
Overhead of a Decentralized Gossip Algorithm on the
Performance of HPC Applications

Ely Levy, Amnon Barak, Amnon Shiloh
Department of Computer Science

The Hebrew University of Jerusalem, Israel
elylevy@cs.huji.ac.il

Matthias Lieber, Carsten Weinhold,
Hermann Härtig

Department of Computer Science
TU Dresden, Germany

ABSTRACT
Gossip algorithms can provide online information about the
availability and the state of the resources in supercomput-
ers. These algorithms require minimal computing and stor-
age capabilities at each node and when properly tuned, they
are not expected to overload the nodes or the network that
connects these nodes. These properties make gossip inter-
esting for future exascale systems. This paper examines the
overhead of a decentralized gossip algorithm on the perfor-
mance of parallel MPI applications running on up to 8192
nodes of an IBM BlueGene/Q supercomputer. The applica-
tions that were used in the experiments include PTRANS
and MPI-FFT from the HPCC benchmark suite as well as
the coupled weather and cloud simulation model COSMO-
SPECS+FD4. In most cases, no gossip overhead was ob-
served when the gossip messages were sent at intervals of
256 ms or more. As expected, the overhead that is observed
at higher rates is sensitive to the communication pattern of
the application and the amount of gossip information being
circulated.

Keywords
Benchmarking, cluster management, gossip algorithm, high
performance computing

1. INTRODUCTION
Management of scalable high performance compute clus-

ters requires frequent monitoring and sharing of information
about the resources of all nodes, e. g., availability, current
load, free memory, and temperature. Gossip algorithms can
provide such information by routinely disseminating relevant
information among the nodes. These algorithms are toler-
ant to node failures or lost messages, which is a critically
important property for large-scale systems built from hun-
dreds of thousands to millions of components. Clearly, the
rate and the amount of disseminated information should be
tuned in order to provide accurate information about each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS ’14, June 10, 2014, Munich, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2950-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612262.2612271

node and at the same time not reduce the performance of
the applications running on the system.

This paper examines the overhead of a decentralized gos-
sip algorithm on the performance of parallel applications on
supercomputers. We ran three applications using configu-
rations ranging from 1024 to 8192 nodes on an IBM Blue-
Gene/Q system. In each case we compare the runtime of the
application with different gossip rates to the runtime of the
application without gossip in the background. To the best
of our knowledge, nobody has done yet any measurements of
the overhead caused by gossip messages sharing the network
used by HPC applications.

The specific gossip algorithm used was developed by Amar
et al. [1] for sharing load balancing information among the
nodes of scalable clusters. Briefly, in this algorithm each
node maintains a snapshot about the state of the resources
in other nodes and routinely disseminates a fixed amount
of its most recently acquired information. This way, any
system service in need of up-to-date information about the
state of the resources in the cluster can directly obtain it
locally.

The paper is organized as follows: We first discuss the
background and related work for gossip-based information
dissemination. Section 3 provides an overview of our gossip
algorithm. Section 4 describes the hardware configurations
and the parallel applications that were used for testing. Sec-
tion 5 presents the benchmark results. Our conclusions are
given in Section 6.

2. RELATED WORK
Randomized gossip algorithms are distributed algorithms

for exchanging information through various types of net-
work topologies. Their simplicity, low overhead and fault-
tolerance make them attractive for many use cases such as
membership management in peer-to-peer networks [2, 3], ap-
plication data exchange in linear algebra [4] or computation
of aggregate functions [5]. They are also used in sensor net-
works [6, 7] and for resource management in large clusters [8]
and clouds [9].

The MOSIX system [10] combines gossip-based informa-
tion dissemination and optimization algorithms to provide
load balancing in UNIX clusters. The MOSIX nodes run
daemon processes that exchange with each other informa-
tion about resources (e. g., available nodes, free memory,
CPU load). MOSIX exploits this information to improve
the overall performance of the cluster and of individual ap-
plications by adaptive allocation and migration of processes
among nodes.

Gossip Algorithm:

At a fixed point during each unit of time, each node:

• Updates its own entry in the locally stored vector
with the current state of the local resources and
sets the age of this information to 0;

• For the remaining vector entries, updates the
current age to the age at arrival plus the time
passed since;

• Immediately sends a fixed-size window with the
most recent vector entries to another node,
which is chosen randomly with a uniform dis-
tribution.

