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Abstract

We characterize the class of framed curves that are induced by local
isometric immersions (bending deformations) defined in a neighbour-
hood of a curve in the reference configuration. This characterization
is sharp; in particular, for every framed curve belonging to the class
we construct a local isometric immersion from which it arises.
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1 Introduction

Asymptotic theories play an important role in modelling thin elastic sheets
such as plates. We refer to the monograph [2] for an overview of the field.
We also refer to [3] and e.g. [4] for applications of differential geometry in
the context of elasticity; the present article is another such application.
In [8] (see also [19]) Kirchhoff’s nonlinear plate theory [16] was derived from
nonlinear three dimensional elasticity in terms of Γ-convergence. An essential
feature of Kirchhoff’s plate theory is that the class of deformations with finite
energy consists precisely of the isometric immersions with square integrable
second derivatives, i.e., they belong to the set

W 2,2
δ (U) = {u ∈ W 2,2(U,R3) : (∇u)T∇u = I almost everywhere },

where I ∈ R2×2 is the identity matrix and U ⊂ R2 is the two-dimensional
reference configuration of the plate.
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A further reduction of dimensions allows to derive theories for narrow rib-
bons [14, 10, 21, 22, 6, 7]. Such a ribbon may be defined near any embedded
smooth curve in the reference configuration.
In order to establish a connection between asymptotically narrow ribbons
(i.e., one-dimensional framed curves) and the (two-dimensional) plates they
arise from, one needs to understand the constraints imposed on the framed
curves arising from W 2,2 isometric immersions. Such a local understanding is
also useful in the context of plates which are not infinitesimally narrow, be-
cause it allows to separate global constraints from purely local ones. Indeed,
the purely local constraints obtained in the present article play an essential
role in the context of folded isometric immersions.

In this article we consider a smooth embedded curve b : (0, 1)→ R2 and let
U ⊂ R2 be a neighbourhood of its trace b(0, 1). Let u : U → R3 be a smooth
isometric immersion. Then u determines a frame r : (0, 1) → SO(3), where
SO(3) is the set of rotation matrices, whose first row is given by r1 = Db′u◦b
and whose third row is given by r3 = n ◦ b. Here n = ∂1u×∂2u is the normal
(the Gauss map) to u. This frame r is the (pulled back) Darboux frame of
the curve u ◦ b on the surface u.
Conversely, given a frame r one can reconstruct u from it, at least locally
near b. However, even leaving aside regularity considerations, this is clearly
not possible for all frames r. In fact, the geodesic curvature of the curve u◦ b
is a12 = r′1 · r2. Since u is an isometric immersion and geodesic curvature is
an intrinsic quantity, a necessary condition on r is that a12 must agree with
the curvature of b, which we denote by κ.
There is, however, a second condition which is related to the developability
[9, 20, 15, 18] of regular isometric immersions such as u. It arises as a
sufficient condition when one reconstructs u from r, such as in the context
of ribbons. Its failure is illustrated by the frame along the reference curve
b(t) = (t, 0) given by

r(t) =

1 0 0
0 cos t sin t
0 − sin t cos t

 . (1)

This frame satisfies a12 = 0 = κ. But it is not clear how to construct u
giving rise to such a frame, and indeed our results show that there is no
such isometric immersion u defined in a neighbourhood of b, no matter how
narrow the neighbourhood.
Thirdly, the regularity of u clearly affects that of r and viceversa.
Our main result, Theorem 2.1 below, shows that these three constraints
completely characterize frames r which arise from local isometric immersions
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with finite bending energy [8], i.e., from u in the class W 2,2
δ (U) where U

is a neighbourhood of b. More precisely, Theorem 2.1 asserts that a frame
r : (0, 1) → SO(3) arises from a W 2,2 isometric immersion defined in a
neighbourhood of b if, and only if,

(a) r ∈ W 1,2
loc (0, 1).

(b) r′1 · r2 = κ.

(c) there exists a locally Lipschitz continuous function F : (0, 1) → R such
that r′2 · r3 = Fr′1 · r3.

As before, we have used the notation ri = rT ei, where ei are the standard
basis vectors of R3.
Observe that condition (c) is violated by the frame (1) because it satisfies
r′2 · r3 ≡ 1 and r′1 · r3 ≡ 0. More generally, the sufficiency of conditions
(a) through (c) has proven useful in the contexts of ribbons [7, 6, 13] and
of folded isometric immersions [1, 11] when the folding curve is neither a
geodesic nor a line of curvature.
In Section 5 we will compare two other viewpoints to the one adopted in
the present article. In Section 5.1 we will rephrase our main existence result
Theorem 2.1 (ii) in terms of the setting in [13], where the normal to the de-
formed surface along the reference curve is the central variable. In Corollary
5.2 we will therefore obtain natural conditions on a curve β : (0, 1) → S2

which ensure that β can be realized as the normal of an isometric immer-
sion defined in a neighbourhood of b. This result has been used in [13] to
construct ribbons with finite width satisfying prescribed clamped boundary
conditions.
In Section 5.2 we will link the viewpoint in [7], where the main variable is
the second fundamental form along the reference curve b, to the one adopted
here. As a result, in Corollary 5.6 we show that Theorem 2.1 (ii) allows us to
recover (and in fact generalize) the existence result in [7], despite apparently
different hypotheses.

2 Local Isometric Immersions and Framed Curves

2.1 Developability of Isometric Immersions

If u is an isometric immersion from a domain U ⊂ R2 into R3, i.e., u is
Lipschitz and

∂iu · ∂ju = δij almost everywhere on U, (2)
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then its Gauss map is the map n : U → S2 defined by

n(x) = ∂1u(x)× ∂2u(x).

