD(1972b) (for algebras of finite type).

Endomorphism semigroup & subalgebra lattice:
SAUER/STONE(1977a); (cf./J6n74]).

Automorphism group & congruence lattice:
WERNER (1974) (Problem 4 and conjecture /WeT4(p. 452)7).

All structures together (automorphisms, endomorphisms, sub-~
algebras, congruences): SZABO(1978); POSCHEL(1979).

Ggneral gsystems of relations (in particular subalgebra lat-
tice of cartesian powers of algebras):
BODNARGUK /KALUZNIN/KOTOV/ROMOV (1969 ); DANTONI(1969);
POSCHEL/KALUZNIN(1979); SZABO(1978); POSCHEL(1979);
ROSENBERG(1978) .

Explicitely we want to mention the work of M. Krasner,
D. Geiger and L. Szabb. M. Krasner was the first who syste-
matically investigated Galois connections between (unary)
operations and relations (therefore, in §16, we introduce
the notion "Krasner-clone"). D. Geiger obtained the main re-~
sults of /Bo/Kal/, too, and outlined how to investigate the
infinite case. L. Szabd characterized in /Sz78/ clones of
relations by a closure property with respect to so-called
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formula schemes and (independently) obtained essentially the
same results concerning some of the concrete characterization
problems.

We shortly outline now the content of the present paper.

In FT we introduce or recall nearly all used notions and
notations and give some preliminary results.

In J2 clones of operations are considered and some pro-
perties with respect to invariant relations are given.

In §§ clones of relations are introduced (and motivated).
Some closure properties of these clones are given.

In §Z +the Galois closed sets of operations and relations
(with respect to Pol - Inv) are characterized as local closu-
resg of clones of operations and relations, respectively.
Restrictions on the arity of operations and relations under
consideration are investigated, too.

In §5 we consider the concrete characterization problem
how to characterize those sets F of operations which are
"related" to some relational sgystem <$'=<A;Q>(related means
€ele F=atl, F=Hom(i’9m,£»), F =Pol Q, etc.).

In §§ the following concrete characterization problem is
considered: How to characterize those sets Q of relations
which are '"related" to some universal algebra E1=(A;F>(rela-
ted means e.g. Q=Conf , Q=Autfl , Q=5Sub @&, Q=1Inv F).
There are also some contributions to the case where @ is of
bounded rank or has a finite system of (fundamental) opera-
tions.

The problems considered in §6 will be specialized in §z
where we answer the question for a simultaneous concrete cha-
racterization of automorphism group, endomorphism monoid,
subalgebra and congruence lattices of universal algebras.

Of course, these gpecial related structures are of great
algebraic interest. Therefore the concrete characterization
of (one or simultaneously two of) these structures will be
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treated in detailed form in 5@5:71. A survey on many, par-
tially well-known, results is given and the application of
the General Galois theory ig demonstrated. This yields gome-
times new results, sometimes new proofs for known results.
The results of §6 provide an answer to all concrete characte-~
rization problems of related structures of algebras in terms
of clones of relations (or operations). Nevertheless we think
thege results not to be final onesg because in special cases
gimpler characterizations might be obtained (and can be ob-
tained as shown sometimes in §§8-14). Thus, more or less ex-
plicitely, a lot of problems for further investigations is
contained in §§8-14.

In §15 we will explaine once more explicitely the inter-
dependences of concrete characterization problems and the
characterization of Galois closed sets with respect to a ca-
narcally related Galois connection, From this point of view
we summarize the results given in previous paragraphs(§§4-14)
by listing which results characterize properly which Galois
connection.

In EEE we investigate invariant relations of unary, in
particular bijective operations. These relations (are charac-
terized as Galois closed sets of the corresponding Galois
connection Inv-End or Inv-Aut and) form so-called Kras-
ner-clones (of TSt or 2nd kind). The inclusions Inv Aut Q 2
2 Inv End Q 2 Inv Pol Q suggest that Krasner-clones might be
characterized by closure properties which are somewhat stron-
ger than those for ordinary clones of relations. This will
be clarified in {16.

In the paper, all definitions, propositions etc. are num-
bered consecutively; the first number which occurs on a page
is marked also on the top of this page. The end of a proof
(or of a statement with easy proof) is marked by B . Referen-
ces are given in brackets, sometimes with some further infor-
mations in parenthesis, e.g. /J6n72(Thm. 3.6.4)/.
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The following picture shows the interdependence of the

paragraphs:

| Introduction |

The objective of the paper presented here is the introduc-
tion of a General Galois theory (for operations and relations)
as a helpful background for concrete characterizations of re-
lated algebraic structures. llowever, there remains many things
to do; e.g., the involved notion of a clone of relations needs
much more detailed investigations in order to get conditions
which are '"easy" to check.

Almost all paragraphs of the present paper had been written
up: during 1977, but for nearly two years the author unfortuna-
tely could not find time enough to write up the final version.
Some resgults were outlined in a lecture given at the conferen-
ce on "Allgemeine Algebra" in Klagenfurt (Austria, May 1978);
a short note (in which the present paper was refered to as a
preprint) was published in the proceedings of this conference

(cf. [P5797).

ACKNOWLEDGEMENT . I want to express my thanks to Professor
L.A. Kalu¥nin who directed my attention to the investigation
of a "General Galois theory" and showed a continuous interest
on my work.
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Part 1

CLONES AND THE GALOIS CONNECTION Pol-Inv

§1 Definitions and Preliminaries

1.1  Let A be an arbitrary set (with [A] 2 2) and let m,neW,
where IJ:{I,Z,B,...} denotes the set of all natural numbers
(without zero). Let g={0,1 y oee ,m-1} . With

ogn)={flf:An~>A} and
R(™ =fgl gca”} , resp.,

we denote the sets of all n-ary operations and m-ary rela-

tions, resp., on the set A. Let

= \U o™ g g, = U g,
nemw A U0 AT ¥m A

Op
Universal algebras <A;(fi)ie1>or relational’
algebras (i.e. relational systems /Gr(p.8)7) <A;(?i)iel>
of some similiarity type are denoted shortly by <A;E> or
(A;Q) where F={fi]iel} and Q={gi]itl}, respectively, because
we are not interested in the type of these élgebras.

A1l considerations will be restricted to finitary (except
nullary) operations and relations. But it should be mentioned
that most of the given results can be generalized to infini-
tary operations and relations (for this purpose one has to
substitute I by a suitable chosen limit ordinal - or car-
dinal - number); we refer to [Kr/Poi/,/Poi8Q/ for this app-
roach. To avoid some technical modifications, nullary opera-

tions (constants) are not considered in universal algebras.



1.2 (1.2)

For our purposes nullary operations can be replaced by unary
constant operations.
The components of elements xeA™ of the cartesian power

A™ of A are denoted by x(i) (iem), i.e.,

X =(x(i))iem or

x =(x(0),. :x(m-‘l )) (sometimes also x = (X 3 oo - ))e
If feoin), xeA”, we write fx for f(xo,...,xn_1).
For r1,...,rneAm,

f(I‘1 y oee ,rn)

denotes the m-tupel (f(r,(1),.. ’rn(i)))ie_rg‘

1,2 The most important notion for our investigations is

the following one: A relation geRj(Xm) is said to be in-
(n)

variant for an operation fe0, (or f preserves g,

fisa polymorphism of g, f admits ¢, @ is

stable for f) if f(r;,..,r,) belongs to g whenever
T see T €S . The empty relation ¢ is preserved by every
operation féOA.

Note that £ preserves @ iff ¢ is (the base set of) a subalge-

bra of <A;f>m or, equivalently, iff f is homomorphism of
<A;9>n into {A;g).
1.3 Sometimes, for feo‘gn), we consider the relation
f. = {(XO,... ,Xn_1 ,Xn) (3 An+1 ' f(xo,ooo ,Xn_1 )=xn}
instead of the operation f. Thus, for FgOA, the "dotted"
P =ff*| feF}
will remind us that we have to handle the operation like re-

lations. It 1s well known that geOA preserves f’éOA' iff
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g and f commute.

1.4 For FecO, and Q&R, we use the following notations:

A A
F(n):=FnO£n), Q(m):= QnRgm) (n,meIV),
Pol Q=P01AQ==§f€OAI f preserves all ¢eQ}
(polymorphisms of Q),

PolAF t= PolAF' ’

Inv F= InvAF:={geRAI ¢ is invariant for all feF}

- —— — — —— — — i g o Bt ot S = - —

where SA denotes the full symmetric group (of all
permutations) on A. We write shortly Pole¢, Inv f ,... for

Pol{s}, Inv{f},... (3¢R,, fe0,). Clearly we have:

2 w-Aut Q24Aut Q ,

Inv F2.. ,_2Inv(n+1 )F gInv(n)F 2 eee 2 Inv(1 )F .

1.5 Remarks. (i) Pol(n)Q is the set of all homomorphisms of

the relational algebra <A;Q>" into <(4;Q).

(ii) Inv(m)F is the set of all (base sets of) subalgebras of
{A;F); in particular, Inv(1')F ig the set Sub&l of all sub-
algebras of (O =(A;F).

#
) In /P5T797 they are called automorphisms,
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(iii) (Pol F)°* =OA
(iv) (Pol(n)F)‘ < Inv(m"| )F, nelN .

nInv F.

1.6 We define, feS, strongly preserves geR‘l(\m)

if {f(r.)l reg = € , i.e.y, if f 1is an isomorphism(cf./Gr/)
of the relational system <A;¢)> onto (A;$> . Then we have:

a) AutAQ ig the set of all feSA which strongly preserve

each ¢eQg Ry
-1

also preserves ¢eQ.B). One easily sees that AutAQ is a

subgroup of SA’

b) For finite A we have w-Aut Q = Aut Q (since few-Aut Q

implies f£%= fe..ofew-Aut Q and|{Jnem: £~ =anor all fGSA)],
but '

¢c) in general, w-Aut Q properly contains Aut Q.

- — —— v T o o ——

(ExamEle: A=Z={ oco,-1 ,0,1 ’.2,00-}, f: XF—-’X+1, 9=N€R§1),
few-Aute but f_1¢ w-Autg , i.e. w-Autg 2 Aut ¢ .)

d) Nevertheless, we have

w—AutAQ = AutAQ also for infinite A
if for all non-trivial ¢@<¢Q holds Isl < No or ¢=g°

for some ge0,. 6T 19 €Q

(The proof is left to the reader as an easy exercise.) R

— e = o —

1.7 Proposition. The operators Pol and Inv define a

Galois connection between the subsets of R, and the subsets

of 0,. In particular we have

F«;—F'QOA => Inv F 2 Inv P'
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QgQ"—iRA = Pol Q 2 Pol Q',
F < Pol Inv F, Q € Inv Pol Q,
Pol Q = Pol Inv Pol Q, Inv F = Inv Pol Inv F,

ieT ieT ieT ieT

1.8 For Fg0,, QgR, and <A™ (me) we define

1%e) :=N{ger{™ |ocgeql,
I‘F(e') :=ﬂ{§eRXm)l0g ge‘InvAF} .

I‘F(e’) ig (the base set of) the subalgebra of <A;F>m genera-
ted by & and belongé to Inv P (since Inv F 1is closed

under arbitrary intersections), cf. 1.5(ii). Thus

T o(g) = 3’%&{ Tple) for all gelnv F.
1< R,

Moreover, I‘F(g) =@ &> geInv F . N

1.9 For the investigation of "local properties" of opera-
tions and relations we define the following local clo-

sure operators (sel, FgOA, QERA):

g-Loc F :={feo§n)} VB A", [Bi<s, JgeP: £|B=glB;
né]N *

This is the set of all n-ary operations (nelN) with the pro-
perty that for every subset B of A" with at most s ele-
ments there exists a member of F +that agrees with f on B.
Loc F := ﬂ s-loc F ,
ge N
i.e.,f belongs to Loc F iff f agrees with some geF on

every finite subset.
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8-10C Q =={ S € RAI V Beg, Bles J oca: Bgfr;:g}
This is the set of all m-ary relations ¢ (melN) such that
for every subset B of @ with at most s elements there
exists a member of Q +that agrees with @ on B and is
contained in ¢ .

LOC Q := ﬂ s-L0C Q.

sell

Remarks.  (1)(Zoc F)(Maroc F(®), (zoc @) ™=1oc Q™) (nem).
(i1) A relation ¢ belongs to s-L0C Q (if and) only if
for all Bg A" with |Bl4s there exists a 6¢Q with
¢nBe6sg . We have @es-10C Q &> @eQ .

In the next propositions we collect some properties of

these local operators.

1,10 Proposition. Let F&F'c O QgQ'gRA, 8,8'eN. Then:

A’
(1) 1<Loc F 2 . 2 8~Loc F2(s+1)-Loc F2e. 2 Loc F 2 F.

(ii)1-L0CQ 2 «. 2 8-LOC Q2(8+1)-10CQ2.. 2 LOC Q 2 Q.

(111) All operators defined in 1.9 are closure operators;

in particular we have:

s-Loc F ¢ s-Loc F' , s-LOC Q ¢ s-LOC Q' ,

Loc Loc F = Loc F , IOC LOC Q = LOC Q
s-Loc¢c s'~Loc F = s"-Loc F, 8-LOCs'-L0OC Q = 8"-10C Q,
where s" = min.{s,s'} ,

Lo¢ s-Loc F = s-Loc Loc F = s-Loc F,

LOC s~LOC Q = s8~LOC LOC Q = s~LOC Q.

(iv) For finite A we have

Loc F = F and ILOC Q = Q for all FgOA, QgRA.
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(v) g-L0C P* = F* for s2>2.

=

The proofs easgily follow from the definitions. B

1.11 Propogition.
(a) Loc(Pol Q) = Pol Q@ for QcR,.

(b) g-Loc(Pol Q)=Pol Q for Q-ELRg)V... VRI(&S), scIN.

(a") LOC(Inv F) = Inv P for Fg.-OA.
(b 8-L0C(Inv F)=Inv F for 1’"_5;0‘%1 )u vof“s), selN.

(c) We mention here that, in general, Loc G 1s not con-
if GgsS

tained in SA Ic But all feloc SA are injective.

Proof. PFor (a)-(b') we have to show that the left side
is contained in the right one.

(b): Let fe(s-Loc Pol Q)(n) and 9éQ(s'), g'<s . For Ty yeeesT
€¢ and B'={(r'1 (i),...,rn(i)lies_' }gAn there exists a gePolQ
such that f|B=g|B, consequently f(r1 ,...,rn)=g(r1 ,...,rn)c-g.
Thus fePol Q.(The proof of (a) runs with the same argument).
(b'): Let §€(s-LOC Inv F)(m) and feF(s'), s8'< g. For L IR
r, 1 €9 and Bz{r1 y ooo ,rs,}gg there exists a 6eInv F such that
{r1 y ose ,rs.}g—e'gg, consequently f(r1 ,...,rs,)efrgg. Thus
¢eInv F. ((a') can be proved in the same manner).

(c): Example: f: W —> IW: x > x+1 € (Loc SIN)\S]N' n

Another characterization of the operator LOC is given in

the next propositions. First of all we need the following

1.12 Definition. Recall, a set J of sets is called di-
rected (upwards) if for all X,YeJ there exists a 2ze€¢ T
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such that XuvuY¢Z. Now, let us call a set T of sets to be

rsexs there exists a 2€J such that {r1 s ooe ,rs}gz. (In the
terminology of M.Gould/Go68(p.472)/, J has the s-ary con -

tainment property.)