When a node receives a window, it:

• Registers the window’s arrival time in all the re-
ceived entries using the local clock;

• Updates each of its vector’s entries with the cor-
responding window entry, if the latter is newer.

Figure 1: The gossip algorithm with fixed window
sizes.

Technologies such as MOSIX are known to perform well
for UNIX clusters. However, the overhead caused by
MOSIX-like gossip algorithms on large-scale HPC machines
is not well understood, as these systems are much more sus-
ceptible to network jitter. Menon and Kalé evaluated the
performance of GrapevineLB [11], a load balancer exploit-
ing gossip algorithms on top of the Charm++ runtime sys-
tem [12]. Their paper showed that the overall performance is
improved substantially, but they do not discuss the overhead
caused by gossip-related messages being exchanged among
the nodes. Soltero et. al. evaluated the suitability of gossip-
based information dissemination for system services of ex-
ascale clusters [13]. Their simulations showed that good ac-
curacy can be achieved for power management services with
up to a million nodes. However, experiments using their
prototype were emulating only 1000 nodes and did not in-
clude measurements of gossip-related network overhead on
the applications.

Bhatele et al. [14] identify the contention for shared net-
work resources between jobs as the primary reason for run-
time variability of batch jobs in a large Cray system. On
BlueGene systems, however, each job is assigned a private
contiguous partition of the torus network, so that contention
is avoided. In our measurements, we combined two appli-
cations (a gossip program and an application benchmark)
in a single batch job on a BlueGene/Q system, such that
network contention becomes a critical concern. We then
measured the slowdown of the application due to the gossip
activities.

3. THE GOSSIP ALGORITHM
Consider a cluster with a large number of active nodes.

Assume that each node regularly monitors the state of its
relevant resources and also maintains an information vec-
tor with entries about the state of the resources in all the
other nodes. Each such vector entry includes the state of

 0 5 10 15

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

1024 Nodes

 14.21

 9.77

 8.46

 7.83

 7.49

 7.29

 7.18

 7.09

 7.03

 7.01

W
in

d
o
w

 siz
e
 (re

l. to
 n

o
d
e
 c

o
u
n
t)

 0 5 10 15

2048 Nodes

 14.86

 10.46

 9.15

 8.53

 8.19

 7.99

 7.87

 7.78

 7.73

 7.71

Figure 2: Average vector age (relative to the unit of
time) for window sizes ranging from 10 % to 100 %
of the number of nodes.

the resources of the corresponding node and the age of that
information. The gossip algorithm disseminates this infor-
mation among nodes.

The algorithm that is used in this paper was developed
in [1]. Figure 1 shows the pseudo code. Briefly, in this
algorithm, every unit of time, each node monitors the state
of its resources and records it in its vector entry. Each of the
nodes then exchanges a window containing a fixed amount of
the newest information in its vector with another randomly
chosen node. Thus, each node receives, on average, in every
unit of time information about other nodes and each of them
eventually learns about the state of all nodes. Note that
the nodes are not synchronized, i. e. all the nodes use the
same unit of time but run independently using their own
local clocks. One relevant parameter for the algorithm’s
performance is the size of the window, i. e., the amount of
information sent by each node. Another parameter that is
studied in this paper is the unit of time, which determines
the rate of the information dissemination.

4. BENCHMARK SETUP
In a preliminary study, we measured the average age of

the vector vs. the size of the circulated window for differ-
ent cluster sizes. The results are depicted in Figure 2 for
1024 and 2048 nodes. Configurations with 4096 and 8192
nodes show similar behavior. From the figure it can be seen
that the steepest decrease in the average age of the vector is
when increasing the window size from 10 % to 20 %, whereas
larger windows provide only marginal benefit at the cost of
transmitting significantly more data. As we will show in
Section 5.2, circulating larger gossip messages causes higher
overhead than increasing the gossip rate. We therefore de-
cided to run all experiments with a window size of 20 % of
the vector size. In our experiments, we set the vector size
equal to the total number of nodes, but it could also be
smaller in order to save memory on the nodes. For example,
MOSIX uses fixed-size vectors that are twice as large as the
windows and independent of the cluster size.