If, moreover, u ∈ W 2,1
loc then we can differentiate equation (2) to find that

∂i∂ju(x) = Aij(x)n(x) for almost every x ∈ U, (3)

where Aij = n · ∂i∂ju denotes the second fundamental form of u.
Let us next recall some facts from [20, 9, 15, 18, 17] about maps u ∈ W 2,2

δ (U).
Firstly, such u are continuously differentiable on U and thus their Gauss map
is continuous. Secondly, such u are developable in the following sense: for
every x0 ∈ U there exists δ > 0 and a Lipschitz continuous map qu : Bδ(x0)→
S1 such that, for all x ∈ Bδ(x0),

∇u is constant on the segment Bδ(x0) ∩ (x+ Rqu(x)) ; (4)

observe that this implies that n is constant on these segments, too.

Throughout this article b : I → R2 denotes an arclength parametrized em-
bedded W 2,∞-curve. We denote its curvature by κ = b′′ · (b′)⊥.
If u ∈ W 2,2

δ (U) and b(I) ⊂ U then (4) implies that there exists a neighbour-
hood M ⊂ R2 of I × {0} such that the map N = qu ◦ b satisfies

∇u(b(t) + sN(t)) = ∇u(b(t)) for all (t, s) ∈M. (5)

This suggests the following definition: given a bounded domain U ⊂ R2

with b(I) ⊂ U and u ∈ W 1,1
loc (U,R3), we will say that b is noncharacteristic

for u if there exists a locally Lipschitz continuous map N : I → S1 with
b′(t) · N⊥(t) 6= 0 for all t ∈ I and there exists a neighbourhood M ⊂ R2 of
I × {0} such that (5) is satisfied.

2.2 Main Result

For p1, p2 ∈ L1
loc(I) we will say that α : I → R is an argument for (p1, p2) if

p1 sinα = p2 cosα almost everywhere on I.

Our main result is the following theorem. It characterizes framed curves that
arise from local isometric immersions. In its statement and in what follows,
for a given map r : I → SO(3) we denote its rows by ri and we set aij = r′i ·rj;
here i, j = 1, 2, 3.
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Theorem 2.1. Let b : I → R2 be an arclength parametrized embedded W 2,∞-
curve with curvature κ = b′′ · (b′)⊥. The following are true:

(i) Let U ⊂ R2 be a neighbourhood of b(I), let u ∈ W 2,2
δ (U) and assume

that b is noncharacteristic for u. Define r : I → SO(3) by

r3 = n ◦ b and r1 = (Db′u) ◦ b. (6)

Then r ∈ W 1,2
loc (I) and we have a12 = κ. Moreover, (a13, a23) admits a

locally Lipschitz continuous argument I → (−π
2
, π

2
).

(ii) Let r ∈ W 1,2
loc (I, SO(3)) be such that a12 = κ and assume that (a13, a23)

admits a locally Lipschitz continuous argument I → (−π
2
, π

2
). Then

there exists a neighbourhood U ⊂ R2 of b(I) and an isometric immersion
u ∈ W 2,2

δ (U) such that (6) holds on I. Moreover, b is noncharacteristic
for u.

Remarks.

(i) Theorem 2.1 shows that a framed curve arises from a local isometric
immersion along a noncharacteristic curve b with curvature κ precisely
if it satisfies the following two conditions:

(a) a12 = κ.

(b) (a13, a23) admits a locally Lipschitz continuous argument I → (−π
2
, π

2
).

In view of Lemma 6.3, condition (ib) is equivalent to the condition

(b’) There exists a locally Lipschitz continuous function F : I → R
such that a23 = Fa13.

Condition (ia) is due to the fact that geodesic curvature is an intrinsic
quantity and is therefore preserved under isometric immersions. Con-
dition (ib) is more subtle. It is inherited from the rigidity related to
the nonzero width of the local isometric immersion.

(ii) In Theorem 2.1 (ii) the condition r ∈ W 1,2
loc can be replaced by the

apparently weaker conditions r ∈ W 1,1
loc and r3 ∈ W 1,2

loc , see Proposition
3.3.

(iii) Theorem 2.1 (ii) generalizes earlier results in [7]; see Section 5.2. We
also refer to the constructions in [18, 12] for the particular case when
b′ = −N⊥.
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(iv) We cannot expect r to be globally in W 1,2(I) in Theorem 2.1 (i). For
instance, we can take b(t) = te1 andN ≡ e2, and for given µ : (0, 1)→ R
we can define the isometric immersion u : (0, 1)× R→ R3 by

u(x1, x2) =


´ x1

0
cos
(´ t

0
µ
)
dt

x2´ x1
0

sin
(´ t

0
µ
)
dt

 .

Then

|∂1∂1u(x1, x2)| = |r′1(x1)| = |µ(x1)| for all (x1, x2) ∈ (0, 1)× R.

Let α > 0 and

U = {(x1, x2) : x1 ∈ (0, 1) and |x2| < x2α
1 }.

Then ˆ
U

|∂1∂1u|2 = 2

ˆ 1

0

µ2(t)t2α dt.

Taking µ(t) = t−
α+1
2 we see that u ∈ W 2,2(U), but

´ 1

0
|r′1|2 =

´ 1

0
µ2 =

∞.

Theorem 2.1 has proven useful in the context of ribbons with finite width
[13] as well as in the context of folded paper [11].

3 From Framed Curve to Local Isometric Im-

mersion

We will obtain Theorem 2.1 (ii) as a consequence of Proposition 3.3 below

(defining R̃1 by (14)). Theorem 2.1 (i) will be proven in Section 4.