1.13 Proposition(cf./Go68(Th.1.1)7). Let QgR, be closed

under arbitrary intersections. Then the following holds:

(1) 10C Q =fUT |##T < @ anda T is directed} .
(i1) s-10C Q@ =fUT | @#T<c Q and T is s-directed},seIN.

Thus Q is closed under (s-)LOC iff Q 1is closed under ta-

king arbitrary unions of (s-)directed gystems of relations

of Q. In particular, 1-LOCQ is closed under arbitrary unions.

Proof. (i):"=>":Let ¢¢LOC Q. Then for finite B &9 there

exists at least one 6¢e¢Q with Bgs<c¢ , and we can define
65:=N{seq|Bessgl.

T:{ITBIng, B finite} is a directed gystem of elements of Q

(since G’Bv%' < G’BvB')'

gUng, ¢ is contained in the right side of (i).

Now, since 9=U{BIB<_-9, B finite}

"e ": Let 9=UTéRim) for a directed system J of relations
of Q and let B={r, ,...,rt}gg (teXi). Then there exist $, .,
?téT such that r;€ 91(1g'iet). Because J 1is directed there
exists a G’éT._C. Q such that B¢ PV VS 659 Thus, by
definition, ¢ LOCQ.

(ii):"=>": Let ¢€¢s-10CQ, Bs¢, |Bl4s, 6, as above. Then J =
S S B

{O'Bl Beg, lB(és} ig an s-directed system: in fact, for ry€ 6]31,
e sT €65 and B={r;,..,r Jco we have {r ,.,r j¢ O’BeT.

B
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Thus @ =UTbelongs to the right side of (ii). The opposite

direction can be proved analogjously to that of (i). N

1.14 Proposition. Let QC;-RA be cloged under arbitrary

intersections. Then the following conditions are equivalent

(seIN fixed):

(a) Q = s-10OC Q.

(b) BeQ 4f (and -clearly- only if) I%(X)c B
for all X¢B with [X|¢s. (Hotation cf. 1.8)

Proof. (a)=3Db) follows from B=U{I‘Q(X)l XC___iB,\X\gs} by

1.,13(ii) and the fact that all the ZDQ(X) form an s-directed
system. (b)=>(a): If T< Q is s-directed and X<¢B:=UT
with |X|¢s then, by definition, Xg¢Z for some z2€TJ, conse=
quently, T9(x) s T¥2)=2cUT =B. By (b) we get UJeq,
thus s-I0CQ €Q by 1.13. R

1.15 Remarks. The local operators introduced in 1.9 will
reflect those properties (of universal or relational algebrasg)
which are caused by the flnitarity of the operations and re-
lations under consideration. If we consider also infinitary
operations and relations most of all further results (§§4-6)
remain valid by del@ting these local operators (cf. also
[Xr/Poi/,/[Poi8Q/).

The investigation of algebraic structures by means of
"local" properties (together with closure properties w.r.t.
composition) is very obvious and often used in the litera-
ture (cf. for instance such notions as locally primal, local-
ly affine complete(cf./P6/Kal(§5.5)7), interpolation proper-
ties for algebras(cf. /Pix/, [Ist/K/Pix7,(Hu/Ns]/)),
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§2 Clones of operations

2.1 Let us recall the well-known notion of a clone: A set

FeO, is called a clone of operations on A,

- —— ot —— —-—— e o i o o ——f——r— o o - —

notation: F£0
if

(1) F contains all projections eIi1 (ien, neW) de-

fined by ef.Ll(xO yoos 9% 4 )=x and

i *
(ii) PFor geF(n), f1 ,...,fneF'(m)(n,meIN) the operation

g(f1 ,...,fn)x ¢ g(f1x,...,fnx), xeAm,
also belongs to F .

For FgOA, the clone generated by F 1is denoted by

{¥),. » shortly &
A

This is the least clone of operations containing F. The set
of all projections is a clone contained in every clone. The

fe{F) are also called superpositions of F.

. (1)
With F¢ S, (or F<O0, )
we denote that F 1is 8 subgroup (subsemigroup with unit)

of SA (or O£1)).

2.2 Remark. There are some other equivalent definitions of
a clone (cf. e.g./Schm.J./); e.g., one can consider the
full function algebra 9A=<OA;eg,Y,T,A,°>(cf.
Ma66,76/,/P5/Kal], where f,'l:’ or A can produce any permu-
tation or identification of wvariables of each féOA and o is
a gpecial composition of two functions) and the clones are

exactly the subalgebras of gA' By this way one can avoid
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the infinitely many superpostion operations in 2.1 (ii).

243 SA and 0(1) form a group and semigroup, resp., with re-

A
gpect to composition. For FQSA or FS,ZOE) the subgroup

or subsemigroup (with unit 6(1)) generated by F will be denoted

by <F>S or <F> (1) * respectively.
A OA
For finite A (but not in general) we have <F)S =<F> (1)
A O,
for FES,. A

Now we sre able to give an "inner" characterization of
g

I'F(G') (cf. 1.8) which does not use the invariants of F:

2.4 Proposition(/P5/Kel(1.1.19)7,/Gr(§9,Lemma 3)7). Let

FC,:OA and B'éRA. Then (cf. 1.8)

T'pls) ={g(r1 yore 3T, ) [ ge<F>(n) ,{r1 s oos ,rn}s;c-,ne ]N}.

Denote the right side with Y. One easily checks that J is in-
variant for all f€éF, and because {F) contains all projections
we have &<y, thus I'F(O')gb’ . At the other hand, I‘F(cy)e
Inv F implies g(r1,...,rn)éI‘F(6), il.e. yg¢ I'F(O'). ]

The following two lemmata show that the clone generating
process and the local closure do not change invariant rela-
tions and that the local closure preserves the property of

being a clone.
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2.5 Lemma. et QgR, and FecO,. Then

———

(1) PolAQ is a clone of operations, i.e.(PolAQ>OA= PolAQ;
(i1) s-Loc({F) is a clone of operations (seNN);

(1i1) Loc(F> is a clone of operations.

Proof. (1): The composition of functions preserving ¢eQ
algo preserves . (ii): Let ges-Loc F(n), f1 ,...,fnes-Loc F(m),
B={b; 5o sb JE AT, t 25, and B':=(f;b;,mm,f by )|[14121t].

Then there exist g'éF(m), f{,...,fﬁeF(n) such that g'|B' =
g|B', f:{IB = f4;/B (141 t). Therefore g(f, yow»f ) coincides
with g'(f!,«.,f!) on B, consequently g(f, ,...,fn)es-Loc<F>.
(11i): Clearly, with s-Loc{F)also the intersection Loc{F> of

all these is a clone. B

2.6 Lemma. Let F O,. Then we have:

(1) Invim)F = Inv_l(;m)<F>= Inv‘gm)Loc (F)= Inv‘gm)s-Loc(F>
for 1emesceli;

(i1) Inv,F = Inv,{F) = Inv,Loc(E).

Proof. (i): Let geInvj(Xm)F. Because the sets in (i) must

form (from left to right) a decreasing chain (c¢f.1.7) it suf-

(Mg Loc 7 . Clearly geInv(m)<F> (since su-

fices to show gélnv
perpositions of F also preserve ¢@(2.5(i))). Now, let fe
s-Loc(F)(n) and Ty ,e.,r €9. By definition of the s-locel clo-
sure(1.9,note m¢s), there exists a gé<F> guch that :f:’(r1 s ooe o
rn) =g(:r.| ,...,rn), congequently f(r1 ,...,rn)éf, i.e., f pre-
serves ¢ . Thus ¢eInv s-Loc{F).

(11) is a direct consequence of (i). ®H
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§3 Clones of relations

3.1 Motivations. There does not exist a fixed notion of a
"clone of relations". Something like a "clone" is given with
Suzlin’s theory of projective sets and, moreover, there are
close connections to the theory of cylindric algebras (Tar-
ski), polyadic algebras (Halmos) and the axiomatization of
enlargements (Robinson)(I wish to thank Prof. J.Schmidt for
this hint).

The definition we are going to provide now shall serve as an
analogon to clones of operations with respect to the Galois
connection Pol-Inv. There are two approaches to get canoni-
¢ally the notion of a clone of relations:

a) The clone of operations generated by Fg OA congists
of all term functions (i.e. superpositions of F) of the al-
gebra <A;F>(cf.[§n], 2.1). Therefore, for a relational alge-
bra {A; Q)(-QgRA) one can try to consider "term relations"
which are built up from the elements of Q by using the
(set theoretic ) composition of relations (including such
operations like permutations, identifications or delating of
variables). If we consider relations as predicates (over A)
then this means that firstly we have to take a set @ of
formulas (with some predicate symbols) and secondly we must
define: The clone generated by Q 1is the set of all predi-
cates which are derivable from elements of Q by means of
formulas in & ("internal definition" of a clone). E.g., the
composition of relations leads to the set & of all existen-
tial formulas without negation or disjunction. Clearly, the
choice of @ should depend on our algebraic purpose, i.e. on
the question: what we want to do with clones of relations.
Roughly speaking, the above mentioned formulas are suitable
for describing general systems of operations. In special ca-
gses however, namely for unary (or bijective) operations the
set @ must be extended by allowing also disjunction (or dis-
junctions and negations) of formulas.
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We will not develop a formula calculus here because — equi-
valently (cf./P5/Kal(§2.1)/) — we use some operations on RA
instead of formulas,

b) For a moment let us forget the finitarity of the rela-
tions under consideration. Then one can prove (cf./Ros72,75/,
[Kr/Poi]) that the clones of operations {F) are exactly the
Galois closed sets Pol Inv P (FggOA). In other words we ha-
ve the external definition: {(F)> is the greatest set F' of
operations for which (A;F)X and ¢A;FD? have the same sub-
algebras for all n (n can be infinite, too), cf. 1.5(ii).

The counterpart (i.e. the dual with respect to Pol-Inv,
cf. 1.2) of the notion '"subalgebra' is the notion "polymor-
phisem". Therefore the polymorphisms should play the central
role for relational algebras. This motivates the following
"external definition" (in full analogy to clones of opera-
tionse):

The clone of relations [Q] generated by QER, is the
greatest set Q' of relations for which A ={A;Q) and A'-=
(A;Q'> have the same n-ary polymorphismsg (i.e. Hom(g?,é) =
Hom(A'™,A')) for all n. In other words, [Q] should be equal
to the Galois closed set Inv Pol Q.

Clearly, the notion of a clone depends on the range of n,
i.e. whether we allow to consider infinitary operations (or
relationa) or not. Because we want to deal with finitary re-
lations and operations only, we shall seperate those proper-
ties of the Galois closed sets of relations which are caused
by the finitarity of the operations. For this reason we in-
troduced the local operator ILOC (analogeously Loc for ope-
rations) which describes the influence of ¥mfinitarity while
the notion of the clone to be defined is the essential part
of the Galois closure (and works also in case of infinitary
relations).

Thus we try to avoid any infinitarity in the internal de-
finition of clones of relations and we shall define the clo-
nes by suitable chosen set theoretic operations on fini-
tary relations. (However, the attentive reader will find
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that, in fact, we cannot escape from a clandestine use of in-
finitary relations — because we need infinite many J-quanti-
fiers — and probably one can prove that this has to be.)

Now we are going to define (set theoretic) operations on

R, some of which will be used to define the closure proper-

A
ties of clones.

3.2 Definitions.

T
(RO): Diagonal relations: The relations JmeRgm), where

melN and T is an equivalence relation on _ﬂ_l_, defined

by

é‘l';. ={(xo’no ’xm_,1 )C‘Am l (i,j)é'l" = xiz-.xj}

are called trivial or diagonal relations.

Let. D be the set of all diagonal relations together with

A
the empty relation ¢ . The elements of R,\ D, are called to

be nontrivial.

(R1}) Substitutions: For a mapping x: n —>mn,

2 3 een(™ 4 (n)
A

ger{™ and eer| R

we define 7(e¢)eR and 7 (e)e
as follows (n,melV):
contravariant substitution functor:
PR N :
ﬂ—(\?)-—{(a"(o) 9 seo ,an,(n_.l ))éA ’ (ao, ave ,am_.l )C 9} [
covariant substitution functor:

1 . m ,

71 (0) 1= {(ags e »3y_1 JEAT] (Bgi0ys e 8y (not ))€0T-
By & special choice of ™ we obtain many well-known operations
on RA’ €L

(Rla) Permutation of coordinates :

———— —— — . f— —————— - —— S —— S ——— —— ————

Take n(¢) for Z: n —>nesS ;
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(R1b)

(3.2))

Delating of coordinates :

For mw:(m-1) —>m:iv>1i we get

®(g) ={(a0,...,am_2) | Ja: (ao,.-..am_z,a)ee};

or more general

(R1e)

(R14d)

(R1e)

(R1£)

Projections onto coordinates :

- —— — —— —— —— —— e — o - —— — — p —— — ————— w—

For injective W: n —>m: i +>J. (ien) we get

7(g) =pr, (3)

Joreeeerd naq
H ={(ajo, (Y13 ’ajn_1 ) l _—-Jai(iéil}\{jo, ove ’jn_1} ) H
(aO,on ,am_1)é9 } ;

Doubling of coordinates :
For X:(m+l) —>m:1i +>1 (iem), m > m-1, we get
'}'T(?) = {(ao 9 ooo ’am—1 ,am_,] ) ’ (’ao 9 ese ,am_1 ) e g} ;

ITdentification of coordinates :

- —— e —— 0 o —— S — L D mmm G S m S ot G D IR e . v —— —— —— - — —

Adjoining fictive coordinates :

o s e e e ey e e - - s — s - —— — — ——  ——— - e —— — — ——— —

For : n—>(n+l) : iv+—>1i , we get

7'_-1 (0'), = {G_ao,ooo ,an_1 ,a) l (aO, [y ,an_.' )60’ ’ aeA} .

Note that the definition of substitutions keeps 1ts sensealso

for infinite (ordinal numbers) n and m.

(R2)

(R3)

N {€i| iel}:"'{(a;j,)jegl Y iel : (aj)jepf ?i}
is the intersection of all ¥, iel.

Composition : For gengm), GéRﬁn), the composi-

tion Qo6 1s the following (m+n-2)-ary relation:
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?0(5' =‘{(aO’ [T 1Y ,am+n—3) I ]aéA : (ao’ou ,am~2'a)é?and

(a,a

m-1 ,..’am+n—3)€6 [

(For m=n=1 we define @oc=¢ ).

(my )
(R4) General superposition: For ?ieRAi

- e s o et et ——— = = o oy T et s et Sl s Gy Tt S > = —— -

9
Ty:my —> (¢ arbitrary ordinal number, o<={f|f<<}]),
ieI(index set), and W: m —>«x we define
VAV
. Q. ).
(Tydieg 171el

to be the relation
{(%(0)’"-'%@-1 ))eAm, H(ai)iéad\xg :For all ieI
(aﬂi(O) ree 28y (my -1 ))5?,;}- |

] T
For ?iéQ, the relations /\(" )(?i) are called
i

(general) superpositions of (elements of) Q.

substitutions of coordinates.
With the notations given in (R1) and (R2) we have

x
-1
A @) = x (MY xT .
Note that the 5 need not be different.

