
Highly Scalable Dynamic Load Balancing in the
Atmospheric Modeling System

COSMO-SPECS+FD4
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Abstract. To study the complex interactions between cloud processes
and the atmosphere, several atmospheric models have been coupled with
detailed spectral cloud microphysics schemes. These schemes are com-
putationally expensive, which limits their practical application. Addi-
tionally, our performance analysis of the model system COSMO-SPECS
(atmospheric model of the Consortium for Small-scale Modeling coupled
with SPECtral bin cloud microphysicS) shows a significant load imbal-
ance due to the cloud model. To overcome this issue and enable dynamic
load balancing, we propose the separation of the cloud scheme from the
static partitioning of the atmospheric model. Using the framework FD4
(Four-Dimensional Distributed Dynamic Data structures), we show that
this approach successfully eliminates the load imbalance and improves
the scalability of the model system. We present a scalability analysis of
the dynamic load balancing and coupling for two different supercomput-
ers. The observed overhead is 6% on 1600 cores of an SGI Altix 4700 and
less than 7% on a BlueGene/P system at 64Ki cores.

Keywords: atmospheric modeling, spectral bin cloud microphysics, scal-
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1 Introduction and Related Work

Cloud processes still represent one of the major uncertainties in current weather
forecast, air quality, and climate models [1, 3, 24]. This, however, contrasts to
their high importance to the atmosphere. It is obvious that future high-resolution
atmospheric models require a more detailed description of cloud processes in or-
der to achieve more realistic predictions of, e.g., extreme weather events. Most
of today’s atmospheric models describe cloud microphysical processes with a
bulk approach. The so-called one-moment bulk schemes represent the hydro-
meteor classes (e.g. cloud water, graupel, and snow) by their bulk mass only
and assume a prescribed size distribution of the particles. Two-moment [21] and
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multi-moment [16] schemes extend the description of each class by additional
prognostic variables, such as the hydrometeor number density. This allows a
better parameterization of the size distribution function. However, several stud-
ies emphasize the importance of a size-resolving approach [5, 13]. Such spectral
microphysics models explicitly characterize the size distribution of the hydro-
meteors by applying a bin discretization. Spectral microphysics schemes have
been introduced in the PSU/NCAR Mesoscale Model (MM5) [13], the Weather
Research and Forecasting Model (WRF) [12], and the COSMO model (Con-
sortium for Small-scale Modeling) [6]. One of the challenges for the application
of spectral bin microphysics schemes in atmospheric models is their enormous
computational complexity. Thus, they have been applied for process studies only,
but not for operational applications and it is very unlikely that such schemes
will be used for numerical weather prediction or climate studies in the near
future. Nevertheless, they are an interesting method for research applications,
such as studies on the aerosol-cloud interaction [18], air quality modeling [7] or
as benchmark for bulk schemes [22]. Because of their huge computational costs,
a high scalability on high-performance computing systems is essential to use
such models for comprehensive studies. However, this is complicated by severe
load imbalances induced by the spectral microphysics: Cloudy areas of the model
domain generate a substantially higher workload than cloudless areas. Such irreg-
ular workload variations require dynamic load balancing techniques [25], which
readjust the partitioning periodically during the run time to maintain an equal
distribution of the computational work. Note, that only a few of the widely-
used atmospheric models support dynamic load balancing: parallel versions of
MM5 [15] (discontinued) and the Regional Atmospheric Modeling System [26]
(experimentally).

We propose a dynamic load balancing scheme for detailed cloud models. The
basic idea is to decouple the partitioning of the cloud model from the atmo-
spheric model’s partitioning. Instead of creating data structures for the hydro-
meteors within the atmospheric model, these data are managed by a highly scal-
able framework, which dynamically balances the workload over the parallel pro-
cesses. For this task we have developed the framework FD4 (Four-Dimensional
Distributed Dynamic Data structures [9, 11]). To our knowledge, such dynamic
techniques have not yet been used for detailed cloud models. Due to the sepa-
ration, both models need to be (re)coupled and thus form a system comparable
to climate models in the way the coupled atmosphere and ocean model commu-
nicate regularly with each other.