3.1 Local Coordinates

For the proof of both parts of Theorem 2.1 we will make use of the coordi-
nates introduced in Lemma 3.1 below. These are natural coordinates, and
they generalize those used, e.g., in [18, 12, 6, 7]. While the proof could be
shortened somewhat by applying a degree argument, we prefer to give an
elementary proof.
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Lemma 3.1. Let I ⊂ R be an open bounded interval and let b : I → R2 be
an arclength parametrized embedded W 2,∞-curve. Let R̃1 : I → S2 be locally
Lipschitz and such that b′ · R̃1 > 0 everywhere on I. Set R̃2 = (R̃1)⊥ and
define Φ : I × R→ R2 by

Φ(t, s) = b(t) + sR̃2(t).

Then there exists a neighbourhood M ⊂ R2 of I × {0} such that Φ|M is a
homeomorphism of M onto the open set U = Φ(M). Moreover, Φ : M → U
as well as Φ−1 : U →M are locally Lipschitz.

Remarks.

(i) In the proof we will also show the following: if h ∈ L1
loc(I) is nonnegative

and m : I → R is measurable and locally bounded, then we can choose
M such that, in addition to the conclusions of the lemma,

ˆ
M

h(t) dtds <∞

and

|s| ≤ 1

1 + |m(t)|
for all (t, s) ∈M. (7)

(ii) Applying Remark (i) with

m =
1 + 2|R̃′1|
R̃1 · b′

we have

R̃1 · b′ − sR̃′1 · R̃2 ≥
R̃1 · b′

2
on M. (8)

Since
det (∂tΦ | ∂sΦ) = R̃1 · b′ − sR̃′1 · R̃2,

we therefore have

det (∂tΦ | ∂sΦ) ≥ R̃1 · b′

2
on M.

Hence the Jacobian of Φ is bounded from below by a positive constant
on (J × R) ∩M , whenever J is a compact subset of I.
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(iii) We will also show that if R̃1 is Lipschitz on I and

inf
I
b′ · R̃1 > 0,

then there is δ > 0 such that we can choose M = I × (−δ, δ).

In the proof of Lemma 3.1 we will use the following simple observation.

Lemma 3.2. Let ` > 0 and for all n ∈ N let cn > 0 and define

τn = (1− 2−n)` (9)

and
In = (−τn+1,−τn) ∪ (τn, τn+1). (10)

Then there exists ξ ∈ C∞(−`, `) which is positive everywhere on (−`, `) and
which for all n ∈ N satisfies

ξ(t) ≤ cn for all t ∈ In. (11)

Proof. By taking cn = mink≤n ck we may assume without loss of generality
that (cn) ⊂ (0,∞) is a nonincreasing sequence.
Let ϕ ∈ C∞(R) be nonnegative with sptϕ ⊂

(
1
4
, 3

4

)
and
´
ϕ = 1. Define

η : R→ [0, 1] by

η(t) =

ˆ t

0

ϕ.

We define ξ̃ : R→ R by

ξ̃(t) =
∞∑
n=0

(
cn + (cn+1 − cn)η

(
t− τn

τn+1 − τn

))
.

Then ξ̃ ∈ C∞(0, `) because locally the series is a finite sum. Finally, we
define ξ : R→ R by setting

ξ(t) =

{
ξ̃(t) if t ≥ 0

ξ̃(−t) if t < 0.

Since ξ̃ ≡ c0 in a neighbourhood of 0, we have ξ ∈ C∞(−`, `).

Proof of Lemma 3.1. Without loss of generality we may assume that I =
(−`, `) for some ` > 0.

Since R̃2 is locally Lipschitz, so is Φ. We compute ∂sΦ = R̃2 and

∂tΦ = b′ + sR̃′2. (12)

Hence (ii) follows.
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Claim 1. For all 0 < τ < ` there is ρτ > 0 such that for each t ∈ [−τ, τ ]
the restriction of Φ to the ball Bρτ (t, 0) is injective.
To prove this, we define the generalized gradient ∂Φ(ζ0) to be the convex
hull of the set consisting of all limits

lim
ζ→ζ0
∇Φ(ζ),

where ζ belongs to the set of full measure where ∇Φ(ζ) exists. Since

∇Φ(t, s) = (b′(t) + sR̃′2(t) | R̃2(t))

and since R̃2 and b′ are continuous and R̃′2 is locally bounded, we conclude
that

∂Φ(t, 0) = {(b′(t) | R̃2(t))}

for every t ∈ (−`, `). Since (b′(t)|R̃2(t)) is invertible because b′ · R̃1 6= 0 on
(−`, `), Clarke’s inverse function theorem [5, Theorem 1] implies that for all
t ∈ (−`, `) there exists r > 0 such that Φ(Br(t, 0)) is open and Φ is injective
on Br(t, 0). Covering [−τ, τ ] × {0} with a finite number of such open balls,
the claim follows from the Lebesgue lemma.

Claim 2. There exist positive constants ε and η such that for all t, t′ ∈
[−`, `] we have

|b(t)− b(t′)| ≥

{
|t−t′|

2
if |t− t′| ≤ ε

η if |t− t′| ≥ ε.
(13)

In fact, denote by Lip b′ the Lipschitz constant of b′, set ε = 1
2 Lip b′

and let

|t− t′| ≤ ε with t < t′. Then

|b(t′)− b(t)| =

∣∣∣∣∣b′(t) (t′ − t) +

ˆ t′

t

(b′(s)− b′(t)) ds

∣∣∣∣∣
≥ |t′ − t| − (Lip b′)

ˆ t′

t

|s− t| ds

≥ (1− εLip b′) |t′ − t|.