4.1 BlueGene/Q Hardware
We performed measurements on the IBM BlueGene/Q

system JUQUEEN installed at Jülich Supercomputing Cen-
tre, Germany, which is ranked number 8 in the Novem-
ber 2013 Top500 list of the largest supercomputers. The

JUQUEEN system has 28 672 nodes, each equipped with
one 16-core PowerPC A2 1.6 GHz processor, resulting in a
total of 458 752 cores. The 5D torus network has a peak
bandwidth of 2 GB/s per link, which can send and receive
at that rate simultaneously [15]. Since each node has 10
links, this leads to a theoretical peak bandwidth of 40 GB/s
per node. The worst-case latency for messages in the torus
network is 2.6µs. Due to the large number of nodes and
the highly scalable interconnect, the system is well suited to
benchmark algorithms for future exascale systems.

4.2 Gossip Implementation
To run the gossip algorithm and measure various metrics,

like age of the information and overhead on applications, we
ported our gossip algorithm to the BlueGene environment.
The implementation uses MPI to exchange gossip messages
between the nodes. In general, gossiping does not require
a reliable network and messages are sent without checking
or waiting for successful transmission. We use MPI Bsend
to implement these datagram-like semantics. Whenever this
MPI-based gossip implementation does not update its vec-
tor, send a message, or process a received message, it is busy
waiting for a message from other nodes using MPI Iprobe.
Busy waiting is interrupted as soon as one unit of time has
passed and the node has to send a gossip message. For prac-
tical application of gossip algorithms we expect OS support
to avoid busy waiting, such that no compute time and en-
ergy is wasted. The percentage of runtime not spent (busy)
waiting for gossip messages is thus a good indicator for the
computational overhead of the gossip algorithm.

To allow the gossip implementation and MPI applications
to share the same node, we linked both code bases into a
single executable. This approach required minimal changes
to the application, namely the HPC code’s main program
needs to be renamed such that it is called from the gossip
program’s main function. The wrapper functionality inside
the gossip program configures the MPI communicator for
the application such that it sees only a subset of all MPI
ranks. MPI COMM WORLD references in the application
are intercepted by wrapping MPI calls. We use an existing
wrapper generator [16] for that task. For our measurements
on JUQUEEN, we split MPI COMM WORLD such that
every 16th rank runs gossip and all others run the applica-
tion, i. e. each node runs one gossip process and 15 applica-
tion processes. For the comparison measurements without
gossip we used the same method, except that the process
allocated to gossip is now idle, i. e. waiting for the bench-
mark to finish. In both configurations – with and without
gossip – the application operates on the subset of the real
MPI COMM WORLD of the job.

In the overhead measurements, we used the following pa-
rameters for the gossip algorithm:

• Number of nodes (vector entries): 1024, 2048, 4096,
8192.

• Size of each vector entry: 1 kB.

• Window size: 20 % of the vector size (i. e., 204, 409,
819, 1638).

• Unit of time (gossip interval): 1 ms – 1024 ms.

Note that the size of a gossip message is the window size
times the size of the vector entry plus some space for the age
of the information. For example with 1024 nodes, the mes-
sage size is 212 164 bytes. In this case, when running with a

gossip interval of 1 ms, each gossip process sends messages
at a rate of 212 MB/s and receives messages at the same
average rate. Neglecting message headers, this corresponds
to 1.06 % of the peak bandwidth of a BlueGene/Q node.

4.3 Application Benchmarks
For the overhead measurements we used two communi-

cation-intensive MPI applications from the HPC Challenge
(HPCC) benchmark suite [17, 18] and another highly scal-
able HPC application.

HPCC PTRANS. In the PTRANS benchmark, pairs of
MPI ranks communicate with each other in order to trans-
pose a matrix. All ranks exchange messages simultaneously,
thereby utilizing the full capacity of the interconnect. The
performance of PTRANS is reported in GB/s. We used
a matrix size of N = 524 288 (2048 GiB), a block size of
NB = 112, and the following process grids (P×Q): 32× 480
for 1024 nodes, 32× 960 for 2048 nodes, 64× 960 for 4096
nodes, and 128× 960 for 8192 nodes.