(R5) Special superposition: For infinite 4,

-—— - - — - - - e i S S e ol el S A B N ey

(x:=1Al,) let I be the set of all monotone injective

mappings 7r: n —>« , n€ N. For a family Q= (97()1.61
n

of relations (with gxéR}tn) for 7reIn) we define the

m-gpecial superposition of Q as follows:

th:={(aO’... ’am—1)’3(ai)i€°_4_\_111_ V?rC-Q : |
(8p(0) 2+ +8%(n-1 ))65’7:—} .
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3.3 Remarks. It 18 easy to see that the operationa (R1) -

(R3),(R5) are special cases of (R4) - one has to specialize
ot,"fr,'iT:'L,I. The general superposition was defined and studied
also in /32787 by means of so-called formula schemes which

in effect are nothing else than the tripel ((?i,Wi)ieI,d,"ﬂ').

3.4 Notations. The elements a:(a(:[))iené.ltr1 can be consi-
dered as functions a:n —>A:i r—->a(i)-.— For 7r: m —>n
the composition of t and a - notation 7ra (first wthen a)
— is an element of A™. Thus the notions in 3.2 can be

defined shortly as follows:
(R1)  7(g) ={wa] acot a1 (o) ={ael” | wa eo-};

-
(R4) /\((Ti)iel(gi)iél ={xa| aef with mae¢, for all icIf.

3.5 Definition. A set QgR, is called a clone of

relations on A

— notation: Q<R, -

if Q contains the trivial relations ¢ and AGRS) and is
closed with respect to general superposition (R4).

For arbitrary Qg¢R,, the clone (of relations) generated
by Q (i.e. the least clone containing Q) will be denoted by

[QIJRA’ shortly [al.

There are some equivalent definitions.

3.6 Proposition. Let Qc¢R,. The following conditions are
equivalent (cf. 3.2, 3.3):

(1) Q is a clone of relations: Q4R

A *
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(1i) Q 1is closed with respect to (RO)(i.e. Q contains all
trivial relations),(R1),(R2),(R3),(R4) and (R5).
(iii) Q 1is closed with respect to (RO),(R1),(R2),(R5fT

*ﬁ*rzw)
o =2

(iv) Q 1is closed with respect to (RO),(R1a),(Rle),(R2),(R5).

For finite A, (i) is also equivalent to each of the follo-

——

wing conditions:

(v). Q is closed with respect to (R1),(R3) and contains A.

—

(vi) Q 1is closed with respect to (RO),(R1a),(Rle),(R3).

(vii) Q 1is closed with respect to (Rla),(R1e),(R3) and
comtains ds (where ¢ ={(0,0),(0,1),(1,0),(1,1),(2,2}
(vii) Q@ 1is closed with respect to (R1a),(R1e),(R1f),(R3)

and contains A€ Rl(&1 ).

Proof. We give some hinte only and will not go into tech-
nical details. The construction (R4) can be transformed into
the form (R5) using (RO),(R1) and (R2) - and vice versa.
Every diagonal can be obtained from Ame;ka) usipg (R1),
while A6R£1) generates A™ via (R1f). All substitutions (R1)
can be generated with (R1a) and (R1e) using (RO) and (R3)
(the latter is derivable from (R5)). For finite A, the ope-
rations (R4) can be reduced to finite I and « (see /35z78

(Lemma 2)7) and can be expressed by (RO),(R1) and (R3) (see

3.7 Remarks. (1) The set D, of all diagonals is a clone

of relations contained in every clone.

(ii) Clones of relations can be considered as the subalge-
of the algebra <RA;J,f,'Z',A,V,n,(ﬂm)mem> of type
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0,1,1,1,1,2", (Jan)_ g >» where d‘:{"(a,a)(aeA}éDf), t(g) =
7 (9), T(9) =7,(g) for geRj(&n) and the permutations X,=

(01w n-1), T, =(01)0f S5,, A=(R1e), V=(R1f), /\ denotes
the intersection of a family @f relations) of cardinality oAl
and (Y™ is defined as in 3.2(R5). The proof follows from
3.6(iv) and the fact that d,,7,48,V generate all (RO) and
(R17). For finite A, the above algebra can be chosen much
gimpler: The clones are exactly the subalgebras of the alge-
bra (R,; A,L,T,A,V,0> of type (0,1,1,1,1,2> (cf,/Pd/Kal(p.43J.

(1ii) From the point of view of logic, clones of relations
are those sets of predicates (on A) which are closed under
first order formulas containing 3,/\,: but not V,'r,v, and
under infinite intersections and J-quantifications (i.e.
we can use positive first order formulas with infinite many
existential quantifiers and conjunctions), cf./Kr/Poi/.

In analogy to 2.5 and 2.6 we have the following properties.

3.8 Proposition. Let leitA and Fg QA. Then
(1) Inv,
(ii) s-LO,C[Q__l is a clone of relations (s¢W).

F 1is a clone of relations, i.e. [InvAF] = InvAF .

a clone of relations. (cf. 1.9)

(ii1) Loc[q] is

tion feOA
(ii) and (iii) will follow e.g. from theorem 4.2 but the

whenever each ¢, preserves f.

proof can be done easily also by checking the definitions. R

3.3 Proposition. Let Q¢R,. Then we have:

(1) Pol}(\n)Q=Pol}§n)[Q]= Poll(xn)LOC[Q]= Po1 (M g-100 [q]

for 1<ng¢gselN.
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(11) Pol,q = Pol,fql= Pol,Toc(al.

Proof. (i): Let féPOl(n)Q. Because the sets in (i) must
form a decreasing (from left to right) chain it suffices to

show that fePol(n)s-LOC[Q]. Clearly fePol(n)[Q] because su-
perpositions of Q are also invariant for f (easy proof or
use 3.8(i)). Let gés-LOC[Q](m) and T seeesT ES o By 1.9
(note n¢s), there exists a o6¢[Q] such that {r;,..,r jcece.

Consequently f(r1,".,rn)66'g§', i.e., f preserves ¢ .

(ii) immediately follows from (i). @&

§4 The Galois connection ©Pol - Inv

The following two theorems are basic for a "General Galois
Theory of operations and relations"(cf. introduction) because
they characterize the Galois closed sets of operations and
relations, resp. The propositions 1.11, 2.5 and 3.8 suggest
that these Galois closed sets might be exactly the local
closed clones, i.e., the "external" and "internal" defini-

tions of clones might coincide (cf. 3.1b).

4.1 Theorem(cf,/Gei/,/Ba/Pix(Lemma 3.1)7,/RomT7Th/).
Let F¢O0,. Then we have:

(a) LocdF) = Pol,Inv,F .

(b) s-Loc{F) = PolAInvks)F for s¢N (for s=1 cf./Schm J.
- (Thm,.1.6] ).
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4.2 Theorem. Let QgR,. Then we have:
(a) 10C[Q] = Inv,Pol,Q (cf. [$278(Lemms 4)7,/Gei(p.99)7).

(b) e-LOC[Q] = InvAPoll(\S)Q for se¢li (for cf./[Gob8/).
hWuary iuveriawls

Remarks. Results concerning the characterization of Galois
closed sets (w.r.t. Pol-Inv). of relations can be found

- with more or:less modifications and restrictions - also in:
/RosT75/), /52787 (Inv Pol Q for finitary relations and
operations);

> /Kr/Poi/ (Inv Pol Q (coalgebrés de Post) for infini-
tary relations and operations);

[Bo/Kal/, [Po/Kal/ (InvAPolAQ (Post coalgebras, Relatio-
nenalgebren), InvAPoli )Q, Inv AutAQ (Krasner algebras) for
finite A);

[kr68], [Kr76a/ (Inv Aut Q, Inv Polc1)Q);

[?673] (Inv Pol Q for operations and relations defined
on a family of finite sets);

[Ros78] (Inv®)Pol @, cf. 10.5);

/Sa/St77o/] (End Pol f, feO,, note (EndIbl)‘=(0§1?Yn

Inv Pol )

[Sa/8t77c/ (End Pol S,£3g0§1));(cf. also [Je/)

[5a/3t78] (Pol End F, FESO

A

RE

Proof. of 4.1: (b): By 1.7 and 2.6 we have
s-Loc{F) ¢ Pol Inv s-Loc{F < Pol Inv(s)"s-Loc<F) =Pol Inv‘®)F,
To show the opposite inclusion let fePol(n)Inv(s)F. We prove
fes-Loc{FP. Let B=fby,ee by A", t¢o, 7y1=(by(1), e,
by_1(1)), ien, and & ={r;|ten}. Since T p(e)eInv!®)P (and
fePol Inv(s)F‘gIbl.Inv(t)F) there exists (cf. 2.4) an gelF>
such that £(rpy,ee Ty 1) =8(Tgs e Ty 4 ), 1.e. f]B=g|B, hence

fes-Loe(F}. (a) follows froms (b) since Loc(F)::/N\ s-LoclF)
selN

=/ 101 v ®r=pol U tniv®)F = Pol Tnv F. B
se se
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Proof of 4.2: (b): By 1.7 and 3.9 we have

8-LOC[Q] € Inv Pol s-I0C [g] ¢ Inv Po1 (®)g-10¢[0] = Inv Po1(8)q.
Now, for geInv(m)Pol(s)'Q (meW), we are going to prove @€
s-10c[Q]. Note that ¢ =UT for the s-directed (1.12) sys-
tem T = {I’F(B) | Bgo, lBlgs} where F.—_Pol(s)Q. By the next
lemma (4.3b) we have TI',(B)e[Q], thus ¢ =UT e s-10C[Q] (cf.
1'.13) and we are done.

(a) follows from (b) since I0C[Q]= /) s-Loc[qQl=
scly

m Inv Pol(s)Q = Inv U Pol(s)Q = Inv Pol Q . N

se N se I

The hard core of the proof of 4.2 is the following lemma.

4.3 Lemma (cf./5z78(Lemma 2)/). For QgR, and F=Pol,Q

we have:

a) Tp(B)e[q] for all finite BgA" (neH).
b) T _(gy(®)e[Q] for all BcA® with {Blgs (s,nel).
F

[Blgs (cl. 2.4).

Proof. b) follows from &) since I'_(B)=T (B} for
F F(S)'

a): Extending the proof given in /Bo/Kal/ for finite A to
infinite A — what was already done independently by L.Szabb
/Sz78/ — and following /Sz78(proof of lemma 2)/ we construct
a 63€[Q] and show 0= I'(B)(for finite BgA").

Let B-'-"{bo, ove ,bs_1}gAn, Zi=zi(B)‘:=(bo(i),uo ,bs_1 (i))éAs(ieg)o
For geQ(m)(me]N) let IS, be the set of all matrices

M= (rj(l))(i,j)egxg’ the rows of which we denote by zi(M) =
(ro(:i.),.\....,rs__1 (1)) (iem), such that {ro,...,rsq}g? (i.e. the
colums belong to e ). For all gc—‘Q(m) and MeI, we define
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the mapping

Igl :m—>4% : 1> z; (M) (iem), and
let T :n —> A% i z;(B) (ien).

Then, by 3057

63:{(820,»-,azn )ea” , g(az)zeAs\{z.[ien}:

(.azo (M) * " ,a (M))égJ for all MCI? ?eQ

e }
g

i.e.(3.4) O'Bgé?mc' aea® with ﬂga_ég for all MeIe, g€ Q},

belongs to [Q]. We are going to show ob=:PF(B)‘

We observe: If a=(az) fulfilles the condition

zeAS
(%) Rga €¢ for all Mel, and g€,
then f: AS —>4A: zr—a'az preserves all ¢€Q. In fact,

M= {ro y ooe ,rs_.l} ¢¢ implies f(ry,..,r _,) =xglaeg . Conversely,

if f: A° ——a?A preserves all ¢€Q, then a::(f(z))zéAS ful-
filles (¥). Therefore
fTB={(aZO,... 3y ) | (a,),eps fulfilles )} =

={(f(z ),m,f(zn_1))' f€F=Pol Q}. Thus, by definition
of the z; and 2.4, we get Ty={f(by,w b _,)|fecF=T4(B). &

The following propositions which are corollaries to 4.1
and 4.2 give the characterization of clones of operations

and relations, resp., via the Galois connection Pol-Inv.

4.4 Proposition. For FgOA, the following conditions are

equivalent:

(1) F40, (i.e. F=<F>OA) and ILoc F = F ,

(ii) I = PolAInvAF ,
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(i11) JQgR,: F = Pol,Q .

Proof. (1)=>(ii) by 4.1a, (ii)=>(iii) obvious,

— — -

(ii1)=>(i) by 2.5(i) and 1.11(a). W

4.5 Proposition. For nghv.the following conditions are

equivalent:
(1) Q4R (i.e. Q= [Q]RA) and 10C Q = Q ,
(i1) Q = InvAPolAQ R
(i11) JP£0,: Q = Inv,F .

Proof. (1)=(41) by 4.2(a), (ii)=3(iii) obvious,

—— - e W e

(iii)=>(i) by 1.11(a') and 3.8(i). N

Moreover, 4.4 and 4.5 answer the question under which
conditions a set F or Q is representable as Pol Q' or
Inv F' respectively. Such concrete characterization problems
will be treated in the’next paragraphs. In particular we

have for the group case:

4.6 Proposition. For Gg SA’ the following conditiong are

equivalent:

(1) G&S, (i.e, G‘=(G>SA) and G = S,nloc G ,

(ii) @G = AutAInv G ,

A
(1i1) JQER,: G = Aut,Q .

Proof. (i)=>(ii): GgAut Inv G£S,NPol Inv G = §, N

A
Loc(G)OA = 8,nloc G = G. (i1)=y(1ii1) obvious.

A
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(1ii)=>(i): G=Aut Q 1is a subgroup of S, (cf. 1.6a). More-
over, for feSAnLoc G we have f-1c—: SAALoc G (this easily
follows from the definitions) and by 1.11a every feloc G

preserves all ¢e€Q. Thus 5, nloc G = Aut Q@ . N

Remark: For G<£S, we have 35,nLoc G =Loc {1/~ )G-:=-{féSAl

{£,0 Wet0c af .
In 4.6, (i) could be replaced by
(1)' ¢ =G (1) and G = Toc

4.7 Lemma. For FcO, and G¢S, we have:

(Loc(F)OA)' ¢ T0C[F']  (notation cf. 1.3),

Locc*].

N

( Loc(G)SA) y

Proof. (Loc<{F))*=(Pol Inv F)*g (Pol Pol F*)*< Inv Pol F*

= 10C[F*] (cf. 4.1, 1.5(ii1), 4.2). Since (£~ 1)*e [£*] for

€5, we have <G>S‘ ¢ [6*] what implies the second inclusion
A

of the lemma. @
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Part 2

CONCRETE CHARACTERIZATIONS
OF RELATED ALGEBRAIC STRUCTURES

§5 Concrete characterizations I.(Characterizetion of

operational systems via relational ones)

In this paragraph we investigate the problem whether for
a given permutation group G, a transformation semigroup H
or similiar "operational structures" does exist a relational
algebra &={4;Q> such that G= (w-)Aut¥f-, H=Endt or
"gomething like this" respectively. All these problems will

be covered by the following general problem:

B0 G D D oy e T e - G S —

Given a set A and F;cE: g OA (iel), does there exist a

relational allg'ebra Z=A;Q0(Q &R ) such that

Fi = EinPolAQ ?