This proves the first estimate in (13). To prove the second one assume that
there were no η > 0 as in the claim. Then for all n ∈ N there would exist tn,
t′n ∈ [−`, `] with |tn − t′n| ≥ ε and |b(tn)− b(t′n)| ≤ 1/n. Their accumulation
points t, t′ ∈ [−`, `] would satisfy |t − t′| ≥ ε yet b(t) = b(t′), contradicting
the injectivity of b. This concludes the proof of the claim.
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Claim 3. Let ε as in Claim 2, let τ ∈ (0, `) and denote by Lτ the Lipschitz

constant of R̃2 on [−τ, τ ]. Assume that t, t′ ∈ [−τ, τ ] and s, s′ ∈ R are such
that Φ(t, s) = Φ(t′, s′). If

|t− t′| ≤ ε and |s| ≤ 1

4Lτ

then |t− t′| ≤ 4|s− s′|.
In fact, Φ(t, s) = Φ(t′, s′) implies that

|b(t)− b(t′)| =
∣∣∣sR̃2(t)− s′R̃2(t′)

∣∣∣ ≤ |s||R̃2(t)− R̃2(t′)|+ |(s− s′)R̃2(t′)|.

Since |R̃2(t) − R̃2(t′)| ≤ Lτ |t − t′| and |s| ≤ (4Lτ )
−1, using (13) we deduce

that
|t− t′|

2
≤ |t− t

′|
4

+ |s− s′|.

Absorbing the first term on the right-hand side into the left-hand side the
claim follows.

For τ ∈ [0, `) let ρτ as in Claim 1. For n ∈ N define τn as in (9) and In
as in (10). In order to include the proof of Remark (i), let h ∈ L1

loc(−`, `)
be nonnegative and let m : (−`, `)→ R be measurable and locally bounded.
Define hn =

´
In h and

mn = ‖m‖L∞(In),

and set

cn = min
k≤n

{
2−k

1 + hk
,
η

3
,
ρτk+1

20
,

1

1 + 4Lτk+1

,
1

1 +mk

}
.

Clearly (cn) ⊂ (0,∞) is a nonincreasing sequence. By Lemma 3.2 there exists
ξ ∈ C∞(−`, `) such that (11) is satisfied. Define

M = {(t, s) ∈ (−`, `)× R : |s| < ξ(t)}.

Then M is a neighbourhood of (−`, `)× {0}. Moreover, by (11), the choice
of cn and since (−`, `) agrees with

⋃∞
n=0 In up to a countable set, we can

estimate ˆ
M

h(t) dtds = 2

ˆ `

−`
h(t)ξ(t) dt

= 2
∞∑
n=0

ˆ
In
hξ

≤ 2
∞∑
n=0

hn ·
2−n

1 + hn
<∞.
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Moreover, since cn ≤ 1
1+mk

for all k ≤ n, we have

ξ(t) ≤ 1

|m(t)|+ 1
for almost every t ∈ I.

Hence (7) is satisfied as well. It remains to show that Φ is injective on M .
Then the invariance of domain theorem implies that Φ(M) is open and the
proof is complete.
In order to prove that Φ is injective on M , let ζ, ζ ′ ∈ M be such that
Φ(ζ) = Φ(ζ ′). We write (t, s) = ζ and (t′, s′) = ζ ′ and choose the labels
such that |t| ≤ |t′|. There exist k, k′ ∈ N with k ≤ k′ such that t ∈ Ik and
t′ ∈ Ik′ . By definition of M and by (11) we have |s| ≤ ck and |s′| ≤ ck′ ≤ ck
because (cn) is nonincreasing.
Since Φ(ζ) = Φ(ζ ′), we have

|b(t′)− b(t)| = |sR̃2(t)− s′R̃2(t′)| ≤ |s|+ |s′| ≤ 2η

3
.

Hence (13) implies that |t− t′| ≤ ε. Since

|s′| ≤ ck′ ≤
1

1 + 4Lτk′+1

≤ 1

1 + 4L|t′|
,

and |t| ≤ |t′|, Claim 3 implies that |t− t′| ≤ 4|s− s′|. Hence

|ζ − ζ ′| ≤ 5|s− s′| ≤ 10ck ≤
ρτk+1

2
.

Since
|ζ − (t, 0)| = |s| ≤ ck ≤

ρτk+1

20
,

we conclude that

|ζ ′ − (t, 0)| ≤ |ζ ′ − ζ|+ |ζ − (t, 0)| < ρτk+1
.

Therefore ζ ′, ζ ∈ Bρτk+1
(t, 0). Since t ∈ [−τk+1, τk+1], by Claim 1 the map Φ

is injective on this ball. Hence ζ = ζ ′.

Finally, in order to prove Remark (iii) let us assume that R̃2 is Lipschitz on

(−`, `) and R̃1 ·b′ is bounded from below on (−`, `) by a positive constant. In

this case there is r > 0 such that we can extend both R̃2 and b to (−`−r, `+r);
we define σ and M as before, but with (−`− r, `+ r) replacing (−`, `). The
infimum δ of σ over [0, `] is positive. Clearly (−`, `)× (−δ, δ) ⊂M .
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3.2 Construction of Local Isometric Immersion

We recall that b : I → R2 always denotes an embedded W 2,∞-curve that is
parametrized by arclength; its curvature is denoted by κ. The following is
our main result regarding the existence of local isometric immersions.

Proposition 3.3. Let R̃1 : I → S1 be locally Lipschitz and assume that
R̃1 · b′ > 0 on I. Set R̃2 = R̃⊥1 and define

Φ : I × R→ R2

(t, s) 7→ b(t) + sR̃2(t).