HPCC MPI-FFT. The MPI-FFT benchmark performs a
parallel one-dimensional discrete Fourier transform of a dou-
ble precision complex vector. This benchmark has an all-
to-all communication pattern that heavily stresses the bi-
section bandwidth of the interconnect with large messages.
We used the FFTE implementation that is included in
the HPCC package and a vector length of 136 million el-
ements (2025 GiB) for 1024 nodes and 544 million elements
(8100 GiB) for larger configurations.

COSMO-SPECS+FD4. COSMO-SPECS+FD4 [19] is an
atmospheric simulation model (COSMO) with detailed
cloud microphysics (SPECS). It uses dynamic load balanc-
ing and model coupling techniques (FD4) to balance the
workload of the microphysics model. For dynamic load
balancing FD4 calculates a new SPECS partitioning every
time step using space-filling curve partitioning. COSMO-
SPECS+FD4 has different communication phases:

• Ghost exchange in COSMO (static, regular).

• Ghost exchange in SPECS (dynamic, irregular).

• Model coupling (dynamic, irregular, relatively small
volume).

• Parallel partitioning calculation (mainly a mixture of
collectives, also on sub-communicators).

• Migration as result of load balancing (highly local,
mostly between neighbor ranks).

COSMO-SPECS+FD4 has been tuned for high scalabil-
ity [20]; the application scales very well on 262 144 pro-
cesses on JUQUEEN. We used weak scaling for our over-
head benchmarks, i. e. the problem size of the simulation is
proportional to the number of MPI ranks. The benchmark
test case simulates the growth of a cumulus cloud, which is
replicated along the two horizontal dimensions to scale the
problem to arbitrary sizes. We ran 30 time steps of the sim-
ulation, which is sufficient to expose overhead due to gossip
and report the net runtime, i. e., without program start-up
and initialization.

5. RESULTS
In a fully integrated system, the gossip algorithm and the

management services built on top would run on a dedicated
service core in order to minimize execution time jitter for the
application. However, in the BlueGene/Q system we used
for our experiments, the service core is not available to users.
We therefore ran the gossip algorithm on one of the 16 user
cores of each node, while the benchmark application used
the remaining 15 cores. For each application, we repeated
the tests twice and calculated the average outcome. The
variation between the repetitions was very low.

5.1 Application Overhead Results
The results of the overhead measurements for the three

applications are shown in Figures 3, 4, and 5. In each fig-
ure, the green bar at the top shows the performance without
the gossip algorithm running in background. The core usu-
ally allocated for the gossip algorithm was left idle. The
blue bars below show the performance of the application for
gossip intervals ranging from 1024 ms to 1 ms. Due to scal-
ability limits, measurements with very small intervals and
large number of nodes failed, refer to Section 5.3 for more
details. For MPI-FFT and COSMO-SPECS+FD4, we in-
cluded the runtime portion of MPI communication as red
bars in the graphs. For each interval, the overhead is the
difference between the obtained performance and the per-
formance of the application without gossip.

From the figures it can be seen that in most cases, no
gossip overhead was observed when using intervals higher
than 256 ms. The only exception is the network sensitive
MPI-FFT when running on 8192 nodes. Observe that a
larger cluster size implies higher gossip overhead, due to
the increase in the window size. Specifically, the maximal
slowdown was 5.6 % for PTRANS, 51.6 % for MPI-FFT, and
5.5 % for COSMO-SPECS+FD4.

PTRANS Slowdown. Despite being a pure communication
benchmark, PTRANS shows a moderate slowdown only,
even in the worst-case. Note that no gossip overhead was
noticeable when the gossip interval was equal or larger
than 256 ms. The runtime of PTRANS is dominated by
MPI Sendrecv, which is used to exchange messages between
ranks in a sparse pattern, determined by the parameters of
the benchmark. These measurements indicate that sparse
communication patterns show only a minor sensibility to
network contention.