Several software frameworks and tools have been developed to provide ser-
vices for the parallel implementation of complex simulation codes, such as dis-
tributed data management and dynamic load balancing [4, 25], adaptive mesh
refinement [2, 27], and model coupling [8, 19]. FD4 integrates dynamic data man-
agement, load balancing, and coupling into a single framework to operate on the
same data structures, which allows more performance optimizations compared to
the utilization of separate software for these tasks. However, specialized frame-
works offer more functionality than FD4, like grid interpolation for coupling,
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the selection of various partitioning methods, or adaptive mesh refinement. FD4
has been developed for the parallelization and coupling of detailed cloud models.
For example, to account for the requirements of size-resolved cloud microphysics
models, the framework is optimized for large numbers of values per grid cell.
However, FD4 can also be used for other multiphase or multiphysics applica-
tions. FD4 is written in Fortran 95 and uses MPI-2 [14] for parallelization. It is
available as open source software at http://www.tu-dresden.de/zih/clouds.

The rest of the paper is organized as follows: In the next section we intro-
duce the atmospheric modeling system COSMO-SPECS and explain why the
detailed microphysics scheme causes load balance issues. In Sect. 3 we describe
the dynamic load balancing approach applied in the recently developed COSMO-
SPECS+FD4 and briefly introduce the framework FD4. Finally, in Sect. 4, we
show performance results of a benchmark scenario on two different supercom-
puters comparing both versions of the modeling system.

2 The Atmospheric Modeling System COSMO-SPECS

The model system COSMO-SPECS [6] has been developed to study the interac-
tion between aerosols, clouds, and precipitation with a high level of detail. It con-
sists of the COSMO model (http://www.cosmo-model.org), a non-hydrostatic
limited-area atmospheric model, and the spectral microphysics model SPECS
(SPECtral bin cloud microphysicS [23]). From the implementation point of view,
the cloud parameterization scheme of COSMO has been replaced by SPECS,
which introduces 11 new variables to describe three types of hydrometeors (wa-
ter droplets, frozen particles, and insoluble particles). These 11 variables are
discretized into a predefined number of size classes (e.g. 66 for the case pre-
sented in Sect. 4), leading to a high amount of data that have to be allocated
for each cell of the rectangular grid.

Since the cloud microphysical processes operate on much smaller time scales
than the dynamical processes in COSMO, two different step sizes are applied for
the time integration. The COSMO step size is about 10–100 s, whereas the step
size for the microphysics is at most 1 s. This splitting amplifies the computing
time proportion of SPECS and, consequently, the model system’s run time is
dominated by the microphysics computations. Additionally, the computing time
of SPECS per grid cell varies strongly depending on the range of the present
size distribution for the three hydrometeor types. Especially the existence of
frozen particles, which triggers additional computations, leads up to a 10 times
increase of the computational costs compared to clear sky. The relation between
the concentration of cloud particles and the computing time is shown in Fig. 1.
COSMO is MPI-parallelized using a static domain decomposition of the hori-
zontal grid into regular rectangular partitions. Due to the mentioned variability
of the computational costs of SPECS, severe load imbalances occur, which lead
to a significant waste of resources and insufficient scalability.
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Fig. 1. Comparison of cloud particle mixing ratio and computing time of the spectral
bin microphysics model SPECS for a vertical cross section through a simulated cumulus
cloud. The plot on the right shows the computing time of one small time step of SPECS
running on an SGI Altix 4700 (1.6GHz Itanium2 processor).
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Fig. 2. Coupling concepts for cloud microphysics in atmospheric models: (a) Submod-
ule based on data structures of the atmospheric model, (b) Separated data structures
and decomposition using a data management framework.

3 Load Balancing and Coupling Using FD4

In the original COSMO-SPECS implementation, the microphysics is incorpo-
rated as a submodule in the COSMO model, see Fig. 2(a). To enable the ap-
plication of dynamic load balancing for the cloud model, we separated the hy-
drometeor data and related computations (microphysics and advection) from
the COSMO model, see Fig. 2(b). These data are managed by the framework
FD4 [9, 11], which has been developed for the parallelization of multiphase cloud
models. The program flow of one time step in COSMO-SPECS+FD4 is shown
in Fig. 3. FD4 balances the microphysics computations and transfers coupling
data between the different partitionings. The extensive hydrometeor data exist
in the FD4 data structures only and are not exchanged with COSMO.

FD4 Data Structure. FD4 decomposes the regular grid in the three spatial
dimensions into rectangular blocks, which consist of multiple grid cells. These
blocks represent the smallest unit for load balancing. Consequently, their total
number should be large enough to enable a fine-grained load balancing. FD4
allocates the data fields in the blocks according to a variable table that is specified
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Fig. 3. Program flow of one time step in COSMO-SPECS+FD4 and exemplary illus-
tration of the spatially different partitionings for COSMO and SPECS. The 6 parallel
processes perform computations for COSMO and SPECS alternately. The partitions of
each process for COSMO and SPECS are indicated by numbers 1–6. The SPECS com-
putations are performed using a predefined number of smaller time steps per COSMO
step.

by the user. An iterator is provided to traverse through the list of local blocks
and access the data.

