With P. Eberhard.

*
Does Paper Bend Smoothly?*

[preprint]

With L. Freddi, M. G. Mora and R. Paroni.

*
Generalised Sadowsky theories for ribbons from three-dimensional nonlinear elasticity.*

[preprint]

With J.-P. Daniel.

* C^{1, \alpha} h-principle for von Karman constraints.*

[preprint]

With I. Velcic.

*Regularity of intrinsically convex W*^{2,2} *surfaces and a derivation of a
homogenized bending theory of convex shells.*

J. Math. Pures Appl., 115 (2018).

With L. Freddi, M. G. Mora und R. Paroni.

* One-dimensional von Karman models for elastic ribbons.*

Meccanica, 53 (2018).

With M. Rumpf and S. Simon.

* Material Optimization for Nonlinearly Elastic Planar Beams.*

ESAIM:COCV, online first.

With M. Pawelczyk and I. Velcic.

*Stochastic homogenization of the bending plate model.*

J. Math. Anal. and Appl., 458 (2018).

*Stationary points of nonlinear plate theories.*

J. Funct. Anal., 273 (2017).

With L. Freddi, M. G. Mora and R. Paroni.

* A variational model for anisotropic and naturally twisted ribbons.*

SIAM J. Math. Anal., 48 (2016).

With R. Moser.*Existence of equivariant
biharmonic maps.*

IMRN, 8 (2016).

With L. Freddi, M. G. Mora and R. Paroni.*A
corrected Sadowsky functional for inextensible elastic ribbons.*

J.
Elasticity, 123 (2016).

With A. Dall'Acqua.*Gobal structure of the
singular set of energy minimising bendings.*

Nonlinearity, 28
(2015), no. 11.

With I. Velcic.*Derivation of a homogenized
von Karman shell theory from 3D elasticity.*

Ann. Inst. H.
Poincaré Anal. Non Linéaire, 32 (2015), no. 5, 1039–1070.

DOI:
/10.1007/s10659-014-9501-6

With S. Bartels.*Bending paper and the Möbius
strip.*

J. Elasticity 119 (2015), no. 1-2, 113–136.

DOI:
/10.1007/s10659-014-9501-6

With S. Neukamm; I. Velcic.*Derivation of a
homogenized nonlinear plate theory from 3d elasticity.*

Calc.
Var. Partial Differential Equations 51 (2014), no. 3-4,
677–699.

DOI: /10.1007/s00526-013-0691-8

With R. Moser.*Intrinsically p-biharmonic
maps.*

Calc. Var. Partial Differential Equations 51 (2014),
no. 3-4, 597–620.

DOI: /10.1007/s00526-013-0688-3

*A remark on constrained von Kármán
theories.*

Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
470 (2014),

no. 2170, 20140346, 8 pp.

DOI:
/10.1098/rspa.2014.0346

With R. Moser.*A reformulation of the
biharmonic map equation.*

J. Geom. Anal. 24 (2014), no. 3,
1201–1210.

DOI: /10.1007/s12220-012-9369-2

*Continuation of infinitesimal bendings on
developable surfaces and equilibrium equations for nonlinear bending
theory of plates.*

Comm. Partial Differential Equations 38
(2013), no. 8, 1368–1408.

DOI: /10.1080/03605302.2013.795967

With M. Lewicka; M. R. Pakzad.*Infinitesimal
isometries on developable surfaces and asymptotic theories for thin
developable shells.*

J. Elasticity 111 (2013), no. 1,
1–19.

DOI: /10.1007/s10659-012-9391-4

With R. Moser.*Intrinsically biharmonic maps
into homogeneous spaces*.

Adv. Calc. Var. 5 (2012), no. 4,
411–425.

DOI: /10.1515/acv.2011.018

With R. Moser.*Energy identity for
intrinsically biharmonic maps in four dimensions.*

Anal. PDE 5
(2012), no. 1, 61–80.

DOI: /10.2140/apde.2012.5.61

*A relaxation of the intrinsic biharmonic
energy.*

Math. Z. 271 (2012), no. 3-4, 663–692.

DOI:
/10.1007/s00209-011-0883-x

*Approximation of flat W*^{2,2}
*isometric immersions by smooth ones.*

Arch. Ration. Mech.
Anal. 199 (2011), no. 3, 1015–1067.

DOI:
/10.1007/s00205-010-0374-y

*Fine level set structure of flat isometric
immersions.*

Arch. Ration. Mech. Anal. 199 (2011), no. 3,
943–1014.

DOI: /10.1007/s00205-010-0375-x

*Euler-Lagrange equation and regularity for flat
minimizers of the Willmore functional.*

Comm. Pure Appl. Math.
64 (2011), no. 3, 367–441.

DOI: /10.1002/cpa.20342

*Invertibility and non-invertibility in thin
elastic structures.*

Arch. Ration. Mech. Anal. 199 (2011), no.
2, 353–368.

DOI: /10.1007/s00205-010-0391-x

*Euler-Lagrange equations for variational problems
on space curves.*

Phys. Rev. E (3) 81 (2010), no. 6, 066603, 5
pp.

DOI: /10.1103/PhysRevE.81.066603

*Minimizers of Kirchhoff's plate functional:
Euler-Lagrange equations and regularity.*

C. R. Math. Acad.
Sci. Paris 347 (2009), no. 11-12, 647–650.

DOI:
/10.1016/j.crma.2009.03.031

*A Γ-convergence result for thin martensitic
films in linearized elasticity.*

SIAM J. Math. Anal. 40
(2008), no. 1, 186–214.

DOI: /10.1137/070683167

*Approximating W*^{2,2} *isometric
immersions.*

C. R. Math. Acad. Sci. Paris 346 (2008), no. 3-4,
189–192.

DOI: /10.1016/j.crma.2008.01.001