Under which conditions one can choose the relations of @Q

to be of bounded rank (i.e. of bounded arity) ?

Specializing Ei we get e.g. the following characteri-

zation problems:
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Ei = yields the characterization of the

S A weak automorphisms
O-‘(,‘1 ) endomorphisms

O‘gn)" n-ary polymorphisms
OA polymorphisms

of relational algebras 6=(A;Q> .
Moreover, we can get a simultaneous characterization of
these structures. For automorphism groups we need little mo-

difications,
The answer to 5.1 is given in the following theorem:

5.2 Theorem. Let F,€E;£0,(iel index get) and FP= U F

iel 1

There exists a relational algebra {A;Q) with

o) QcR or

ST e
p) Q g.RI(J )fv e U RXB)’ (sell), resp.,
gsuch that
Fi = EinPOlAQ (iC‘I)
if and only if

]

®) Fy = E; nLoc(F) (ieI) or

f) Fy =En s-Loc{F> (ieI), resp.

Remark. If we want to consider automorphisms Fi=Ein Aut AQ

then Loc<F> above must be replaced by Loc(1/"1 )<F> =
{feSA'{'f,qugLoc(lﬁ' (analogeously for s—Loc<F>).

Proof., «)"=3": Since FigPol Q we have F<£Pol Q and
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(by 2.5(1),1.11a) Loc{WgLoc<Pol QD= Pol Q. Thus F, < E; nLoc(®)
cEjnPol Q =Py (note FigLoc<F> since F, € F).

"e="; Toke Q:= Inv F. Then F1=Eir\Loc<E>=Eir1Pol Q by 4.1a.
F): can be proved analogeously (using 4.1b).

The remark follows from the observation (cf. 4.6(remark))

that Loc(1/- )<F>= Aut Inv F . ®

5.3 Remark. Note that for 5.2 case p) we could take Q +to

be a set of s-ary relations only because every relation gé€
Rj(xi)(iA._’: 8) can be extended to a §eR£s)(by adjoining fictive
coordinates, c¢f. 3.2(R1f)) such that Pole = Polg .

5.4 Definition and notations. The algebrsa <01§n); (e?)ien’ @>
of type <(O)ien’n+1> where e('ﬁg,f1 y ooe ,fn):=g(£| P ,fn) (ef.
2.1(ii)) is called the full Menger algebra of

— — ot . G e S o o myes e e e o o —

n-ary operations. Thus Fgo‘l(&n) is a Menger subalgebra of

Oin) iff F eontains all projections and is closed with re-

spect to e . This can be proven to be equivalent to F=(F>én).
A

Therefore, for FgOA, F(n) is a subalgebra of the Menger

(1)

algebra O“l(&n); in particular, is a subsemigroup of

(0§{1;e,-> (e identity,  composition).

For feol(&”’ let an be the n-ary operation which is

equal to f up to fictive variables and which is defined as

follows:

fvn(xo,ooo ,xn_1) = f(XO).

For Hgof) and Fgoﬁn)’ we put

van =_{an \ feH} ’
e/ _fees, | (272, (e=" )"} e 3] .



40 £5.5)

As a generalization of results ipn §4 and as a speciali-

zation of 5.2 we get:

5.5 Corollary. Let GeG'e S,, He0 '’ and Peo(™ (nem).
Then there exists a relational algebra iirz(A;Q} with

«) QgR, or

o

g) QgRF), resp.

such that

G = sut § (=Aut AQ automorphisms)
"o w-Aut B> (=w-Aut ,Q weak automorphisms)
= End & (=End A9 endomorphisms)

F = Hom(%™,%) (=Polj(\n)Q n-ary polymorphisms)

if and only if
(1) G = FD/"ﬂ (end G 1is a subgroup of S,),

(ii) gV FnS'Xn

(iii) ) A ]?‘nojg1 )Vn (and H is a subsemigroup of 0£1)).

(iv) F is a Menger subalgebra of Ofxn) (cfe 5.4)

(v) o) F = Loc F or

g) F

g-Loc F, resp., s€NN.

Pol @ AS'Y, (Bnd V7= Po1 @ no{V™), u

Remark. Clearly, because of (iv), the parts of (i) and

(iii) included in parentheses are superfluous.

At the end of this paragraph we agk whether the wanted
relational algebra i:(A;Q-} may be chosen to be of finite
gimiliarity type, i.e. whether Q@ may be finite.
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For finite A the answer is nearly trivial; we have:

%PW%A/

5.6 Proposition. v A clone F4£0, 1is the set of all poly-

A
morphisms of & finite relational algebra {A;Q} of finite type

iff there exists an selN such that s-Loc F = F.

Besides this internal characterization (a second one can
be found in /P6/Kal(Satz 4.1.9) /) there exists also an ex-
ternal characterization for polymorphisms of finite relatio-
nal algebras of finite type by means of a chain condition in
the lattice of all clones of operations (cf./P6/Kal(4.1.3)7).
In case of infinite A we can prove only the following

weaker proposition:

5.7 Propogition. Let FgOA. For the conditions

(1) TLoc{F)= F and, for every down-directed sys-

tem {Fi]ieﬂ of local closed clones of operations

(i.e., Fy=Loc{F), Vi,j€I Jkel: F;nFy2F )

ﬂFizF implies the existence of a finite subset
el

I'eI such that () F,=F .
iel!

(i1) There exists a finite set Q of finitely ge-

nerated g¢R, (i.e. VgeQ ] B finite :¢ =T x(B))
such that F = Pol Q .

(i1)' There exists a finite set QgR, such that

F‘=P01Qo
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(111) J sel : F = s-Loc{E).

the following implications hold:
(1) = ({1) = (i1)' = (iii) .

Proof. (4i)'=>»(iii) follows from 5.2 since JseWN:Q s URgﬁ
igs

(1i)=>(ii)' ie trivial.
(1)=>(ii): Let I={Q| Qg Inv,F, Q finite, ¥9cQ J B finite:

g = I'F(B)}

and let F,=Pol Q@ for Qel. Then {F,|qeI} is a down-directed

Q

get of local closed (1.11a) clones (2.5(1))(since FQﬂFQ, =

Q') and

o @ (4.1)
QQIF Qfe\lpol Q -Polé_e/IQ ¥ Pol Inv F Loc(E) =F. (The

equation (+) follows from Poligi=Pol {I‘F(B)IB finite, Bge}
(cfe 1.8)). Thus, by (i), there exists a finite I'c I such

that () Fy=F, i.e., F=Pol UQ where U/ Q{Lz_;_m\av .B
Qel' Qel’ QeI'

5.8 Remark. The sufficient condition 5.7(i) becomes also
necessary for (ii) if one takes into consideration infini-
Yary operations. This can be done analogeously to the result
6.7 shown in the next paragraph. Therefore we will not go
into further details here.

For finite A, all conditions in 5.7 are equivalent.
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§6 Concrete characterizations II.

(Characterization of relational systems via

universal algebras)

In §5 we asked for the characterization of related (ope-

rational) structures (like Aut £, Polf) of relational alge-
bras ﬁ. Now, we are interestested in the dual question
(which had been inuch more investigated in the literaturs):
How to characterize related relational structures (like
cond, Invll ) of universal algebras & ?
This question includes the characterization of related ope-
rational systems (like Aut(, End{{) because operations can
be considered as relations (cf. 1.3).

These problems will be covered (cf. §§7-14) by the fal-

lowing characterization problem:

D Py S D T s e St gy S T D TS e e St e G St S 0t ey e B e s

Given a set A and Qig Eig RA- (1 I), does there exist a

universal algebra O ={A;F) (FgO such that

A
Q‘i = EinI'nvAF ?
Under which conditions one can choose the oparationsn of W

to be of bounded rank (i.e. of bounded arity) ?

The solution looks like follows:
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6.2 Theorem (cf,/Sz78(Thm.6)/). Let Q;<¢ Byjs Ry (deI) and

Q =i£e/1 Q; - There exists a universal algebra A={A3F> with

(e) Fg0, or ,

(b) Fg—O!(&1 )-u ...u()gs)‘ y Yesp., (selN)
such that

Qi = Ein InvAF (ieI)
if and only if

(a) Q; = BynLoc[Q] (i¢I) or

(b) Q; = E,;n s-10C[Q] (ieI), resp.

Proof. (a)"=>": Since Q;¢InvF we have Q¢Inv F and,
by 3.8(i),1.11a', LOC[Q]¢LOC [Inv ¥]= Inv F. Thus E; n10C[Q]
SE;nInv F =Q¢ EinLOC[Q](since Q; €E;n Q) and we are done.
"e": Take F=Pol Q. Then (by 4.2a) Q; = E; nLOC [Q]=

Ein Inv Pol Q = EinInv F. Case (b) can be proved analogeous-

ly. B
In addition to 6.2 it would be very interesting to have
a condition for the finiteness of F (open problem in /Jén72

(p.41)7). For finite A we obtain:

6.3 Proposition. A clone Qg<R, 1s the set of all inva-

riants of a finite algebra (A;F) of finite type iff there

exists an selN such that s-L0C Q = Q. ®(cf. 5.6)

For infinite A, we do not have such a full answer.
Clearly, JoeM: 8~-L0CQ=Q 1is still a necessary condition
for QéRA to be equal Inv F for a finite set FgOA (but
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unfortunately no longer sufficient). In the following propo-
sition we give a sufficient condition by means of a chain

condition.

6.4 Proposition. Let QgR, and consider the conditions

(1) LOC[Q]: Q eand, for every down-directed sys-

tenm {Qiliél} of local closed clones of relations
(Loe., VieT: qu=Toc[Q;], V1,deT J kel Qi nQy Q)

('\Qi =Q implies the existence of a finite subset
1€l

I'ce I such that nQi-:Q;
ieT'

(1i) Q=Inv F for a finite set FgO

A;
(1i1) J seN : @=s-Loc[Q].

Then the following implications hold:
(1) = (11) = (iii) .

For finite A, all conditions are equivalent.

Proof. It remains (cf. 6.2) to prove (i)=3»(ii). Let I=
{F|FcPolQ and F finite] and Qp=Inv F for Fel. Then
{QF[FGI} is a down-directed set of local closed clones and

N ag=N1Inv F =Inv U P =Inv Pol @ {**2)10c[0]=q . Thus,
Fel T Fel Fer

by (i), there exists a finite set I'<¢ I such that

() Qp=Q,iee., Q=Inv U P with [/ Pl<¥, . ®

Fel' Fel! Fel'

6.5 Unfortunately the author was not able to find "inner"
conditions fof Q which are equivalent to 6.,4(ii) in case
|42 N . Condition 6.4(i) looks on Q only "from the outside"

because one has to consider the lattice of all clones on A.
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AYnA mnd  Panmen £ ALINY A mmmmmmanee PR PR~ - ¥ R U TR, I I Y S
gideration to be less than or equal to IAlngo. For QgR,
we- define

o0

Q% := Inv Pol Q .

To give some gense to the theorem below we mention (but will
not go into details) that Q™ can be characterized as

L0C [Q](analogeously to Inv Pol Q = LOC[Q]) where [Q],, is
the clone of relations(of arity < |A|) generated by Q. The
definition of the clone [Q], is a quite natural generaliza-

tion of 3.5 ([Q],, is the closure with respect to 3.2(RO),
(R1),(R2) and (R3)).

6.6 Lemma. For FgO,, (E)= Pol Inv™® F (cf./Kr/Poi]fRosT2))

6.7 Theorem. For QgRA, the following conditions are
equivalent. (assume [4] ;&o):
(%) Q= LOCI_'QJRA and
for every down-directed system {Qi)ieIg of
local closed clones (cf. 6.4(i)) f\Q;_o =Q°°
ieI
implies the existence of a finite set I'cT

such that / \ Q = Q.
— jeT"

(x%x) There exists a finite set Fg O

with Q= Inv,F.

A

A
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Proof. (%) =Pp(#%): Let Iz{\F | FcPolqQ, F finite} and
Qp=Inv F. Then QF-:LOC[QFY and {QFIF(:I} is e down-directed
system. We have Pol Q=U{F}FGI}§U{P01 Inv FlFéI}g

Pol Tnv Pol Q = Pol Q, i.e., Pol Q= \_Pol Inv F. Therefore
Fel

f\QF =[\Inv Pol Inv F = Inv UPol Inv F = InvooPol Q=Q°°.
Fel Fel FeX
By (%), M QF=Q for a finite 1I'¢ I, i.e., Q=n Inv F
Fel! Fel!
= Invl/ F where | U FI(ZQ
Fel'! Fel!
(*%)=2>(%): Assume Q=InvF, F finite. Let f'\Q:L -Q and
iel

Qy=10C [Q;]. We divide the proof of the existence of a finite
I' into six parts a)-f). We have:

a) Pol Q°=Pol @; since Pol Q =Pol Inv Pol Q;{%+®¥ro1 ).
b) Inv"F = ¢ where F:=\ Pol Qi , in facts Q°°=vﬁQ§’_‘°=
NInv7Pol ¢} =Inv (UPolIQi )=InvF .

c) Dclf), since Inv'F =2) o Inv®Pol Qi=Inv’Pol Inv F g Inv®
Pol Inv F -(S‘G)Invo‘)(F) therefore Pol Inv’F 2Pol Inv{E) .

d) Ji'eI, I' finite: <F>C(U Pol q} ), since: By c¢), Fe®
implies JF'¢ ¥, ¥ finite: FC(F') By definition of F, there
exigts a finite I'g¢ I such that { L/ [Pol Qi>?<F 2B,

e) Q=Inv(\U Pol Qf° ) , since Q= InvF=Inv<F> :Q)Inv(u

leI' b) o jeT!
Pol Q;°)2 Inv F=In?F AR,="'dnR,=Inv"Pol Q AR, = Inv Pol Q
=LOCEQ]= Q.
f) Q= /\ Qi , 8ince: Q- Inv( L/ Pol Q ﬂ Inv Pol Qi
ieI! 1¢1! 1e1!

a)ﬂ Inv Pol Qi /\ Q . We are done. B
1e1' ieI!
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8T Concrete characterizations III.

Let- A be a set, (?r‘ésA a permutation group, H-gof) a trans-
formation semigroup, I a subset of 2A(power set. of A) and
let C be a subset of &A).(set of all equivalence relations
on A). Does there exist a universal algebra (=(A;F> where

(A) | Fg0, arbitrary {"general case")

(B) Fgo‘gs)"for some s€N ("bounded case"™)

(C) F finite ("finite case'"),
such that

G =Aut® (automorphism group) and/or

H=End({ (endomorphism monoid) and/or

L =Sub (subalgebra lattice) and/or

¢ =Con(l (congruence lattice) ?

Remarksg: (1) Because of 1.,6d) we need not distinguish bet-
ween w-Aut and Aut.
(ii) Without loss of generality one can assume at once

L and C +to be algebraic sublattices.
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Theorem 6.2 provides an answer for case (A) and (B)
while case (C) can be treated with 6.4 and 6.7.