MPI-FFT Slowdown. MPI-FFT shows the highest slow-
down among the tested applications. This benchmark is also
the most communication intensive test; the runtime is domi-
nated by three MPI Alltoall collective communication calls.
In each call every rank sends Nsc/P

2 bytes to every other
rank [21], where N is the vector length, sc is the size of a
complex double precision number (16 bytes), and P is the
number of ranks. For example in the 8192 node configura-
tion, every rank sends 576 bytes to every other rank, which
accumulates to 1012 MiB that each BlueGene/Q node has
to send and receive at the same time per MPI Alltoall call.
This dense pattern of large messages stresses the bisection
bandwidth and makes this benchmark very sensible to net-
work contention. In addition to the high MPI ratio, Figure 4
also shows that the communication part of MPI-FFT scales
much worse with the number of nodes compared to the com-

Slowdown for window size of
Interval 10 % 20 % 40 % 80 %

64 ms 0.2 % 0.3 % 0.6 % 1.5 %
32 ms 0.3 % 0.4 % 0.9 % 2.6 %
16 ms 0.3 % 0.7 % 1.8 % 4.5 %
8 ms 0.7 % 1.4 % 3.2 % 8.7 %
4 ms 1.1 % 2.6 % 6.3 % 17.2 %
2 ms 1.8 % 4.7 % – –
1 ms 3.8 % – – –

Table 1: Runtime overhead of the MPI-FFT bench-
mark depending on gossip rate and window size. In-
creasing window size usually causes more overhead
than increasing the gossip rate by the same factor.

putation part. This amplifies the overhead of gossiping on
the total performance of the benchmark even further.

COSMO-SPECS+FD4 Slowdown. Figure 5 shows that
the MPI communication contributes the substantial part of
the slowdown in COSMO-SPECS+FD4. Note that runs
with 2048 nodes and above show much better network per-
formance for the ghost exchange in COSMO, which reduces
overall communication time greatly. This effect is indepen-
dent from background gossip.

By comparing the runtime of the five different commu-
nication phases of the application (see Section 4.3) and by
analyzing the various MPI calls, we identified the last step of
the parallel partitioning calculation as the dominating con-
tributor to the slowdown. In this step, the partition vector,
containing the start indices of all partitions, is distributed
to all MPI ranks using MPI collectives on sub-communica-
tors. For the highest slowdown observed at 4096 nodes with
a gossip interval of 4 ms, the average runtime of this single
step increases from 15 ms to 67 ms. Since load balancing is
carried out after each of the 30 time steps, this accumulates
to a total runtime increase of approx. 1.5 s.

The computation time in COSMO-SPECS+FD4 increases
lightly due to gossip; in the worst case 0.5 % slowdown are
observed. This can be attributed to the load the gossip
process puts on the shared resources within a node, like
memory bus and L2 cache. For example at 8192 nodes, each
gossip process manages a state vector of approx. 8 MiB.
Generating and processing gossip messages are memory-
bound operations on this vector, which increases contention
for shared memory resources.

The benchmarks show that gossip intervals between
256 and 1024 ms do not cause noticeable overhead for any of
the workload configurations. This result is in line with exist-
ing systems such as MOSIX [10], which uses a gossip interval
of 1 second to implement distributed load balancing.

5.2 Window Size vs. Gossip Interval
The results for MPI-FFT shown in Figure 4 indicate that

the relative overhead caused by different gossip rates also
depends on the number of nodes that exchange gossip mes-
sages. This behavior is especially apparent for the 4096 and
8192 node configurations. We performed additional exper-
iments where we increased the gossip rate and the window
size independently from each other while keeping the number
of nodes constant. Table 1 shows the measured overheads

 0 250 500 750 1000

Without Gossip

Interval = 1024 ms

Interval = 256 ms

Interval = 64 ms

Interval = 16 ms

Interval = 8 ms

Interval = 4 ms

Interval = 2 ms

1024 Nodes

 994 GB/s

 990 GB/s

 993 GB/s

 980 GB/s

 990 GB/s

 984 GB/s

 971 GB/s

 973 GB/s

 0 400 800 1200 1600

2048 Nodes

 1646 GB/s

 1654 GB/s

 1653 GB/s

 1637 GB/s

 1623 GB/s

 1585 GB/s

 1555 GB/s

 0 800 1600 2400 3200

4096 Nodes

 3217 GB/s

 3235 GB/s

 3212 GB/s

 3210 GB/s

 3106 GB/s

 3060 GB/s

 3064 GB/s

 0 1400 2800 4200 5600

8192 Nodes

 5652 GB/s

 5638 GB/s

 5641 GB/s

 5594 GB/s

 5417 GB/s

 5395 GB/s

Figure 3: PTRANS performance in GB/s (higher is better).