Dynamic Load Balancing. The blocks are distributed across the processes
using space-filling curve (SFC) partitioning [25]. In general, SFCs provide a fast
mapping from n-dimensional to one-dimensional space that preserves spatial
locality. FD4 uses a Hilbert SFC [20] to reduce the three-dimensional partition-
ing problem to the contiguous partitioning of a one-dimensional array of block
weights. For optimal load balance, the maximum load (bottleneck value) among
all partitions has to be minimized. Several heuristics and exact algorithms exist
for this problem [17]. FD4 uses a trivial parallel algorithm: Each process checks
for a different bottleneck value whether a partitioning exists for it. Then, the
minimum of the valid bottleneck values is identified and each process determines
its own partitioning based on this value.

Performing dynamic load balancing involves costs for the calculation of a
balanced partitioning and the redistribution of blocks. It is only beneficial (i.e.
application run time is reduced), when the time-saving of a better balanced
workload compensates these costs. This is addressed explicitly by FD4: The
load balancing routine estimates the time required for load balancing and the
time lost due to imbalance based on the elapsed steps and decides automatically
whether load balancing is beneficial or not.

Coupling. FD4 facilitates to couple models based on FD4 to external mod-
els that have a different partitioning. It computes the overlaps of the external
model’s partitions with the FD4 block structure and transmits the data directly
between the processes. Data can be exchanged in both directions between FD4
and the external models.
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FD4 is based on the sequential scheduling [8] of the coupled models. Con-
sequently, all processes perform computations for both COSMO and SPECS
alternately. We expect this approach to perform better compared to the concur-
rent scheduling strategy, where the available cores are divided into fixed disjoint
groups per coupled model. Since the total workload of SPECS varies strongly
depending on the quantity and the type of clouds in the model domain, the latter
approach would lead to load imbalances between the models [10].

4 Performance Results

We compared the computational performance and scalability of the original
COSMO-SPECS and its load balanced version COSMO-SPECS+FD4 using an
artificial test scenario of a heat bubble over flat terrain [6]: A temperature per-
turbation, which is placed in the center of the horizontal grid, results in the
growth of a precipitating mixed-phase cumulus cloud during the simulation pe-
riod of 30min. Additionally, we introduced a wind shear to the initial conditions.
Figure 1 shows mixing ratios of liquid and frozen cloud particles after 30min of
simulation time. The resolution of the periodic horizontal grid was 1 km. The
domain height of 18 km was discretized using 48 nonuniform height levels. The
time step sizes were 10 s for COSMO and 0.5 s for SPECS, which results in 20
small microphysical steps per dynamical step. The original and the load balanced
version yield identical simulation results except for small numerical deviations.
All performance measurements are presented without model initialization time
and output of simulation results.

4.1 Strong Scaling Benchmark on SGI Altix 4700

For this benchmark a fixed computational grid size of 80×80 cells with 48 height
levels was used. The block size for the FD4 decomposition was 2×2×4, which
results in a total number of 19 200 blocks. Figure 4(a) shows the performance
results for 25 to 1600 cores on an SGI Altix 4700. Note, that the overall run
time (wall clock time × number of cores) is shown, i.e. the total consumed
CPU time. For a strong scaling benchmark, ideal scaling is achieved when the
total consumed CPU time is constant with increasing number of cores. It is
clear to see that the load balanced implementation scales much better. At 1600
cores, the original program took 24:10min whereas the FD4 implementation
required 7:22min only, which is more than three times faster. The component
breakdown of Fig. 4(a) reveals that the spectral microphysics consumes much
more computation time than the COSMO model. However, with rising number
of cores, the run time of the original COSMO-SPECS is increasingly dominated
by MPI communication and waiting times due to load imbalance. The reason for
the increasing MPI communication costs was found to be an inefficient message
exchange scheme for the ghost cells of the microphysical variables using many
small messages instead of few big ones. At 1600 cores less then 40% of the overall
time is used for computations. The optimized COSMO-SPECS+FD4 has a much
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smaller communication overhead which is slightly increasing due to a decreasing
average load balance and increasing costs for the actual message transfer. The
run time percentage of FD4’s data management is relatively low. However, it
increases from 0.1% for dynamic load balancing and 0.1% for coupling at 25
cores to 2.7% and 3.3%, respectively, at 1600 cores.