Some of the above problems 7.1 have a well-known answer,
gome others were still open (in particular the simultaneous
characterization of G,H,L,C). The known answers sometimes
are better than those given by 6.2 because the use of clones
of relations is avoided or reduced to simpler closure proper-
ties. In general however, we think there is little hope to
find conditions for G, H, L and ¢ which are not based on
closure properties of the clone of relations generated by

G°vH*vLv(C. We have:

7.2 Theorem. Let G, H, Land C as in 7.1 and Q=G'vH®
vILvC. Then there exists a universal algebra (A={A;F) with
(A) FgO

A or
(B) Fgo}f) (s€lN) resp.,
guch that ‘
G=Aut® , H=End O
L=Sub@ , C=Con X
if and only if
(A) G=8S,nH,
H* = (04"))* nToC[q] ,
L=Toc[q] ("),

c= €(r)nLoc[q] or

(B) G= SAr\ H ,
H* = (o‘f‘_1 )y* as-L0C[qQ] ,
L = s-xoc [q] (1
¢= fa)ns-10c[Q] resp. B (6.2)



Another application of 6.2 provides the characterization

of bicentralizers of universal algebras (F =Pol Pol F' is

7.3 Proposition. For F¢O,, F is & bicentralizer iff

F* =0,° AnTOC[F*].

Remarks: 7.3 can be found also in /S278(Thm.13)/; for finite

A this is a result of A.V. Kuznecov (cf./Va/,/5z2787).
Sufficlient conditions for F +to be a bicentralizer were also
given in /(Fa/. Bicentralizers in 03 are described in /Dani/.

In the next paragraphs we list (most of) the problems
in 7.1 and (some of) their solutions adjoining some (but
surely not all) references. The propositions are marked with
(A), (B) or (C)
whenever case T.1(4),(B) or (C) is treated. The notations of

this paragraph will also be used in the following ones.

It is worthy to note that all the characterization prob-
lems above have a non-tivial solution, i.e. not all struc-
tures under consideration are related to some universal alge-
bra. We do not mention this fact explicitely every time
but it follows directly from the corresponding characteriza-~
tion theorems which allow the construction of counterexam-

ples.
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§8 Concrete characterization of Aut

3 ((=CasF) : G = b @ ?

The full answer to this problem firstly was given by B.
Jébnsson in /Jbne87(cf./J6nT2(2.4.3)7, namely:

(4)8.1 Theorem(/J6n687). J( : G=Autl{ &> G=SAnLoc<G;>SA 3

i.e., & group G of permutations (on A) is the automorphism

group of spome algebra iff the following condition holds:

For every heS, , if for every finite subset B of A there

exists a member of G +that agrees with h on B, then heG.

Remark: can be chosen as a gimple algebra (cf. 13.5).

The following answer follows from 6.2: e T

(A)8.2 Proposition. J (: G=Aut(l <> 6" =8, aLoc[c’].m

Note that the result 8.1 is much better than 8.2 because
the local closure of the clone of operations generated by G
is much less complicated than the local closure of the clone
of relations generated by G° . But this case shall serve us
as an example to show how to get completely new proofe within
the framework of our General Galois theory; we shall see how
to work with clones of relations (because in other cases only

this method works). Therefore we give the
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Proof of 8.1 using 8.2:

- Sen G S D G fu e

"=p":; Clearly, G=AutQ implies G'=(G>S and G=S, nLoc G (4.6).
A

"&=": We show S&,qLOC[Gﬂ]:(SAt\LOC(C)SA)’ because then 8.1
immediately follows from 8.2. Firstly,

(SAALoc(G3>SA)° € S, nLoc[c*] by 4.7.
Secondly we show the opposite inclusion. Since <b)§A'g;[G’]
we can assume G‘:(G}SA. Let f°e 5, nLOC[G"]. We must show
feLoc G.
By definition 1.9, for each finite subset B ¢f° there exists
a general superposition o*e[G'] such that

Bgoer.
Note that there is a 1-1 correspondence between B and finite
BeA by B={x| (x,y)lef’} and we have B= (f|B)°.
Since 6€[G°] there exist g,€G (ieI) such that

(8gs81)€6 &= J(a5)5cunp" (371’1(0)’371'1(1))681. (ieI)
for suitable T;: 2 —> (¢ ordinal), cf. 3.2(R4).

Consider (thequantifier free part of) this formula as a
labled graph with vertex set V:{aj|j€¢}, and for
(Wi(0)5h3(1))==(t,t') we take an arrow from a, to a,
with label 84 (ieI). We distinguish two cases (Remark: the
uged arguments turn out to be here the same as discussed in
[Sa/StTTe(p.225)] in the language of equations in semigroups)

Cage_(i): The vertices a

o and a, are connected, i.e. there

exist distinct vertices ao=ato,at yoe 9By ,atn=a1 such that

n-1
there is an edge from a; to a; or from a to a; with
J j# Jj+ 3
label gi.(jeg). Put gi.:zgi in the former case and gi t=
J J J J

giT1 in the latter one.
J
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-1
E.g.: g: =g/ g. =(g! )
1054 L T
“°Q-~_~*°\
./‘_/‘”. at a [11]
8y 3 % — o
a~=a 1 R
0 to at a,=8,
n-1 n

Then we get for O :

c {(a a, )

a see 93 H g-’ (a )'-:a ’
Py sesvy ¢ B (B )=ay

1
g! (a, )=a ey &1 (a )=8 3
11 t1 t2 2 in-1 17n-1 1;n

i.e.; 6°cg’ where g=g! g:.'L1 oo gin—1é<G7SA=G .

Since Bg@ we have Bgg'. But this implies (g|B)* = B,
i.e., g[B = £[B (and geG).

(x,5),(x',y') be distinct elements of Bcé6 .By the discon-
nectedness of 8, and 8, the element (x,y') also satisfies
the above fofmula for O‘e[G'], i.e. (x,y')e6 in contradiction
to Ggf'((fGSA therefore f(x)=y#y'=f(x')). Clearly, B must
have at least two elements what we can assume without loss
of generality.

Thus only case (i) occurs: For all finite BcA +there is

a geG with f[B=g|B,i.e. feloc G. N

Remark: If one permits to use algebras with infinitery ope-

rations then every permutation group G is the automorphism-
group of an algebra (cf./Ar/Schm/).

Let us consider now the "bounded case"(B)(ef. 7.1). This
case was treated by E. Ptonka /Pi/ and B. Jbnsson /I6n72/,
too: Defining (for G<£85,)
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8.3 CG(B)::{aeAl Vf,gé(}: f|B = g|B @f(a):g(a)} for Bega,

they obtained the following theorems:
(B)8.4 Theorem(/P%/,/I6nT72(2.4.1)7). There exists an algebra

@ =<A;F> with Fgois)(sgz) such that G=Aut@ iff G is

a permutation group and f€S

A belongs to G, whenever for

all BgcA with at most s elements there exists a geG

that agrees with f on C,(B).

(B)8+5 Theorem([36n72(2.4.4)7). JFgo{") :c=-mt P &
¢={ey; and Vires (VaeA Oy Ue}) Afa} or Cq({£(al}) £ {£(a)}

Let us compare this with the result which follows directly

from 6.2 for arbitrary seli:

(B)8.6 Proposition. There exigts an algebra (1={;E> with

Fgo(®) pguch that G=AutO iff G'=8,ns-Ioc[c]. =

We see that it is possible (cf. 8.4 and 8.6) to describe
the elements of 8-LOC[G"] which are permutations (i.e. ele-
ments of SA‘) in terms of permutations and very special rela-
tions CG(B). Of course, one can deduce 8.4 from 8.6 in the

game manner as 8,1 from 8,°2.

The structure of CG(B) can be described also as follows
(Cfo 803):
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8.7 Proposgition. For B-= {b1 y eee ,bn} ¢ A and G¢S, we have:
= | (n),1 _ (1)
O (®)={n(oy b |hePo1 M =2y e[

Proof. The right part follows from 2.4 and 4.3. We show
that Cq(B) contains exactly all h(by,.w.,b )(hepol(™)q),
Clearly, for f,geG and f|B=g|B we have f(h(b1,...,bn))=
h(fb1 s coe ,fbn) = h(gb‘l‘ seee 58D ) =g(h(b1 y oee ,bn)), i.e., all
h(b1 ,...,bn) belong to CG(B)' Let aeCG(B). It remains to
prove that there isg an hePol(n)G such that a=h(b1 ,...,bn).
Define heoin) ag follows:

h(fb1,...,fbn):= f(a) for feG and

h(x1 y ooe ,xn):= X4 for (x1 y oee ,xn)e Q= AR\

{(£b, 4 e £ ) | £eCE.

Then, for geG, we get

g(h(fby, e ,fb )) = g(f(a)) = h(g(fby), e ,g(fb ))
or g(h(x1 s oo ,xn)) = g(x1) = h(gx1 ,...,gxn);
(note that (x‘I ,...,xn)egé—-=> (gx‘l ,...,gxn)eg because G is a group),
consequently, hePol(n)G and a=h(b1,...,bn). [ |

A comparision of 8.1 and 8.2 with 8.4 and 8,6 leads to the
question which role plays the condition G = s-Loc(G)SA for
cagse (B). The result coincides (for sell) with Lemma 2.4.2

in /J36n72/:

(B)8.8 Proposition. For GgSA, selN, congider the conditions

(1) G=8 ns-Loc(G)SA

A
(i1) 3 F_Q_O‘gs)“: G=Au1:AF (or equivalently,

G = Aut Po1(®lg )
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(iii) G=SAn(s+1)—Loc<G>S .
A

Then the following implications hold:
(1) = (11) = (iii) .

Proof. If G=85,n S_L°C<G>SA (cfe 1.9) then the condition
in 8.4 is fulfilled since g =f implies g|n=f

g (®) |cG<]a |5=f s
consequently G =Aut F for some Fc OA by 8.4.
Now, if G=Aut F=8§,aPoLF* (cf.1.6d), F£0'®), then, by 5.2,

we have G=SAn(s+1 )-Loc G (since F°g RXSH)). | |

In 8.8, the inverse implications do not hold in general
(as shown in /Jén72(p.37)/). The next theorem will show the
nice result of M. Gould that the solution of the "bounded
case"(B) provides at the same time the solution of the "fi-
nite case"(C)(cf.T.1). This result also shows that the con-

ditions in 8.8 become equivalent after quantifying s.

(C)8.9 Theorem(/Go72a/). For Gg S,s the following conditions

are equivalent:
(1) J finite FegO, 31 G=Aut F ;
(11) JsenN JFg0{®): c-aut F;
(1i1) gfeoA G = Aut{f} ;
(iv) J seWlN

G=3S5

ane-locl&yg .
A

Proof. Clearly (iii)=>(1)=>(i1)(8-8ls (1v). For (1)=>(iii)

(eagy to do) and (iv)=3»(1i)(crucial point of the proof) we
refer to /GoT2a(pp. 1066,1067)7. (W)
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a) Loc G (or s~Loc G resp.) is the least group which con-
tains a permutation group G-ésA and which is at the same
time the automorphism group of an algebra (or an algebra

with operations of rank < s, resp., s€lN). A similiar obser-
vation fails for algebras with finitely many operations: If

SA’\ 1=-L0C G D e DSAI\ s-Ioc G > SAf\ (B+1 )"IJOC G e

is an infinite chain than - by 8.9 - there does not exist a
leagt automorphism group of an algebra {={A;F> with finite
F and GeAut{X.
Example:
Let A=U{An|neJN} be the union of disjoint sets A~ with
IAn|=n . Let G« SA be the group consisting of all permuta-
tions feS, such that (fla) €@, (for neW where O is the
alternating group on An).
Because (n-2)-Loc (f = s, > A, but (n-1)-Ioc A =0
one easlly proves that

S, ns-Loc G i SAn(s+1)—Loc G (for s22). ®

A

b) For the concrete characterization of the (lattice of all)
automorphis@%roups of all subalgebras (of a given universal
algebra) we refer to /Ko/ (for the abstract version see/Fr/Sij).
The semigroup of all local automorphisms is investigated and
characterized in /Bxr/,/S5z75/.
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§9 Concrete characterization of End

0 =Q;F> : H=EndQX *?

M. Armbrust and J. Schmidt showed in /Ar/Schm/ that every
(abstract) monoid is isomorphic to the endomorphism semigroup
of some yniversal algebra. They observed also that the con-
crete characterization problem for transformation semigroups
has a non-trivial solution (i.e. there are monoids which are
not equal to the endomorphism semigroup of an algebra).

Obviously, the existence of an ({ with H::Endéf is
equivalent to the condition H =End Pol H. In /Sa/St77c/ the
set End Pol H (for H<=O(1)) is called the algebraic

closure of H.

As N. Sauer and M.G. Stone pointed out in /Sa/St77c/, the
determination of the algebraic closure of semigroups is rela-
ted to broad questions posed by E.S. Ljapin [Ij(p.2517 and
S. Ulam fUl(p.32)/ regarding the determination of algebraic
gstructures from given endomorphisms.

By a result of J. Sichler /Si/(for finite A, |AI25) the al-

gebraic closure of H contains all maps in O§1)

if H con-
tains anything more than constant.maps and all of the permu-
tations feSA. If H conseists o locally invertible and con-~
stant maps only, a necessary and sufficient condition for H
to be algebraic (i.e. H=End Pol H) is to be found in /3t7%/
(cf./5t697), where results of W.A. Lampe and G. Gritzer

(/1a687,/Gr/La687) had been generalized.

N. Sauer and M.G. Stone gave a characterization of the
algebraic closure of H for H= {f}(fe0(1)) in /Sa/St77b/
and for arbitrary HQO(” in [Sa/St77c] in terms of "equa-
tional conditions". The same question (which was posed expli-
citely as problem 3 in /[Gr(p.77)/) is treated by L. Szabd in
[35z78(Thm.15)/ who gave a characterization by means of for-
mula schemes.
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(A)

(B)

(

OQur approach provides a characterization theorem in terms of

clones of relations: From 6.2 we conclude directly:

9.1 Theorem(cf./Sz78(Thm.15)/. For Hgof), there exists

an algebra ({=<A;E> with H=-EndQ iff H* =0{'%A 1oc[].B

9.2 Theorem. For H.gof ), s€ W, there exists an algebra
O =(a;F> with F0'®) and H=Fnd@l 1fr E'=0{')hs-ToC[H].H

(1) The algebraic closure of Hg OXI) is the least endo-
morphism monoid containing H. Thus we have (by 9.1, 9.2):

A
or f‘ss-LOC[H'] y resp.) is the least semigroup which contains

For He0!'), the set of all feof) with f*e10c[H"]

H and which is the endomorphism monoid of an algebra (or an

algebra with operations of rank < s, resp.).

(ii) The operators Pol and End define a Galols connec-
tion between subsets of OXI) and subsets of O,. The Galois
closed sets with respect to this Galois connection were cha-
racterized in /Sa/St787(F=Pol End F) and /B5a/St77c/(H = End
Pol H; cf. 9.1). Because Pol-End is the restriction of the
Galois connection Inv-End (i.e. Inv-Pol(1 )) to operations
only, the result in /Sa/S5$78(Thm.1)/ can be considered as a
special case of theorem 4.2(b)(or 6.2) for s=1. In fact,
we have:
Proposition: F=Pol End F & F* =0, nInv Pol’!)r

& F=0,n1-I0C[F].®
Note that 1-LOC[P*] is easy to describe: Take the clone of
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relations generated by F* and then the closure with respect

to arbitrary unions (cf. 1.13).