 0 10 20

Without Gossip

Interval = 1024 ms

Interval = 256 ms

Interval = 64 ms

Interval = 16 ms

Interval = 8 ms

Interval = 4 ms

Interval = 2 ms

1024 Nodes

 19.0 s

 19.0 s

 19.0 s

 19.0 s

 19.1 s

 19.2 s

 19.5 s

 20.0 s

 12.2 s

 12.2 s

 12.2 s

 12.2 s

 12.3 s

 12.4 s

 12.7 s

 13.2 s

 0 20 40 60

2048 Nodes

 50.2 s

 50.2 s

 50.4 s

 50.5 s

 51.1 s

 52.0 s

 54.0 s

 36.4 s

 36.4 s

 36.5 s

 36.6 s

 37.2 s

 38.1 s

 40.0 s

 0 20 40 60

4096 Nodes

 40.0 s

 40.0 s

 40.2 s

 40.7 s

 42.6 s

 45.3 s

 32.9 s

 32.9 s

 33.1 s

 33.6 s

 35.5 s

 38.1 s

 0 20 40 60

8192 Nodes

 27.8 s

 28.0 s

 28.5 s

 29.9 s

 35.2 s

 42.2 s

 24.0 s

 24.2 s

 24.7 s

 26.1 s

 31.4 s

 38.4 s

Figure 4: MPI-FFT runtime (lower is better). Inner red part indicates the MPI portion.

 0 10 20 30 40 50

Without Gossip

Interval = 1024 ms

Interval = 256 ms

Interval = 64 ms

Interval = 16 ms

Interval = 8 ms

Interval = 4 ms

Interval = 2 ms

Interval = 1 ms

1024 Nodes

 40.6 s

 40.6 s

 40.6 s

 40.6 s

 40.6 s

 40.6 s

 40.7 s

 40.8 s

 41.1 s

 8.2 s

 8.2 s

 8.2 s

 8.2 s

 8.2 s

 8.2 s

 8.3 s

 8.4 s

 8.6 s

 0 10 20 30 40 50

2048 Nodes

 36.7 s

 36.7 s

 36.7 s

 36.7 s

 36.8 s

 36.9 s

 37.2 s

 38.0 s

 4.3 s

 4.2 s

 4.2 s

 4.2 s

 4.3 s

 4.4 s

 4.7 s

 5.5 s

 0 10 20 30 40 50

4096 Nodes

 36.7 s

 36.7 s

 36.7 s

 36.8 s

 37.3 s

 37.6 s

 38.7 s

 4.3 s

 4.3 s

 4.4 s

 4.4 s

 4.8 s

 5.1 s

 6.1 s

 0 10 20 30 40 50

8192 Nodes

 37.3 s

 37.3 s

 37.3 s

 37.5 s

 37.9 s

 38.2 s

 4.8 s

 4.8 s

 4.9 s

 5.0 s

 5.3 s

 5.6 s

Figure 5: COSMO-SPECS+FD4 runtime (lower is better). Inner red part indicates the MPI portion.

0 50% 100%

Interval = 1024 ms

Interval = 256 ms

Interval = 64 ms

Interval = 16 ms

Interval = 8 ms

Interval = 4 ms

Interval = 2 ms

Interval = 1 ms

1024 Nodes

 0.0%

 0.0%

 1.3%

 5.4%

 10.6%

 20.9%

 41.4%

 80.3%

0 50% 100%

2048 Nodes

 0.0%

 0.3%

 2.6%

 10.7%

 20.9%

 41.3%

 79.3%

0 50% 100%

4096 Nodes

 0.0%

 1.0%

 5.4%

 21.2%

 41.6%

 79.4%

0 50% 100%

8192 Nodes

 0.2%

 2.4%

 11.0%

 42.7%

 80.5%

Figure 6: Runtime percentages of the gossip processes being busy generating and processing messages while
running the COSMO-SPECS+FD4 overhead measurements. The rest of the time the gossip process is waiting
for incoming messages.

for MPI-FFT on 1024 nodes. One can observe that increas-
ing either the rate by a factor f or increasing the window
size by the same factor f will result in different overheads
for the application. This result might be unexpected, as the
amount of gossip data that is circulated in a certain amount
of time is the same. Further analysis is required to under-
stand this behavior.