Then there exists a neighbourhood M ⊂ R2 of I × {0} such that U = Φ(M)
is open and Φ : M → U is an orientation preserving locally bi-Lipschitz
homeomorphism.
Let α ∈ W 1,∞

loc (I) be the unique function I → (−π
2
, π

2
) such that

R̃1 = b′ cosα + (b′)⊥ sinα. (14)

Let r ∈ W 1,1
loc (I, SO(3)) satisfy

a12 = κ (15)

a13 sinα = a23 cosα (16)

almost everywhere on I.
Define r̃ : I → SO(3) by setting r̃3 = r3 and

r̃1 = r1 cosα + r2 sinα.

Then the map u : U → R3 defined by setting

u (Φ(t, s)) = sr̃2(t) +

ˆ t

0

r1 for all (t, s) ∈M (17)

belongs to C1
δ (U) and we have

(∇u)(Φ) = r̃1 ⊗ R̃1 + r̃2 ⊗ R̃2 on M. (18)

Moreover, u ∈ W 2,1
loc (U,R3) and its second fundamental form satisfies

A(Φ) =
ã13

cosα− sR̃′1 · R̃2

R̃1 ⊗ R̃1 on M. (19)

If, in addition, r3 ∈ W 1,2
loc (I), then M can be chosen such that u ∈ W 2,2(U,R3).
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Remarks.

(i) In (18), (19) and similar equations, we tacitly identify a function f ∈
L1
loc(I) with its trivial extension f ◦ P ∈ L1

loc(I × R), where P is the
canonical projection I × R→ I.

(ii) In view of (18), we see that u satisfies (5) with N = R̃2 and

(Db′u) ◦ b = r1 and n ◦ b = r3 on I.

(iii) If J ⊂ I is an interval and r3 ∈ W 1,2(J), then clearly a13, a23 ∈ L2(J).
Since moreover a12 ∈ L∞(I) by (15), we see that r3 ∈ W 1,2(J) implies
that r ∈ W 1,2(J).

(iv) If R̃1 ∈ W 1,∞(I) and

inf
I
R̃1 · b′ > 0, (20)

then M can be chosen to be of the form M = I×(−δ, δ) for some δ > 0.
This follows from Lemma 3.1.

In order to prove Proposition 3.3, we begin with a simple lemma.

Lemma 3.4. Let r, r̃ ∈ W 1,1
loc (I, SO(3)). Then r̃3 = r3 if and only if there is

α ∈ W 1,1
loc (I) (unique up to addition of an integer multiple of 2π) such that

r̃1 = r1 cosα + r2 sinα

r̃2 = r2 cosα− r1 sinα.
(21)

Moreover, if (21) is satisfied, then

ã12 = a12 + α′

ã13 = a13 cosα + a23 sinα

ã23 = a23 cosα− a13 sinα.

In particular, α is an argument for (a13, a23) if and only if ã23 = 0.

Proof. The existence of α follows from Lemma 6.2. The formulae for the ãij
follow from a standard computation.

In what follows O(2, 3) ⊂ R3×2 denotes the set of matrices with orthonormal
columns. The next lemma shows that most conclusions of Proposition 3.3
follow from (18).
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Lemma 3.5. Let R̃1 : I → S2 be locally Lipschitz and such that R̃1 ·b′ > 0 on
I, and let Q ∈ W 1,1

loc (I, O(2, 3)). Set R̃2 = R̃⊥1 and define r, r̃ : I → SO(3)

by setting r̃3 = r3 = Qe1 ×Qe2 and r1 = Qb′ as well as r̃1 = QR̃1.
Define Φ, M and U as in Lemma 3.1, let u ∈ W 1,1

loc (U,R3) and assume that

(∇u)(Φ(t, s)) = Q(t) for almost every (t, s) ∈M. (22)

Then Φ has the properties asserted in Proposition 3.3, we have

u ∈ C1
δ (U) ∩W 2,1

loc (U,R3)

and u is given, up to a translation, by (17). Moreover, we have

n(Φ(t, s)) = r3(t) for all (t, s) ∈M (23)

and (18) as well as

A(Φ(t, s)) =
ã13(t)

b′(t) · R̃1(t)− sR̃′1(t) · R̃2(t)
R̃1(t)⊗ R̃1(t) (24)

for almost every (t, s) ∈ M . Moreover, for almost every t ∈ I the point b(t)
is a Lebesgue point for the representative of A defined by (24), and with this
representative we have

(n ◦ b)′ = (Db′n) ◦ b almost everywhere on I

((∇u) ◦ b)′ = (Db′∇u) ◦ b almost everywhere on I.
(25)

In addition, we have

a12 = κ (26)

ã12 = R̃′1 · R̃2 (27)

ã23 = 0, (28)

and the unique function α ∈ W 1,∞
loc (I) satisfying |α| < π

2
and (14) is an

argument for (a13, a23).