(iii) The condition for H in 9.1 cannot be replaced by
H=Loc<H>o(1 ) (Thm.9.6 (or Thm.1 in /5t757) provides counter-
A

examples).

(C)9.4 For the filnite case (C) of the characterization problem
we do not have such a good solution as theorem 8.9 for groupa
From 6.7 we get:

] finite F : H=End,F <> H'=(0{"))* AT0C[H] and
Q =LOC[H'] satisfies 6.7(%).
But this condition is not very satisfactorily.

At the end of this paragraph we present the g-local ver-
sion of a result of M.G. Stone/St75/(which is an extension
of proposition 8.8 to certain monoids). A careful examina-
tion of the proof of theorem 1 in /St75/ shows that, in fact,
there was proven theorem 9.6 below, too. However we shall
present another proof based on the general characterization

theorem 9.2 (or 6.2).

9.5 Definitions. Call a monoid M<O\'’ s-algebraic

(selN) if 3(’;‘{=<A;F>: Fgois) and M=End({ . A monoid

—— - ——— - - D e e . . b e G ey e

respectively), for all (ai)ien,(bi)ienczAn and for all
f,g€E, f(ai)==g(b1)(ieg) implies the existence of an heE
such that h(ai)==bi (ien).
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In an s-=locally invertible monoid (s> 2) each map is injectiv
(but not necessarily surjectiv). Let c, be the constant
function Cyt X F>a.
For Mgo!l

2():={c, | Voea, ba, I £,gell : £(a)=g(a) &1 (b)g(b)].

we define:

(B)9+6 Theorem(cf.8.8). ILet s€N and let M=EuK be a mo-
noid wherse Egog) is s—=locally invertible and K is a set

of constant maps on A. Then the implications

(1) = (ii) = (iii)
hold for the following conditions:

(1) 2(M)eM and M is s-locally closed

(i.ee M=s-Loc M),

(i1) M is g-algebraic, i.e. J Fg0.%): M=End,F,
(iii) 2(M)gM and M is (s+1)-locally closed
(ioeo M= (5+1 )"LOC M)c

9.7 Remarks. a) From 9.6 we get immediately the following

Proposition. If E is locally invertible then M is s-al-

gebraic for some selN iff M 1is s'-locally closed for some

s'€élN and a2(M)ecM. N

b) This proposition (and 9.6) show (in comparision with 9.2)
that the restriction to certain monoids M (of a relatively
small class) leads to an improvement of the conditions for
characterizing s-algebraicity, namely the involved s-local
closure of [M‘J can be replaced by the simpler s-local closure
of <M>O.X1) (=M since M is supposed here to be a monoid).
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We have (ii)=>(iii) since M=End,F implies M=End,F° and

A A
therefore M=(s+1)-Loc M by 5.2; moreover, for caeac(M) and
heF(n)' we have h(a,..,a)=a, l.e. caeM, becauge h(a,e.q a)=b
£a would imply f(b)=f(h(a,e.,8))=h(fa,e..,fa)=h(ga,..,ga)
ag(N(8,y e 48))=g(b) in contradiction to f(b)#g(b) (where f,g
are as in the definition of 2e(M), cf. 9.5). |

For the proof of (i)=>(ii) we proceed as in the proof of
B.1: We will show M° =O‘§‘1) *n 8-10C[M°] , then we are done
by 9.2. Obviously, MN° ¢ (Oz(x1 ))°ns-LOC[M‘] .

To show the opposite inclusion, let feol(\” and f°¢
8-L0C[M*] . Then, for B¢A,IBlgs, B ={(x,f(x))|xeB}=(£|B)"*,
there existes an 6€¢[M*] such that

Be e c £ (cf. 1.9).
We will find an geM such that g°2 3B, obviously this will
imply f,B=g'B, i.e.(since B was chosen arbitrarily)
fes-Loc M = M (by (i)), consequently M°®2 01(&1) ‘ne-LOC M°
and the proof will be finished.

How to find now the geM ? Since ¢e[M*] there exist g€M
(ieI) such that

(ays8,)€6 & 3(33 )3696_\_2_: (a%.i(o),awi(”)egi- (i€1)
for suitable 7;: 2 —> « (o ordinal, cf. 3.2(R4)).
We congider this formula as a labled graph with vertex set

V={aj,jég£_} such that a eV will get the label if, for

c

b
gome iel, aTi“ )= aa. and gieK is the constant function Cy
(we can assume & #¢, therefore this labeling is consigtent);
moreover, for (axi(O)’afriU )) = (at,at.) we take an arrow

(edge) from a; to ay, with label 8y whenever gieE
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(more than one edge between two points is not excluded).

We distinguis two cases.
Case_1: The vertices a; and a; are not connected. Then
there exists a constant deA such that (x,y)ec =>y=4 ,
i.e., g cd', gince (x,y),(x!,y')ee imply (x,y')es by dis-
connectedness, therefore y=y' becausge of 6¢<f* (f60£1)).
We are going to show cdeM.
Subcage_la: There is a vertex a; which is connected with

8y and labeled with a constant Cyy s i.e. we have the follo-

wing situation (the labels are put in parenthesis):

(8i0) (811 ) (gin—1 ) ('cb y
0—-—-—)0’——*-')0‘ X H v o e ‘0_9.’ L I - Q)
a, =8 a a a =a
158, Bt b t =91

Now, we '"move" the constant label from ay to the vertex
8, by the foliowing induction steps (which do not change the
property of (ao,a1) belonging to 6-s i.e. we change the above
formula for @ without changing the relation 6 defined by
this formula):
M(—g;-:-z-o(cb) is equivalent to ('Cb' )04-(—%—'—)——0(0b)
ay By ay CI
with Dbt:=g'(b).
Since E is s-locally invertible, g'(at)=at,=e(at,)(e identity,
g'€E) implies the existence of an heéE such that at=h(at,)

and we have:

(8" (¢c) (cp ). B (e
o—>8 b is equivalent to b' e———>0'"b
8y B a, gy
(h)
or to (Cb')oé-————o(cb)

with Db'=h(b).
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In both situations, cb,éM (since g',h,cbeM). After n steps
we get a label cqr€M for the vertex 84 i.e. (ao,a1)eo-=%>
a1=d'. We have d=d' since (ao,a.I e => a, =d. Thus chd'eM‘.
Subcase_1b: There is no vertex which is connected with a,

and labeled with a constant. We prove cdeézﬂw). We have
(ao,d)ea’ but (ao,d')¢0' for d#d4d! (aoeB). We interpret

this statement in the graph V which represents our formula 7,
and get:

If we label a, with (cd) or (cd,), respectively, and if we
label (in all possible ways) all vertices connected with ay
consecutively by the above induction steps then all the obtai-
ned labels (for vertices) will be consistent (compatibile) or

incongistent, respectively. That is, there exist two paths

from ay to a vertex, say ay,

 (ha) | (by the above equivalent

(h1) ——2L90- coe (hn) transformations we can
a, o ay aggume that all arrows
(hy) (h4) *e (ht) have the same direction

from ay to ai)
such that h(d)=h'(d) but h(d')#h'(d') where
h=hh, ... h €M and h'=hjh} ... heM. This i1s exactly the
condition for ¢y to be an element of 2(M), i.e. o'gcd'
with cy€2(M)g M (by (1)).

Summarizing case 1 we get J geM: Beg® (the wanted result).

Case 2: The vertices a, and a, are connected. If aOeB,

- then we can assume that there is a path from a, to a, as

follows(with ho,".,hn_1eE):

(h,) (h,) th )
[ J O‘?‘ 1 ;‘_ ....”____‘[2::_1_.”
a,=8 a a a a =
0%, b b b £, =%
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This is correct because — by the s-locally invertibility of E -—

(g") (h)
*——0 is equivalent to o———>e

8¢ By 8¢ By
for some heéE if at most s values will be assigned to a,
(and therefore to each of the a;)s cf.9.5. If we delgte now
in the formula (i.e. in the graph) for ¢ all members (i.e.
all vertices, edges and labels) except the above string
hO’h1 ""’hn-T’ then we get the relation g°* with g =lf10h1 vor
°"hn_16<E>01(X1) ¢ M which obviously contains Bne=F, i.e.,

Beg' e M'. As discussed before the proof is finished. B
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§10 Concrete characterization of Sub ¥

Joa=@F : L =sSuwbd *?

10.1 It is easy to see that (QgRéj) coincides with [Q](1)
(i.e., the intersection of every subfamily of Q belongs to
Q). Moreover, this implies (by definition) that Q::LOC[Q]Q1)
gection structure (i.e. closed under unions of directed sub-
families of Q, too; cf. 1.13).

Thus we conclude from 6.2 the well-known result of

G. Birkhoff and O. Frink(/Bi/Fr/, cf./Jb6nT2(3.6.4)]):

(A)10.2 Theorem. L§2A is the subalgebra lattice of a univer-

gal algebrg 1ff L 1is an algebraic intersection gstructure

(or, equivalently, iff IL=Ioc[r]{")). =

Again by 6.2, we have:

(B)10.3 Theorem. Lg2" is the subalgebra lattice of an algebra

with operations of rank at mogt s iff L 1is an intersection

structure which is closed under unions of g-directed systems

(cf. 1.12), i.e., iff L=s8-T0c[L]{!); sem. =

The equivalent condition 1.14(b)(put Q=1L) was given by
G. Fuhrken and rediscovered by M. Gould/Go687(cf./IJ6nT2(p.94)/%
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For unary algebras see also /JénT72(3.6.7)7,/Joh/Sei/.
The subalgebra systems of algebras of finite type can be
characterized nicely by nearly the same condition (adjoining

a condition on cardinalities only):

(C)10.4 Theorem{cf./GoT72b/). The following conditions are

‘equivalent:

(1) JQA={sF . & P finite : L=Subd
(11) J fe0, : L=Invi')f (= Subda;2)),
(iii) There exists an s€WN such that

a) L= s-LOC[L](” (ef. 10.3), or equivalently,

VB <A (VxeB, Ixj¢s: TT(X) g B)=p Bel ot
12
b) |TU(X)|< N, for all XeA with |Xlgs.

(For 1-unary aigebras see [Jb6nT72(3.6.8)/.)

Proof. The proof follows from a more general result of

M. Gould /Go72b(p.370)/(cf. 12.7). Nevertheless we give the

prove for this simpler case: (ii)=}(i)1o'-3=)(iii) is obvious,
thus we have to prove (iii)=>(ii):

For X={xo,...,xs_1} we can enumerate (by (iii)b)) the ele-
ments of I'I'(X)-

T (X) -{ O,a1,...,a§,...}

(if this set is finite with n elements take a}i(=a']}.( for isj

mod n) such that a§= age Define the (s+1)ary function

X . X

8% 11 if y=ay for X=.{x0, ooe ,xs_1f'

f(xo yoor 9 X g g yYV) 2=
X0 otherwise,

and let (1={A;f). Clearly, L<Sub{{. To prove the inverse,
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let BeSubll and X={xXj,e. X _4} €B. Because of

g=1
f(xo. v 3K 51 ,_a%) = af_“ we get by induction on +t: I‘I’(X) < B,

hence BelL by (iii)a). Thus L=SubU.N

10.5 Remarks. a) Since Sub{A;F= Invﬁ_ﬂF, there naturally
ariseg the question how to characterize the subalgebra systems
of cartesian powers of <A;F>, i.e., the set

sub (3 F)° = Inv S)F .
The answer was given in /Ros78/ by I.G. Hosenberg (in terms
of subdirect closure systems; cf. also /5z78(Thm.9)/).

Clearly, from 6.2 we have at once:
J0=(:7>: L=5ubQ® > L=10c[1] (%) ; cem.m

b) Theorem 10.2 also provides the abstract characterization
(i.e. up to isomorphisms) of subalgebra lattices (cf./Bi/PFrf).
For more special results we refer to /Joh/Sei/,/J6n72(section

3.8)/,[Ha/,/Wh7.
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§11 Concrete characterization of Con @

J 0l =¢a3%> :+ C=ConQl *?

Only few results coneerning the concrete characterization
problem for Conl can be found in the literature. A partial
golution has been given by M. Armbrust /[Ar/. In /Qu/Wo/

R. Quackenbush and B. Wolk proved that any finite distribu-
tive sublattice of E(A) (containing the least and the grea-
test element) is a congruence lattice.

This result can be extended to arbitrary complete distri-
butive sublattices of ¥(A) as it is done by H. Dra¥kovi&ova
in /Dr/ and (independently) by S. Burrs, H. Crapo, A.Day, D.
Higgs and W. Nickols (during 1970) (cf. [I6n72(p.174)71.

In /J6n72(Thm.4.4.1)7 B. Jbénsson gave a solution of the
characterization Shessei for Con(l. H. Werner gave in /[fWe74/
thé substantially same (but nevertheless better) result by
using so-called graphical compositions.

We can interpret these results as modified versions of the
following theorem, namely as the description of the closure
operator LOC[Q] egpecially for sets Q of equivalence re-
lations.

(A)11.1 Theorem. Cgf(A) is the congruence lattice of a uni-

versal algebra iff C::é(A)erOC[Q](or equivalently C =
£aypa1-10C[C], cf. 11.2). MW(by 6.2).

(B)11.2 Remark. Tt is well-known that Con{A;Fp= CondA;F'>

where F' dis the set of all unary polynomial functions of
<A3F>(d.e. F'=<Fu{ca{acA}>(1)). Therefore the algebra in 11.1
can be chosen always as a unary algebra and, by 6.2, we can
replace LOC[C] by 1-LocC][C].



If GGLOC[C](E) is reflexive then the equivalence relation
T generated by © belongs to (1-)Loc[cl(cf. 1.13), since B
can be expressed as a union of compositions of © and o1,
Thig gives an "algorithm" to prove C =¥(A)n LOC[C]:

Take QeLOC[C](z) (then © 1is reflexive) and prove ©€C.
This must be valid for all such 8.

If C has the property that the equivalence relation genera-
ted by L/f@i,ieI} also belongs to C whenever all 6,€C,

then the following condition does the job as well:

VreGG[C](Z) : {r} ecC.

(C)11.3 Proposition. C g?(a) is the congruence lattice of an

algebra X ={A;F) of finite typ (i.e. T is finite) iff
Q =10C[C] satisfies 6.7(x) and C=HA)nQ . B(by 6.7)

Remark. In connection with congruence relations of univer-
sal algebras there arises the problem how to characterize
(concrete!) the lattice of all congruence clagses of

an algebra., We refer to [Wil] for such a concrete characte-

rization.
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§12 Concrete characterization of At & and sub(l

3 0={F> @ G = At & L = Subll ?

From 6.2 we get:

(A)12.1 Theorem. For LgZA and Gg3,, there exists an alge-

bra ({=(A;F> such that L=SubQd and G=Autdl iff
L=Q('1)‘ and G'=QASA: where Q=LOC[LUG']. B (6.2)

Because clones of relations are rather complicated we seak
for better conditions combining the results of §8 and §10.