5.3 Scalability of Gossip
In addition to overhead caused by sharing the network,

we also investigated the runtime and scalability of the gos-
sip process implementation. This process puts load on the
CPU whenever it generates and sends a gossip message and
whenever it receives and processes a message from another
node. The rest of the time it is waiting for messages, which
we implemented as busy wait for simplicity. In practical ap-
plications, the load on the gossip processes should be mini-
mized, such that they are waiting most of the time to process
received messages immediately, without delay.

Figure 6 shows the percentages of time in which the gossip
processes are not idle, while performing the overhead mea-
surements for COSMO-SPECS+FD4. Observe the linear
relationship between the gossip workload, the gossip inter-
val and the number of nodes (which directly influences the
window size). These measurements reached the scalability
limits of the gossip implementation. For example with 8192
nodes, we were not able run with a gossip rate below 4 ms.
In these cases, the gossip processes could not keep up with
the high rate of incoming messages, leading to overflow of
the send buffers and abort of the benchmark. Note that pro-
cessing a received message (i. e., merging the received win-
dow with the own vector) consumes more CPU time than
generating and sending a vector. These results show the im-
portance of a highly optimized implementation of the gossip
algorithm, preferably avoiding linear relationship of work-
load and window size, to be applicable in exascale systems.

6. CONCLUSIONS AND OUTLOOK
We presented a randomized gossip algorithm that is de-

signed for load management and monitoring services on
large-scale HPC systems. The algorithm is fault-tolerant
and suitable for disseminating information among thousands
of nodes. We developed an MPI-based implementation of
a gossip algorithm that mimics the network usage of such

a system service and measured its overhead on the perfor-
mance of applications that ran on the same set of nodes. Our
experiments on a BlueGene/Q system showed, that in most
cases, no noticeable overhead is observed for gossip intervals
of 256 ms and higher when running on 8192 nodes. Only
the communication-bound MPI-FFT benchmark showed a
small overhead of 2.3 %, which drops to less than 0.6 % for
4096 nodes and less. We found that increasing the gossip
rate has a greater impact on the performance of commu-
nication-bound applications, when the number of gossiping
nodes increases. This effect is caused by larger message sizes,
as information about more nodes is transmitted across the
network in each gossip round. By analyzing the communi-
cation patterns used in the applications, we identified col-
lective MPI communication to be much more sensitive to
slowdown due to network contention compared to point-to-
point messages.

We investigated gossip overhead in a large-scale Blue-
Gene/Q system. We will expand our measurements to other
systems to study different types of HPC interconnects, like
InfiniBand and Cray Aries. Furthermore, the work pre-
sented in this paper is now being extended [22] to be suitable
for exascale systems, which are expected to consist of hun-
dreds of thousands of nodes. For systems of this size, it is
necessary to optimize the performance of the gossip imple-
mentation and to use a hierarchical approach to gossiping.
Evaluating the hierarchical version of our algorithm is sub-
ject to future work.

7. ACKNOWLEDGEMENTS
This research and the work presented in this paper is sup-

ported by the German priority program 1648 ‘Software for
Exascale Computing’ via the research project FFMK [22]
and by the cluster of excellence ‘Center for Advancing Elec-
tronics Dresden’ (cfaed). The authors also want to thank
the Jülich Supercomputing Centre, Germany, for access to
the JUQUEEN supercomputer.

8. REFERENCES
[1] L. Amar, A. Barak, Z. Drezner, and M. Okun.

Randomized Gossip Algorithms for Maintaining a
Distributed Bulletin Board with Guaranteed Age
Properties. Concurrency and Computation: Practice
and Experience, January 2009.

[2] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulie.
Peer-to-peer membership management for
gossip-based protocols. Computers, IEEE
Transactions on, 52(2):139–149, 2003.

[3] F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D.
Nguyen. PlanetP: using gossiping to build content
addressable peer-to-peer information sharing
communities. In Proc. 12th Intl. Symp. on High
Performance Distributed Computing, pages 236–246.
IEEE, 2003.

[4] Hana Straková, Wilfried N. Gansterer, and Thomas
Zemen. Distributed QR Factorization Based on
Randomized Algorithms. In Parallel Processing and
Applied Mathematics, volume 7203 of LNCS, pages
235–244. Springer, 2012.