Proof. Set κg = R̃′1 ·R̃2. By Lemma 3.4 there exists a unique locally Lipschitz
function α : I → (−π/2, π/2) satisfying (14). Observe that (14) implies

r1 = Qb′ = r̃1 cosα− r̃2 sinα. (29)

The existence of M and the properties of Φ follow from Lemma 3.1 and the
remarks following it. In particular, by Remark (ii) following Lemma 3.1, we
have

cosα− sκg > 0 on M. (30)
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By (22) and the continuity of Q : I → O(2, 3) and of Φ−1 : U → M , we
have u ∈ C1

δ (U). Formula (23) follows from (22). Since Q ∈ W 1,1
loc (I), we

have ∇u(Φ) ∈ W 1,1
loc (M). Since Φ : M → U is locally bi-Lipschitz, we deduce

that ∇u ∈ W 1,1
loc (U), so u ∈ W 2,1

loc (U), and that the chain rule applies. In
particular,

∂t (∇u(Φ)) = (D∂tΦ∇u)(Φ) on M, (31)

and a similar equation for n.
We claim that the map ũ : U → R3 defined by the right-hand side of (17)
satisfies (18) (with ũ instead of u on the left-hand side).
In fact, since Φ is injective, ũ is well-defined. Taking the derivative with
respect to s we see that (DR̃2

ũ)(Φ) = r̃2. Using this and (12) as well as (29),
we find

(cosα− sκg)(DR̃1
ũ)(Φ)− r̃2 sinα = ∂t(ũ ◦ Φ)

= r1 − sκgr̃1

= (cosα− sκg) r̃1 − r̃2 sinα.

In view of (30) we deduce that (DR̃1
ũ)(Φ) = r̃1. This concludes the proof of

(18).
On the other hand the definition of r̃1 and r̃3 means that

Q = r̃1 ⊗ R̃1 + r̃2 ⊗ R̃2.

Hence the differentials of u and ũ agree, so after adding a constant vector to
u, formula (17) is satisfied.
Next we observe that (18) implies that

(DR̃2
∇u)(Φ) = ∂s ((∇u)(Φ)) = 0 on M. (32)

Since ∇2u is symmetric, we deduce from (3) and (23) that there is a mea-
surable function λ : M → R such that

(∇2u)(Φ) = λr3 ⊗ R̃1 ⊗ R̃1 on M. (33)

In particular, (∇2u)(Φ)(R̃2, ·) = 0. Hence

r̃′2 = ∂t
(
(DR̃2

u)(Φ)
)

= (DR̃′2
u)(Φ) = −κgr̃1

almost everywhere on M . Hence ã23 = 0 and ã12 = κg almost everywhere
on I. Using these and taking the derivative with respect to t in (18), we find(

b′ · R̃1 − sκg
)

(DR̃1
∇u)(Φ) = ã13r3 ⊗ R̃1 on M. (34)
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Hence we deduce from (30) that in (33) we have

λ =
ã13

b′ · R̃1 − sκg
on M.

Hence (24) follows from (33).
Let us denote by A the representative defined pointwise by (24). Let t0 ∈ I
be a Lebesgue point of ã13 and let r > 0 be such that the closure of B :=
Br(b(t0)) is contained in U . Since Φ−1 is Lipschitz on B, there is a constant
k such that

Φ−1(B) ⊂ Bkr(t0, 0). (35)

In view of (24) and of (ii), setting m = ã13R̃1 ⊗ R̃1 and a = b′ · R̃1, we have

ˆ
B

|A− A(b(t0))| =
ˆ

Φ−1(B)

∣∣∣∣m(t)−m(t0)
a(t)− sκg(t)

a(t0)

∣∣∣∣ dtds
≤ 1

a(t0)

ˆ
Φ−1(B)

|m(t)a(t0)−m(t0)a(t)| dtds+
C

a(t0)

ˆ
Φ−1(B)

|s| dtds.

In the last step we used that κg is locally bounded because R̃1 is locally

Lipschitz. Since by the continuity of R̃1 the point t0 is a Lebesgue point of
m(t), in view of (35) as r → 0 the first term on the right-hand side converges
to zero much faster than |Bkr|, hence much faster than r2. The same is true
for the second term, as it is dominated by r|Bkr|. Hence b(t0) is a Lebesgue
point of A and (25) follows from (31).
Finally, we compute using (3) and (22):

a12 = ((Db′u)(b))′ · (D(b′)⊥u)(b)

= (Db′′u)(b) · (D(b′)⊥u)(b).

= Qb′′ ·Q(b′)⊥ = κ

because Q takes values in O(2, 3).

Proof of Proposition 3.3. The existence and uniqueness of α follows from
Lemma 3.4. Set κ = b′′ · (b′)⊥ and κg = α′ + κ. A short computation

shows that R̃′1 = κgR̃2. Lemma 3.4 shows that (15) implies ã12 = κg and
that (16) implies ã23 = 0. Hence

r̃′2 = −κgr̃1. (36)

As before, the existence of M and the properties of Φ follow from Lemma
3.1.

16



According to Remark (ii) following Lemma 3.1, we may assume that (8) is
satisfied. If, moreover, r3 ∈ W 1,2

loc (I), then by Remark (i) following Lemma
3.1 we may also assume that

ˆ
M

|r′3|2

cosα
dtds <∞. (37)

As noted in the proof of Lemma 3.5, the map u : U → R3 given by (17) is well-
defined and satisfies (18). Hence Lemma 3.5 shows that u ∈ C1

δ (U)∩W 2,1
loc (U),

that n(Φ) = r3 on M and that (19) is satisfied.
Finally, assume that r3 ∈ W 1,2

loc (I). Since |ã13| = |r′3|, equation (19) implies
that ˆ

U

|A|2 =

ˆ
M

|A(Φ)|2| det∇Φ| =
ˆ
M

|r′3|2

cosα− sκg
. (38)

By (8) we have

cosα− sκg ≥
cosα

2
on M.

Hence ˆ
M

|r′3|2

cosα− sκg
≤ 2

ˆ
M

|r′3|2

cosα
. (39)

In view of (37) the right-hand side of (39) is finite. Hence (38) implies that
A ∈ L2(U). In view of (3) this implies that ∇2u ∈ L2(U), too, and therefore
u ∈ W 2,2(U).

