Vorlesung Spezielle Algebraische Strukturen: Körper und Galoistheorie

3. Übung am 29.1.2015

Aufgaben 13 - 16

Die Aufgabe 14(a)-(d)) ist schriftlich zu lösen und zur Übung mitzubringen (oder in der Vorlesung am 27.1.15 abzugeben).

- 13. In der euklidischen Ebene seien drei Punkte A, B, C gegeben mit $C \notin \overline{AB}$. Geben Sie für folgende Konstruktionen mit Zirkel und Lineal die elementaren Konstruktionsschritte an (vgl. Vorlesung 3.1).
 - (a) Konstruktion der Mittelsenkrechten zur Strecke \overline{AB} ,
 - (b) Konstruktion des Lotpunktes von C auf die Gerade \overline{AB} ,
 - (c) Konstruktion derjenigen Geraden, welche parallel zu \overline{AB} , ist und den Punkt C enthält,
 - (d) Konstruktion der Winkelhalbierenden des Winkels $\angle BAC$.
 - (e) Welche Schlussfolgerungen können Sie aus (d) für die Konstruierbarkeit (mit Zirkel und Lineal) von regelmäßigen n-Ecken ziehen $(n \in \mathbb{N}_+)$, vorausgesetzt, man hat schon ein regelmäßiges n_0 -Eck konstruiert?
 - (f) Beweisen Sie, dass ein regelmäßiges n-Eck (d.h., alle seine Eckpunkte) genau dann (mit Zirkel und Lineal) konstruierbar ist, wenn der Winkel $\frac{360^{\circ}}{n}$ konstruierbar ist.
- 14. Es soll die Körpererweiterung $\mathbb{Q}(\zeta)$ von \mathbb{Q} mit $\zeta := e^{\frac{2\pi i}{5}}$ im Zusammenhang mit der Konstruktion des regelmäßigen Fünfecks untersucht werden.
 - a) Was hat die komplexe Zahl ζ mit dem Fünfeck zu tun? Skizzieren Sie in der Gaußschen Zahlenebene die Punkte $1 = \zeta^0, \zeta, \zeta^2, \zeta^3, \zeta^4$. Was ist ζ^5 ? Wie groß ist der Winkel $\angle ABC$ (in Grad) für die Punkte $A = \zeta, B = 0, C = 1$?
 - b) Ist ζ algebraisch über \mathbb{Q} ? Finden Sie ein Polynom, das ζ als Nullstelle hat.
 - c) Finden Sie ein Polynom 4. Grades, das ζ als Nullstelle hat. Zusatzaufgabe: Zeigen Sie die Irreduzibilität (über \mathbb{Q}) dieses Polynoms.
 - d) Zeigen Sie, $v := \zeta + \zeta^{-1}$ ist Nullstelle des Polynoms $X^2 + X 1 \in \mathbb{Q}[X]$. Tragen Sie die Punkte ζ^{-1} und v in Ihre Skizze (a) ein.
 - e) Zeigen Sie: $\mathbb{Q}(v) = \mathbb{Q}(\sqrt{5})$. (Hinweis: Nullstellen des Polynoms in (d) berechnen.)
 - f) Geben Sie ein Konstruktionsverfahren mit Zirkel und Lineal zur Konstruktion von ζ (und zur Konstruktion eines regelmäßigen 5-Ecks) an (basierend auf den elementaren Konstruktionsschritten).
 - g) Es sei $K_1 := \mathbb{Q}(v)$. Finden Sie ein Element $w \in \mathbb{C}$ mit $w^2 \in K_1$ und $\zeta \in K_1(w)$. Hinweis: Vergleichen Sie die Konstruktion aus (f) und den Beweis von 3.4, Konstruktionsschritt (ii) (die Rolle von z spielt hier ζ).
 - h) Berechnen Sie $[K_1 : \mathbb{Q}]$, $[\mathbb{Q}(\zeta) : K_1]$, $[\mathbb{Q}(\zeta) : \mathbb{Q}]$.
 - i) Bestimmen Sie das Minimalpolynom von ζ über jedem der folgenden Körper: $\mathbb{Q}, K_1, \mathbb{C}.$

- 15. Für eine reelle Zahl r gelte $r^5=3r^2+6$. Begründen Sie, warum es nicht möglich ist, aus einer Strecke der Länge 1 eine Strecke der Länge r mit Zirkel und Lineal zu konstruieren.
- 16. Recherchieren Sie, ob Sie einen "relativ einfachen" Beweis finden, der zeigt, dass die Kreiszahl π nicht algebraisch (also transzendent) ist.