[5] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. Symp.
on Foundations of Computer Science, pages 482–491,
2003.

[6] A.D.G. Dimakis, A.D. Sarwate, and M.J. Wainwright.
Geographic Gossip: Efficient Averaging for Sensor
Networks. IEEE Trans. Signal Processing,
56(3):1205–1216, 2008.

[7] P. Kyasanur, R.R. Choudhury, and I. Gupta. Smart
Gossip: An Adaptive Gossip-based Broadcasting
Service for Sensor Networks. In Proc. Mobile Adhoc
and Sensor Systems, pages 91–100. IEEE, 2006.

[8] A Barak and A Shiloh. The MOSIX Cluster Operating
System for Distributed Computing on Linux Clusters,
Multi-Clusters and Clouds. White paper,
http://www.mosix.org, 2014.

[9] F. Wuhib, R. Stadler, and M. Spreitzer. A Gossip
Protocol for Dynamic Resource Management in Large
Cloud Environments. IEEE Trans. Network and
Service Management, 9(2):213–225, 2012.

[10] A. Barak, S. Guday, and R. Wheeler. The MOSIX
Distributed Operating System Load Balancing for
UNIX, volume 672 of LNCS. 1993.

[11] Harshitha Menon and Laxmikant Kalé. A Distributed
Dynamic Load Balancer for Iterative Applications. In
Proc. SC ’13. ACM, 2013.

[12] Laxmikant V. Kalé and Sanjeev Krishnan.
CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In A. Paepcke, editor,
Proceedings of OOPSLA’93, pages 91–108. ACM
Press, September 1993.

[13] Philip Soltero, Patrick Bridges, Dorian Arnold, and
Michael Lang. A Gossip-based Approach to Exascale
System Services. In Proc. 3rd Intl. Workshop on
Runtime and Operating Systems for Supercomputers
(ROSS ’13). ACM, 2013.

[14] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer,
and Katherine E. Isaacs. There Goes the
Neighborhood: Performance Degradation Due to
Nearby Jobs. In Proc. SC ’13. ACM, 2013.

[15] Dong Chen, N.A. Eisley, P. Heidelberger, R.M.
Senger, Y. Sugawara, S. Kumar, V. Salapura, D.L.
Satterfield, B. Steinmacher-Burow, and J.J. Parker.
The IBM Blue Gene/Q interconnection network and
message unit. In Proc. SC ’11. ACM, 2011.

[16] Todd Gamblin. PMPI wrapper generator, 2013.
https://github.com/tgamblin/wrap.

[17] HPC Challenge Benchmark Suite.
http://icl.cs.utk.edu/hpcc/.

[18] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner,
R. Lucas, R. Rabenseifner, and D. Takahashi. The
HPC Challenge (HPCC) Benchmark Suite. In SC ’06
Conference Tutorials, 2006.

[19] Matthias Lieber, Verena Grützun, Ralf Wolke,
Matthias S. Müller, and Wolfgang E. Nagel. Highly
Scalable Dynamic Load Balancing in the Atmospheric
Modeling System COSMO-SPECS+FD4. In Proc.
PARA2010, volume 7133 of LNCS, pages 131–141.
Springer, 2012.

[20] Matthias Lieber, Wolfgang E. Nagel, and Hartmut
Mix. Scalability Tuning of the Load Balancing and
Coupling Framework FD4. In NIC Symposium 2014,
volume 47 of NIC Series, pages 363–370, 2014.

[21] Franz Franchetti, Yevgen Voronenko, and Gheorghe
Almasi. Automatic Generation of the HPC
Challenge’s Global FFT Benchmark for BlueGene/P.
In VECPAR 2012, volume 7851 of LNCS, pages
187–200. Springer, 2013.

[22] FFMK Website.
http://ffmk.tudos.org.

http://www.mosix.org
https://github.com/tgamblin/wrap
http://icl.cs.utk.edu/hpcc/
http://ffmk.tudos.org

	Introduction
	Related work
	The Gossip Algorithm
	Benchmark Setup
	BlueGene/Q Hardware
	Gossip Implementation
	Application Benchmarks

	Results
	Application Overhead Results
	Window Size vs. Gossip Interval
	Scalability of Gossip

	Conclusions and Outlook
	Acknowledgements
	References