4 From Isometric Immersion to Framed Curve

The converse to Proposition 3.3 will be addressed now, thus leading to a
proof of Theorem 2.1 (i).

Proof of Theorem 2.1 (i). Since b is noncharacteristic, after possibly replac-

ing qu by −qu, the map R̃2 : I → S2 defined by R̃2 = qu ◦b is locally Lipschitz
and R̃1 = −(R̃2)⊥ satisfies b′ · R̃1 > 0 on I.
Define Φ and M as in Lemma 3.1. After possibly shrinking M or U , we may
assume that U = Φ(M) and that

(∇u)(Φ(t, s)) = (∇u)(b(t)) for all (t, s) ∈M. (40)

Since ∇u ∈ W 1,2
loc (U) and Φ is locally bi-Lipschitz, we have (∇u)(Φ) ∈

W 1,2
loc (M). Therefore, (∇u)(Φ) is in W 1,2

loc along almost every line M ∩ {s ≡
const.}. Since it does not depend on s, we conclude that (∇u)(b) ∈ W 1,2

loc (I).
Hence r ∈ W 1,2

loc (I).
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In view of (40) the hypotheses of Lemma 3.5 are satisfied with Q = (∇u)(b).
Define r̃ as in that lemma and notice that the definition of r used here agrees
with that in the hypotheses of Lemma 3.5. We conclude that a12 = κ and
that the locally Lipschitz continuous function α : I → (−π

2
, π

2
) determined

by (14) is an argument for (a13, a23).

5 Relation to Other Viewpoints

In this section we link the setting used in the present article to the viewpoints
adopted in [13] and in [7], and we restate some of our results in those settings.

5.1 Gauss Map along Reference Curve

In this section we interpret Theorem 2.1 in terms of the spherical image
viewpoint adopted in [13]. In that setting, the key variable is the Gauss map
of u along the reference curve b. The main result of this section, Corollary
5.2, identifies conditions for a spherical curve β : I → S2 to arise as the
Gauss map of an isometric immersion defined in a neighbourhood of b. We
begin by recalling from [13] the following definition.

Definition 5.1. An adapted frame for a curve β ∈ W 1,1
loc (I,S2) is a map

r̃ ∈ L∞(I, SO(3)) satisfying

r̃3 = β almost everywhere on I (41)

β′ × r̃1 = 0 almost everywhere on I. (42)

The curve β is said to have geodesic curvature κg ∈ L1
loc(I) if there exists an

adapted frame r̃ ∈ W 1,1
loc (I, SO(3)) for β satisfying

r̃′1 · r̃2 = κg almost everywhere on I. (43)

Remarks.

(i) If r̃ is adapted to the spherical curve r3 : I → S2, then

ã23 = 0. (44)

In view of (44) we have
r′3 = −ã13r̃1 (45)

and in particular |ã13| = |r′3|. Moreover, ã12 is the geodesic curvature
of r3.
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(ii) If r and r̃ are as in Lemma 3.4, then that lemma shows that α is an
argument for (a13, a23) if and only if r̃ is adapted to the spherical curve
r3 : I → S2.

The following corollary to Proposition 3.3 is the main result of this section.
It has been used in [13] for the construction of ribbons with finite width
satisfying prescribed clamped boundary conditions.
Corollary 5.2 essentially asserts that, given a curve β : I → S2 and the usual
arclength parametrized embedded curve b in the reference domain, one can
construct a local isometric immersion whose Gauss map satisfies n ◦ b = β,
provided that the following two conditions are satisfied:

(a) β has locally bounded geodesic curvature κg.

(b) The oscillation of the relative phase
´ t

0
(κg − κ) is smaller than π.

Corollary 5.2. Let b : I → R2 be an embedded arclength parametrized W 2,∞

curve with curvature κ and let β ∈ W 1,2
loc (I,S2) have geodesic curvature κg ∈

L∞loc(I). Assume that there is a primitive α : I → R of κg − κ satisfying

|α(t)| < π

2
for all t ∈ I. (46)

Then there exists a neighbourhood U ⊂ R2 of b(I) and an isometric immer-
sion u ∈ W 2,2

δ (U) for which b is noncharacteristic and whose Gauss map
satisfies n ◦ b = β on I.

Remark. Note that whenever r ∈ W 1,1
loc (I, SO(3)) is such that r3 : I →

S2 has geodesic curvature κg, then by definition there exists a frame r̃ ∈
W 1,1
loc (I, SO(3)) adapted to r3 satisfying ã12 = κg. Lemma 3.4 then shows

that (21) is satisfied by a primitive α of κg − a12.

Proof of Corollary 5.2. Clearly α is locally Lipschitz. Define R̃1 by (14). Let
r̃ be an adapted frame for β with r̃′1 · r̃2 = κg; so in particular ã23 = 0.
Define r : I → SO(3) by setting r3 = β and

r1 = r̃1 cosα− r̃2 sinα. (47)

Then (21) is satisfied. Hence Lemma 3.4 implies that a12 = ã12−α′ = κ and
that α is an argument for (a13, a23). Therefore all hypotheses of Proposition
3.3 are satisfied and the assertion follows from that proposition.

The following corollary is a converse to Corollary 5.2; it could be expanded
using all of Theorem 2.1 (i).
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Corollary 5.3. Let U ⊂ R2 be a bounded domain, let u ∈ W 2,2
δ (U) and let

b : I → U be noncharacteristic for u. Then n◦ b : I → S2 has locally bounded
geodesic curvature.

Proof. With the notation as in the previous proof and as in Lemma 3.5, the
frame r̃ is adapted to r3 = n ◦ b and the geodesic curvature of r3 agrees with
ã12. Since R̃1 is locally Lipschitz, we deduce from (27) that ã12 ∈ L∞loc(I).