(A)12.2 Theorem(/5t727). For Lg2t

and GgS,, there ig an
algebra ({=(A;F) guch that L=Sub(l and G=AutO® iff

the following conditions are satisfied:

(1) L is an algebraic intersection structure (or equivalent-

1y, =10¢[t] ("), ef. 10.2);

(ii) G is a2 locally closed permutation group (i.e.

G=S,n Loc<G>SA,(8.1 ))

(11i) g(B):={g(b)|beB} belonge to L for all geG and Bel;

(iv) CG(,B):GL for all finite Bs__rA' (notation cf. 8.3).

12.3 Remarks. We mention here some equivalent conditions.

- ———

Assume 12.,2(i) and (ii), then 12.2(iii) is equivalent to each

of the following conditions:
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(111}, I'L(g(B))gg(\I'L(_B)), for geG and all finite B <A;

(,iii):2 g(I‘L(‘B))gI'L(g(B)) for geG and all finite Bg A

(1i1), Tl(g(B))=g(TL(B)) for geG and all finite Bg A;
(111), g(TT@E) el for geG and all finite Bg A.

Moreover, 12.2(iv) is equivalent to

(iv),'1 I'L(B)gCG_(B)_, for all finite BgcA (i.e., if two per-
mutations of G agree on B then they agree on I‘L(B),

ag well).

Theorem 12.2 was given by M.G. Stone in /St72(Thm.4, p.46)/
with condition (iv)1 instead of (iv) and independently by the
present author (unpublished, with condition (iii)2 instead

of (4iii)).

(111),=X111),: gBeg(TT(B) => T7(gB) < I'L(gc_rL(B))(lill4
g(I'~(B)).
(iii),=>(iii),: Beg  (XV(eB) =» TP erl(e™ (rles)

g7 (el (oy (111);) = g(TT(B) T (eR).
(1ii),=p(iii): Let BeL. We show T'(Y)¢g(B) for all finite
Y ¢g(B)(since this implies g(B)eL, cf.1.8,1.14). From g 'y
<B we have g | (4%@))“2’2 P (¥))eTT(B) =B, thus
rl(v)eg(B).
(iii)3¢=>(iii)1&(iii)2 obviously. .
. : L L (iv)
(iv)=x(iv),: BgCy(B) = I ~(B)eT (CG(.B)) = CG(B)EiV)
(iv),=»iv): For finite DgCy(B) we get Dg I'Y(D) & |
CG(D)’gCGCG(‘B) =CG(B)(CG is a closure operator!), consequently

0y (B) =\{TT(D) | DgC,(B) & D finite} belongs to L by (i)
(cf. 1.13). B
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a straightforward construction of the algebra QA (cf./5t727).
We choose another proof (using 12.1) in order to show again
how to work with clones of relations and their properties
(because in other cases - e.g. 7.2 - only this method works).
Part I. The conditions (i)-(iv) are necessary: If L=Sub({,

G=Aut O, @I={A;F), then (i),(ii),(iii) are obvious (cf. 10.2,
8.1), moreover I'L(B)(1 ’821‘F(B)(Cf'2§.4) I'PolG(B)(a"Q CG(B),

thus (:i.v)-1 (and therefore (iv), cf. 12.3) holds.

Part II. The conditions (i)-(iv) are sufficient.

Step_1: We prove G® =S}AL0C[c°vL] (similiar to the proof

ete A
of 8.1). Let ge€S, and g°€lOC [G*v L]. Then for all finite
BeA there is a binary relation g¢pe[G°u L] such that
(g’B)‘ggB ¢ g'. Then Sy must be defined by a formula of
the following type (cf. 3.2(R4)):

(ay,8,)€ § <=

g(ai)iE.I: ajéBj (jed) _& gk(ak(O))":ak(‘] )(kGK)

where dJe€ Iv{0,1}, BjeL, k(0),k(1 )eIo{0,1, g,€G (J,K,I index
setg). By the same arguments as in the proof of 8.1 (p. 53),

an and ay mugt be "connected", i.e., there are ao=aio,ai1,
...,aj_n=a1 such that (it’it+1) or (=._.iJG_H ’it) are equal to
(.kt(O),, (1)) for some k €K (04t ¢ n-1)(because otherwise (pro-

vided [Bl22) §y could not be a partial 1-1-function in contra-
diction to $3 € g®). Hence (g,B)’ < (fIB)’ where
f=g' gl e g €&y = G with
ko Ky | Sp (i)
(gkt)—1 If (Ly,q01g) = (kg (0),k, (1)) .

gy =
Ky
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Thus g|B= le and we get geLoc(G}S (11) G. (Q.E.D)
A

Let ¢eToc[G*v L]') and B be a finite subset of ¢. We
show that there will be a 65¢[L]") =1 such that Bsoyss,
because this implies geLOC[_L](” and we are done by (i1).

By our assumption, there is a gBefG'u L](” such that
B:E.‘-?B.f_.l §, thus there is a defining formula for fB of the
following form:

8 € 95 &>

H(ai)iel: ajij(jeJ) & gk(ak(O)l),:ak(”(keK),

where Jg Iv{0}, k(0),k(1)eIv{0}f.

Consider the lab_Jed graph with the vertices ai(ieI) (a.j
labled with B;j for jeéJ) and edges (ak(o)’akﬁ)) labled
with g, for keK. Clearly one can assume that all ai(iGI).
are connected with ao(unconnected components do not change
% (provided they are consistent)). By condition (iii) one
can move all vertex-labels Bj to a, (g(ao)=ajij <———‘,>g(ao)=
2 & aoeg-1 (,Bj)), and — since G is a group and L 1is clo-
sed under intersections -~ the above formula for §p can be

transformed to the following form:

aoe ?B =D

3(-ai)ieI: a el & ft(ao) =ait (teT)
where DeL, fteG (teT index set). Define

Then Begoy since Bg& gy¢ D. Moreover, since BS?B we have

ft(a0)=ft'(ao) if ayeB and i,=i,, (t,t'€T). This property
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holds not only for ay€B but — by 8.3 — also for all a, €

0]
CG(B)‘ Therfore G € Sy since a(')eDnCG:(B)' implies ft‘(‘a(')) =
fye6ay) if d.=i,,, i.e. ajegy. Thus BSO,cS;£5. More-~
over,_G’BeL by (i) and (iv). Q.E.D.

Finally, step 1 and step 2 together finish the proof because

of 12.1. B

Analogeousaly to 12.1 and 12.2 we get characterization

theorems for the "bounded case" (B):

(B)12.4 Theorem. There exigts an algebra with operations of

rank gt most se€IlN such that L=Sub{l and G=Aut( iff
1-9") and ¢'-s;nQ for qQ=s-Loc[Lucl. m(6.2(b))

(B)12.5 Theorem. For Le¢ 2A, G<€S,, there exists a universal
2/ =1 = A g2 nurielsas

algebra 0(=<A;F§ with F¢ O&s)(for given seIV) such that
L=5Subfl and G=Autl

if
{;13{_ if} (or if and only if, respectively) the following

conditions are fulfilled:

(1)  L=s-toc[p]) (c£. 10.3);

G= SAn s-Loc(G)S

(ii) A . .
G=5,n (s+1)-Loc(G.)S (or the condition for G given

in 8.4(in case s22) and 8.5(in

case s =1), respectively);

(iii) g(TL(B)) e TT(g(B)) for get and all BecA with [Bles;

(iv) C,(B)eL for all BegA with [Bl¢s.
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12,6 Remark. Assume 12.5(i) and (ii). Then condition
12.5(iii) is equivalent to 12.2(iii)(cf. proof of 12.3, use
12.5(1i) and 1.14). Moreover, condition 12.5(iv) is equivalent

to 12.2(iv) (since Cy(B) = U{Cy(B")|B'€C,(B) & IB'l¢gfeL by (i))

Proof of 12.3; The conditions are necessary (this follows
from 10.2 for (i); 8.4, 8.5, 8.8 for (ii), and from 12.2, 12.6
for (iii),(div)).

The conditions are sufficient, too. In fact,

Step_1: G'= Sy ns-10C[G*v L] can be proved as in step 1 of the
proof of 12.2 replacing "finite B" by "BeA with at most s
elements".

proof of 12.2) or shorter as follows: (i)-(iv) imply 12.2(i)-
(iv) by 12.6, thus L =10C[G*v 1] (1)(by 12.1) %L:[G'ul]("1)-_—>

s—LOC[G‘uL_]("‘1 )= g-10C L (ig L, and 12.4 finishes the proof.M

Finally we consider the "finite case" (C). The full answer
was given by M. Gould in /Go72b(p. 370)/:

A

(C)12.7 Theorem. For an intersection gtructure L&£2™ and a

permutation group G<£S, the following conditions are equi-

valent:

(I) L=Sub® and G=Aaut@l for some algebra (I=(A;F>

with finite F.

(IZ) L=Sub® and G=Autlél for some algebra &={A;f)>

with one operation feOA.
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(ITII) There exist s,nélN such that

(IIT.i) For BgA, B belongs to L if T'T(X)gB for
all X€B with |X|¢8 (i.e. L=s-IOC L, cf.1.14);

(IIT.ii) G is n-locally closed, i.e. G=3S,nn-Loc G;

(I11.111) g¢ TH(B))el and PP (B)|¢N, for ge¢ and
all BgdA with [Blgs ;

(III.iv) Cy(B)eL (or equivalently TU(B)g Cy(B),cf.12.3

for all BeA with |Blgs .

Proof. (II)=>(I) trivial. (I)=>X{IH) by 12.5(take n=s+1).
(ITI)=>(II) follows from M.Gould's proof given in /Go72b(p.
370)] by remarking that M.Gould's conditions (IV,.i),(IV.ii)
and (IV.iii) follow from (III.ii),(III.i) and (III.iii&iv)
above, resp. Nevertheless we sketch the proof of (III)=>(II):
Proceed as in the proof of 10.4 but choose the enumeration of
I‘L(X) compatible with G in the sense that g(af):a?x(cf.pﬁ?’)
for all géG. This is possible because of I'L(gX):g( I'L(-X) ) by
(III.111)(cf.12.3(d11)5). Then all geG commute with the f
defined on p. 67 , hence L =Sub{A;f), Gg Aut{d;f). Further,
one can choose (as proved in [Go'Z'Za]) an Opération f'eOA such
that 2A=R§1)=Sub<A;f'> and G=Aut{A;f'>. Then (f =(4; {£,£>
fulfilles condition (I). One can assume f and f' to be of the
same arity m21. Take '={A;h) with

B(%g s o ’Xm)’:{ £(Xgyom Xy q) 1f X =X,
f'(xo,...,ngﬂl_1) if xm;éxo

Then (' is the algebra required in (I1)(cf./GoT72b(p. 372)/)
||
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§13 Concrete characterization of Aut @ and Con &

J@=AFD: G = Autdl & C = Conll 2

(A)
(B)13.1 Theorem. For G ¢S, an cc &A), there exists an

algebra (@ ={A;F) with F¢O, or F )

gpuch that G=Aut& and C=Con&

‘;Oﬁ‘s , resp.,(selN),
iff

G*=5,nQ and c=¥) nq
where Q=I10C[¢*vC] or Q=s-LOC[G'v C], resp. M (6.2)

No other results concerning this case are known to the
author except the following conjecture of H. Werner given
in [WeT47(here the characterization of Aut& & Con{l is sta-
ted as problem‘ 4):

13.2 Werner's Conjecture(/WeT4(p. 452)J). ILet C be a com-
plete sublattice of ¥(A)(= equivalence relations on A) and
G a permutation group on A. There is an algebra @#={A;F>
such that C=Con® and G=Aut® iff

(a) ¢ is closed under PA",x,y(we will not formulate this

condition explicitely but we note, that it is equivalent

to the existence of an algebra ' with C=Con®' (cf.§11))\

(b)) G 1s locally closed (cf. 8.1, this is equivalent to the
existence of an algebra @" with G = Aut &").

(c) If geG and o©€C then o8ec
where 08 = {(g(x),g(y)) | (x,y)e6}.
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Clearly the conditions are necessary but it turns out
that they are not sufficient.

In the preceding paragraphs we applied the General Galois
theory (in particular 6.2) to special cases in order to ob-
tain "good" general characterization results. Now we become
acquainted with another application of our theory: the con-

struction of counterexamples.

13.3 Counterexample to 13.2. Let A=_4_={O,1,2,3} and

6 ={(0,0),(0,1),(1,0),€1,1),(2,2),(2,3),(3,2),(3,3%
2 partition {{0,1},{2,3f},
6'=]0,0),(0,2),(2,0),(2,2),(1,1),(1,3),(3,1),(3,3)}
2 partition {10,2},{1,3%}

90;{(x,x)l xeA} s

ngKA’

’
g = (03)(12)eSA, e =identity of S
C={6,,0,0",6,},

G = {e,g}.
Then 13.2(a),(b),(c) are fulfilled for C and G (e.g.,

c=Con{A; g,h) with h(0)=h(1)=2, h(2)=h(3)=0; and note that

A’

for finite A, every G« SA is locally closed), but there is no
algebra (X with C=Con® and G=Autdl .
To see this, consider the relation ¢ defined by
(agsay)€9 :&p» daer: (ay,2,)€0 & (a;y,a)e0’
i &g(%)=a .

It is easy to check that ¢=f° where f==(O1)(23)eSA. There-
fore f'eSA’n [G*u c](ef.3.5). If the algebra (X would exist
then feéG by 13.1, contradiction! »
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13.4 ©Possibly Werner's conjecture becomes true if condition

(b) will be replaced by a stronger one; e.g. we formulate the
Let C<t(A) and G£S,. There is an algebra (H=(A;FD

such that C=Confl and G=Autd iff

(8) Ja'=@;FD»: C=Con @ (cf. 13.2(a), 11.1);

(b') G =85, n 10C[G vy C] (this implies 13.2(b));

(c) VeeaVeoec: o68¢c (cf. 13.2(c)).

Comparing this conjecture with 13.1, the advantage of 13.4
consists in the following: The only influence of G on C is
given by condition (c).

Clearly, after proving (if possible) this conjecture one

should look for -a simpler condition (b').

If ¢ 1is the trivial congruence lattice, i.e. if the
algebra ! is required to be simple, thea13.1 provides a

full answer:

13.5 Proposition(cf./Schm.E.T.64]), Let GgS,. There exists

a simple algebra l?(-—-(A;F) with G=Aut@ if and only if

G = Loc<G>SA nS, -

""""" : q . 00 ol . .

We have Loc[a*wc]= zocfe'] if ¢ ={J‘2,J§f, i.e., if C 1

consists of trivial congruence relations only (note, (x,y)eJE
0

can be replaced by x=y , and (x,y)&fz can be deleted in

each formula which defines a relation of [G‘L/CJ).
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Thus, by 13.1 and 8.2, 8.1, we are done if C = E&A)nToC[G"].
This can be shown without difficulties (using e.ge. 1.13 and
3.5 or proceed analogeously as in proof of 8.1). |

But there is also a simple direct proof. Clearly, the condi-
tion G::SArxLoc<G>S ig necessary(cf. 8.1). Now let

G=S5,n Loc{G)S « By 8.1 there is an (9|'=‘<A;F'>with Aut &'=G.
Take 0{=<1; Fﬁ{t£> where t is the ternary discriminator

t(x,y,z) =4 % If XAY
z 1f x=y

Because Aut(?;'@>= 5, and <A; @) is simple (cf. e.g.
[WeT8(Lemua 1.10)/), & is also simple and Aut@ = G. W
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§14  Concrete characterization of End® and Sub&

] 8(=¢a;F> : H=Endl & L = Sub@ 2

This concrete characterization problem was solved in
[Sa/5t77a] in terms of systems of equations whici reflect
- in our terminology -~ the properties of LOC[H'LJL].

From 6.2 we get the following theorem:

).
)

(A
(B)14.1 Theorem., For Hgoy) and L¢2%, there exists an

algebra ((=({A;T> with
(A) FgO, or
(8) Fgol®) (sem), resp.,
such that H=End® and L=5Sub({ iff (for Q=H'vL )
(0) u= (")) azoclal, L=10c[Q1") or
@) =) ns-10c[q], I=-s-10c[a]‘"),zeop.

The “"finite case"(C)(cf. 7.1) might be treated with 6.7
(or with 14.1(B) for finite A), but no criterion (for (C)) is
known to the author which uses properties of H and L only.

How theorem 14.1 might be improved (e.g. analogeously to

12.2 in comparision with 12.1)7? We mention here gome necess=

gary condition:

14.2 Proposition., If H=End® and L=Subll for some

universal algebra 0(=<A;F> then the following conditions

are gatigfied:
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(a) I 1s an algebraic intersection structure (cf. 10.2);
() =) aTocfE] (cf. 9.1);
(c) h(B):{h(b)lbeB}eL for all heH and BeL (in paxicular

the image h(A) of h belongs to L for all heH);
(a) n~ (B)={aeAlh(a):EB}eL for all hell and BeL ;

(o) {a}GL &> c,eH (where C,yth—>A: X > a);

(f) I'PO:LH(B-):GL for all finite B<A ;
(8) Cy(B)={acr|Vh,n'eH: hlp=h']y =>h(a)=h'(a)f €L
for all finite BgA ;

(n) TE(B)gCy(B) for all Bea .

Proof. (a),(b) are obvious(cf. 10.2, 9.1). (c) and (d) can
be shown by a straightforeward proof(cf. 12.2(iii)). (e) is
obvious. (f) and (g) are analogeously to 12.2(iv)(cf.8.7):
We have Ty, g H(B)e[}I'](1.)§ LOC[H" v 1121 by 4.3a and 14.14A.
Further, for a, ,...,anecH(B), feF(n), we get a-—-f(a1 ,...,an)e
CHQ\B)) gince hleh'!B =$f({ha1 ,...,han)=f(h'a1 9 ooe ,h'an) =>
h(f(ay,en,a,))=h'(f(a, seesay)), i.e. h(a)=h'(a).

Condition (h) is equivalent to (f)(for the proof see 12.3(iv)').
u

Remark., It is unknown to the author whether conditions
14.2(a)-(h) are sufficient, too (possibly under certain re-
gtrictions to H and/or L).

It is easy to see that Tp ; ((B)gCy(B). It is not clear
in which cases equality holds (cf. 8.7 for groups).

Probably (g) follows from (f) and (a).
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§15 Concrete characterizations IV.

(Survey on related Galois-connections)

With the preceding paragraph we close our considerations
of special concrete characterization problems. Of course,
there are some more problems than treated in §§8-14 (e.g.,
End@ & Con(l, Sub0l & Confl ). The simultaneous characteri-
zation of Aut® , Endft, Sub® and conll was given in §7.

The common background of all these results was the des-
cription of Galois closed sets of operations or relations
with respect to the Galois connection ©Pol -Inv. In the most
cases this Galois connection was restricted to special kinds
of operations or relations, resp. Let us sketch once more

this treatment in general:

15.1 Let EgO, and E'¢R, be sets of operations and re-
lations with given "properties", resp.. Then the operators

Pe>»K'(F):= E'pInv,F and

A

Q> K(Q):= E a Pol (FeE, QeE")

AQ

define a Galois connection between subsets of E and E'.

Suppose we have characterized the Galois closed sets
(°y F=K(X'(F)) (= EnPol(E'A Inv F)) and

8y Q=K'(K(Q)) (=E'AInv(E n Pol Q)) .

Then we have (obviously) the following characterization

theorems:

(%) For FcE, there exists a relational algebra (A;Q) with
QeE' such that F=EnPol Q iff F patisfies (°).
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(#x). For Q¢gE', there is a universal algebra (A;F) with

FEE such that Q=E'alInv F iff Q satisfies (3),

(i.e. Q is Galois closed).

Proof. (#): Clearly, F=K(Q) => K(K'(F))=K(K'(K(Q))}=K(Q)=F.

Conversely, if P=K(K'(F)) then define Q=K'(F).

(%#) can be proved analogeously. R

Conversely, every characterization theorem of kind (#) or
(#m) is (more or less implicitely) a characterization of
Galois closed sets of operations or relations, respectively,
where the Galois connection under consideration is given by
the operators ©Pol -Inv modified as above. Note for example,
that Inv F, Sub F (=Inv(1)F), Con 'y Pol F and Pol Q,

End Q (=Pol(1)Q), w-Aut Q can be expressed in the form

E'AInv F and EnPol Q respectively.

15.2 In the following table we summarize almost all results
given in previous paragraphs under the point of view of
Galois connections (cf. 15.1). We refer to the remark after
4,2 (an;KZ.T, 4.2, §§8-14) for some references concerning
Galois closed gets of relations (sometimes restricted to ope-
rations; we add here [isk](PolAConAF for p-rings <{A;F) and
fiie] (Aut Inv Mg for G£8,)).

In the table,results on w-Aut F and Aut F considered
in the next paragraph are mentioned, too. Note that w-Aut F

= Aut F for FgOA(cf. 1.6d), therefore no distinction is

needed in some cases.
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The table gives the number of the theorem in which the
K, (K,(2))

were characterized (or from which this characterization

Galois closed sets or K1 (K2(‘F)) (Q g-RA, FgOA)

immediately follows; have 15.1 in mind!).

Ko=_ - Pol(1-1)
& - inv Inv(s) Pol Pol(s) w=Aut
-
By=-
Inv - - 4.2(a) | 4.2(b) | 16.6
- 4.5 6.2(b)
Inv (8 _ 6.2(a) 16.2
i 1. [10.5
Sub B 6.2(a) | 6.2(b)
R 10.2 10.3
Con - - 6.2(a) | 1.1
1141 11,2
Pol 4.1(a) | 4.1(b) | (4.2) 6.2(b)
po1™) 4.1(a) | 4.1(0) | 4.2 6.2(b)
5.20) [ 5.,28) [ 7.3
w-Aut 6.2(a) | 6.2(b)
e 801 8.4
Aut 4.6 5.5 () 8.5
505"‘)_._ 8.6
5.2 (remark) 8.8

_____ A °T 0,)

was characterized in B

wol- o 6alecc unechan

Juo & W“"l’

Ak - Juv 1S
i ponerad [Sace G = Auk
fusol. v germanl for
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8§16 Kragner-clones of relations

16.1 The sets Q=Inv H of invariant relations of a set
zrgoﬁj) of unary operations are characterized by 1~LOC[Q}=Q
(cfe 442(b)). The Galois closed sets Q==1~LOC[QJ= Inv End Q
(with respect to the Galois connection Inv - End) sometimes
are called Krasner-algebras of 18% ying (/Bo/Kal/, [P5/Kall).

Here we will use the name Krasner - clone of 1

—— e ——— e e — i ——— ——— ——— -—— - mee ame

closed under arbitrary unions (cf. 1.13).

16.2 Proposition(cf./P6/Kal(1.3.1, 1.3.4)7). For QgR,,

the following conditions are eqguivalent:

(1) Q is a Krasner-clone of 15% wing ;
(ii) Q=Inv End Q ;
1i1) JHe0{: q=Inv i .  W(4.2(b) for s=1).

Now, let us consider the Galois connection Inv - Aut (or
w~Aut), in particular the Galois closed sets Inv Aut Q (or
Inv w~fut Q) for QgR, (for Aut Inv G see 4.6). Clearly

thegse sets must be Krasner-clones of 1St

kind, but they have
to satisfy some more conditions, too. We get as a first ob-

gervation:

16.3 Lemma.
(i) For feS, and geRi@)ﬂg have:

f preserves ¢ &= £ preserves 19 (:= A" \¢)
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(ii) For a permutation group G<£8,, Q=Inv,G 1s closed

(iii) If QgRA is closed under @ , then Aut Q = w-Aut Q.

Proof. (1) follows from the definitions; (ii),(iii) di-

rectly from (i) (e.g. (iii): few-Aut Q =>V¢eQ: ¢eInv £ =£i)

1 = Vc'eQ:G'eInv f-1 = f—1e w-Aut Q, i.e.

VeeQ:r9€eInv £
féeaut Q). B

For finite A, the property to be (a clone of relations
and) closed under = is strong enough to characterize the in-
variant relations of permutation groups. One could expect
that this is true in general. Before discussing this conjec-

ture we introduce the following notions:

16.4 Definition. A set Q¢R, is called a Krasner -

clone of oM ying  if

st

a) Q is a Krasner-clone of 1°° kind (i.e. Q=1-L0OC[Q]) and

b) Q is closed with respect to gtrong superposition,

i.e.(for notation c¢f. 3.2(R4), 3.4): Tor s’iEQ(mi)',

7,2 my—> A, ieI(index set) and ®: m —> A, the relation

et

aer & a isbijectiv &

Viel: xaeg, } *)

V4
ﬁ\ (riﬂ)iel(?i)iel :={7ra

also belongs to Q , and

c) Q is closed under 71, i.e. ¢eQ =>-¢€Q .

i") Note, aeAA can be considered as a mapping a: A —> A :
i»a(i)
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16.5 Proposition. For QgRA, consider the following conditions:

nd

(KC1 2) Q is a Krasner-clone of 2" kind;

(KC1 1) Q is a Krasner-clone of 1St kind;

(C1) Q is a clone of relations;

(1) Q is closed under = ;

(v) Q contains the inequality relation v =-{(x,y) | x,éy};
(sSup) Q is closed with respect to strong superposition.

Then the following eguivalences and implications hold:

kel 2) <<y (¢1) & (7)) & (sSup)

(K1 1) & (1) &y (01) & () <y (1) & (v ).

(CC) & (85ap) => (CC) & (7).

Proof. (+) by definition., (#+) holds because of \J S. =

_______ jeT 7
AN (785)). (##) 18 clear since v =1<§‘21—( Jg—:{(x,x)lxu\}

iel ‘
eQ&R,). N

Remarks. The converse of (#+) is not true in general.
Example: H=P01](IJ -1 )JN' preserves ¥ and ' =]N\~{.1}, but
H3f : x> x+1 does not preserve 1]N'={1}. Take Q:Inva.l
For finite A ([|AlZ3) we have (cf. /P5/Kal(1.3.5)])
(KC1 2) &= (C1l) & (1) & (C1) & (v).

nd 3 4na satisfy (Cl),(sSup),(=) and

Krasner-clones @ of 2
(v ). The next theorem clarifies which conditions characteri-

ze Galois closed sets of which Galois connection:

16.6 Theorem. For QgRA, the conditions given in (°<)’(t})

or (J)’ regpectively, are equivalent:
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(x ) (i) (KC1 1)&(v), i.e. Q 1is a Krasner-clone of
1St kind and ve&Q;

(ii) Q=Tnv Pol'"1)q  (notation cf. 1.4);

(iii) There is a set H of unary injective mappings

such that Q=1Inv,H (1go{')).

(f) (i)' (KC1 1) & (sSup), i.e. O is a Krasner-clone

of 15% xind and closed under strong superpo-

gition;
(ii)* Q=Inv w-Aut Q ;

casny . _ _
(iii) aHg__:SA. Q=Inv H .

(x) (i)" (KC1 2)(or (KCl 1) & (sSup) &(9)), i.e. Q is

nd

a Krasner-clone of 27~ kind (cf. 16.5);

(ii)" Q=Inv Aut Q ;
(1i1)" { G485, : Q=1Inv G .

(®): (1i)=>(iii) trivial., (iii)=>(i): Q=Inv H is a Krasner-

8t ying by 16.2. Moreover, ¥ is invariant for every

clone of 1
injective mapping. (1)=>(iii): Q=Inv End Q by 16.2. Because
of veQ, every feEnd Q must be injective, i.e. End Q =
po1{1-1)q .

(R): (ii)'=>(iii) " trivial. (iii)'=(i)': Q satisfies (KC1l 1)
by («). Moreover, for ¢.elInv H, also 9::/!\7;i(9i) (cf.
16.4b)) belongs to Inv H because KWae§ = xja€g; and a
ig bijective => Tiafe‘gi for feH (since f preserves 91);
af is bijective (since f bijective) hence xafee® , i.e. T

preserves ¢; consequently e¢e€lnv H,
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(1)'=>(ii)': Let g:eInv(m)w—Aut Q. We show ¢€Q, Clearly,
© = W ZDH(b) for H=w-Aut Q (cf. 1.8, 2.4). Since Q =
T—Logeg is closed under arbitrary unions, we are done if
IDH(b) Q for all beA™. The proof goes analo%:9usly to that
of 4.3z Tu(0) (P4l fr(v)ea"| few-mt o}

={£(b)| £ bijective & rero1{)q}

={baea™| a: A—> 1 bijective & aePol QF

={ba{ aéAA & a bijective & Vre ¢ €Q: raeg}
belongs to Q by 16.4b) (note, raeg means f(r)eg for
(r: m —>A)eg and a=fes,, cf. 3.4).
(3): (11)"=>(1ii)" trivial, (1ii)"=>(i)" by () and 16.3(ii).

(1)"=>(ii)" by (5) and 16.3(iii). @

Remarks. We state here the following open problem: 9{-

[(K01 2) &= (01) & (1) 7
The authorrwésruﬁaSié to prove this equivalence (cf. 16.5),
which holds for finite A, or to give a counterexample that
(Cl) & (= ) do not imply (KCl 2). The crucial point consists
in proving whether

(1-1),. _ Lo

Pol Q € B (Aut Q)

holds for all Q with (Cl)&( - )(because this would imply

. Lo
Qg Inv Aut Q = Inv mé(Au'b Q)e Inv 1301(1_1 )Q' -_-(°‘) Q).

For investigations of Krasner-clones we also refer to
[f(rSO],[Kr66],[Kr68],ﬁ{r76a],[i;e76],[Le77] ,[KI‘/POi],[POi71],
[PoiT75/,/PoiB0] (for finite A see also /Bo/Kal/,/P5/Kall).

¥ TNl o calsed o e Ltmmw&ae
(N— iz Q'?uu-b‘a,&u/(r {o J«QUL q,uz/r#w,g c\L

H € loc (Sp nbocH) (o 209¢ locelly

A ‘ ¢ peweR. : NO iegeuvwnl
e ees KBl weoued H =0y - * (
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The cardinality of a set

A
the least infinite cardinal number (ZQO=HM);

is denoted by |Al; &

2A

is

gtands for

the set (lattice) of all subsets of A; for f: A" —= 4 and
BgA, f}B denotes the restiction of £ to B ( fIB:Bn—aA,

(£f|B)* = £* n (B®xA)); A" is the n

th

cartesian power of A

AxB denotes the cartesian product; the logical signs J,V,&

are used in the usual sense.
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