5.2 Second Fundamental Form along Reference Curve

The viewpoint adopted in the variational context in [7, 6] differs from the one
in the earlier sections, in that the relevant variable is the second fundamental
form Ξ of the immersion u along the reference curve b. The main result of this
section, Corollary 5.6, is [7, Lemma 12]. While the hypotheses of Corollary
5.6 appear to be quite different, we will in fact obtain it as a consequence
of Proposition 3.3 once we have linked, via Lemma 5.5 below, the viewpoint
from [7] to the one adopted in the earlier sections.
We begin by recalling the following definition from [7].

Definition 5.4. For Ξ : I → R2×2
sym, a map r ∈ W 1,1(I, SO(3)) is said to be

adapted to (b,Ξ) if the following equations are satisfied:

a12 = κ

a23 = (b′)⊥ · Ξb′

a13 = b′ · Ξb′.

Let us compare this notion of adaptedness to the hypotheses of Proposition
3.3:

Lemma 5.5. Let K, Kg ∈ W 1,∞(I) and assume that b′ = eiK. Let r ∈
W 1,1(I, SO(3)). Then the following are equivalent:

(i) There exists λ : I → R such that r is adapted to (b, λeiKg ⊗ eiKg) in the
sense of Definition 5.4.

(ii) Kg −K is an argument for (a13, a23) and a12 = κ.

Proof. When r is adapted to (b, λp⊗ p) for some λ : I → R, then

a13 = λ(p · b′)2 and a23 = λ(p · b′)(p · (b′)⊥)

Absorbing p · b′ into λ, this is equivalent to the existence of λ such that

a13 = λp · b′ and a23 = λp · (b′)⊥.
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If p = eiKg and b′ = eiK , then

p · b′ = cos(K −Kg) and p · (b′)⊥ = − sin(K −Kg).

Hence we conclude that r is adapted to (b, λeiKg ⊗ eiKg) for some λ : I → R
precisely if a12 = κ and

a13 = λ cos(Kg −K) and a23 = λ sin(Kg −K). (48)

In view of Remark 6.1 equations (48) are equivalent to Kg − K being an
argument for (a13, a23).

Using Lemma 5.5 we can see that [7, Lemma 12] follows from Proposition
3.3:

Corollary 5.6. Let p ∈ C1(I,S2) be such that p · b′ 6= 0 on I and let λ ∈
L2(I). Let r ∈ W 1,2(I, SO(3)) be a frame adapted to the pair (b, λp ⊗ p) in
the sense of Definition 5.4. Then there exists a neighborhood U ⊂ R2 of b(I)
and u ∈ W 2,2

δ (U,R3) such that u ◦ b =
´ t

0
r1 and A ◦ b = λp⊗ p.

Proof. By continuity we may assume that p · b′ > 0 in I, after possibly
replacing p by −p. Hence by Lemma 6.2 there exist Kg, K ∈ W 1,∞(I) with
|K − Kg| < π

2
on I such that p = eiKg and b′ = eiK . So Lemma 5.5 (i) is

satisfied. Hence a12 = κ and Kg −K is a Lipschitz continuous argument for
(a13, a23).

Hence all hypotheses of Proposition 3.3 are satisfied with R̃1 = p. The
assertions follow from that proposition.

6 Appendix

In this appendix we collect some simple observations about the ‘argument’
α. The following observation follows immediately from the fact that (p1, p2)
is parallel to eiα if and only if it is orthogonal to ieiα.

Remark 6.1. Let p1, p2 ∈ L1
loc(I) and α : I → R. Then the following are

equivalent:

(i) α is an argument for (p1, p2).

(ii) There is a function λ : I → R such that (p1, p2) = λeiα almost every-
where.

The proof of the following lemma is left to the reader.
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Lemma 6.2. Let p ∈ [1,∞] and let a, a ∈ W 1,p(I,S1). Then there exists a
unique α ∈ W 1,p(I) with α(0) ∈ [0, 2π) such that a = eiαa almost everywhere
on I.

In the following Lemma we set W 0,∞ = L∞.

Lemma 6.3. Let m1, m2 ∈ L1
loc(I) and let k ≥ 0. Then the following are

equivalent:

(i) (m1,m2) admits an argument α ∈ W k,∞(I) satisfying ‖α‖L∞(I) <
π
2
.

(ii) There is a function F ∈ W k,∞(I) such that m2 = m1F .

Similarly, (m1,m2) admits an argument I → (0, π) in W k,∞(I) if and only if
m1 = m2F for some F ∈ W k,∞(I). This follows by swapping the roles of m1

and m2 in Lemma 6.3.
By applying Lemma 6.3 on compact subintervals of I we obtain its local
version: (m1,m2) admits an argument I →

(
−π

2
, π

2

)
in W k,∞

loc (I) if and only

if m2 = m1F for some F ∈ W k,∞
loc (I).

Proof of Lemma 6.3. Assertion (i) means that there exists a function α ∈
W k,∞(I) with |α| < π

2
on I such thatm1 sinα = m2 cosα, i.e., m2 = m1 tanα.

Hence (ii) is satisfied with F = tanα. Indeed, all derivatives of tan are
bounded on compact subintervals of

(
−π

2
, π

2

)
, hence F ∈ W k,∞(I) by the

chain rule.
Conversely, if (ii) is satisfied, then we set α = arctanF . Since arctan and its
derivatives are uniformly bounded, α ∈ W k,∞(I) by the chain rule. Moreover,
α takes values in a compact subinterval of

(
−π

2
, π

2

)
because F is bounded.
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