4.2 Weak Scaling Benchmark on IBM BlueGene/P

The complexity of the dynamic load balancing and coupling algorithms applied
in FD4 depends on the total number of blocks and the number of MPI pro-
cesses. This poses the question, if COSMO-SPECS+FD4 can run on 104 cores
efficiently. Therefore, we performed weak scaling benchmarks on an IBM Blue-
Gene/P system. To scale up the problem size (and workload) exactly in the same
proportion as the number of cores, we use a replication scaling approach [27]. At
model initialization, the horizontal grid is virtually subdivided into tiles of 32×32
cells. Each tile is initialized with identical conditions for the heat bubble test
scenario. The horizontal grid resolution and the number of height levels are kept
constant at 1 km and 48 levels, respectively. We scaled our benchmark from a
32×32 grid containing one cloud at 256 cores up to a 512×512 grid containing
256 clouds at 64Ki cores. With an FD4 block size of 2×2×4 cells, the aver-
age number of blocks per process is constant at 12. Thus, FD4 had to balance
786 432 blocks dynamically on 64Ki cores in the largest run. Note, that nei-
ther COSMO-SPECS nor FD4 take advantage of the replication. Figure 4(b)
shows the measured run times for the original COSMO-SPECS and the tuned
COSMO-SPECS+FD4 divided into components. Since the workload per core
is kept constant, perfect scaling is achieved when the program’s run time does
not increase with rising number of cores. Both versions scale almost perfectly,
but the load balanced version is approximately twice as fast as the original one.
The plot for COSMO-SPECS+FD4 indicates that the slight increase of run time
is due to the load balancing and coupling of FD4 as well as growing costs for
the ghost exchange. The FD4 workload is mainly growing because of the above
mentioned complexity of the algorithms. At 64Ki cores, the percentage of FD4
is less then 7%, which shows that COSMO-SPECS+FD4 can efficiently utilize
more than 104 cores.

4.3 Analysis of Load Balance

In Fig. 5 the measured load balance of both model versions is plotted against the
time steps of the benchmark simulation on 8192 cores. Load balance is defined
here as the average computing time among all processes divided by the maximum
computing time among all processes. The ideal case is a load balance of one and
the worst case is the reciprocal of the number of processes. After 30 time steps,
the load balance in the original COSMO-SPECS starts to drop notably, which
indicates the beginning of the cloud growth. At the end of the simulation run, the
balance is below 0.4. The load balance in COSMO-SPECS+FD4 drops down to
0.85 after 30 steps but stabilizes after 45 steps in the interval between 0.89 and
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Fig. 5. Comparison of the load balance per COSMO time step between the original
COSMO-SPECS and COSMO-SPECS+FD4 with dynamic load balancing. The mea-
surement was performed for the weak-scaling benchmark case at IBM BlueGene/P on
8192 cores.

0.96 for the rest of the run. In the phase during steps 30–45, the load balancing
approach to take the measured workload of the blocks as estimation for the next
time step is not able to sufficiently keep pace with the high dynamics of workload
variation. On average about 64% of the blocks have been migrated between the
processes per COSMO time step during the COSMO-SPECS+FD4 run, which is
very much. However, due to the costly microphysics computations, the relative
communication overhead is very low. Furthermore, the communication pattern
for the block migration is highly local: About 63% of the blocks were exchanged
between direct neighbor MPI ranks in this run. Local communication patterns
typically provide higher bandwidths than arbitrary patterns. The reason for this
high locality is the SFC partitioning algorithm, which only shifts the process
borders in the one-dimensional array of blocks.

5 Conclusion and Outlook

In this paper, we introduce a new way of coupling detailed cloud microphysics
computations to atmospheric models, which allows dynamic load balancing. By
using the framework FD4 to couple the mesoscale atmospheric model COSMO
and the spectral bin microphysics model SPECS, a significant performance in-
crease is achieved. Performance measurements on up to 64Ki cores show that
the approach induces only little overhead for dynamic load balancing and cou-
pling. While we expect the approach to be beneficial for other possibly less
expensive spectral schemes, this most likely does not apply to two-moment or
multi-moment schemes due to their much smaller number of variables and con-
siderably lower computational costs.

The high scalability of the new system is an important requirement for the
feasibility of practical applications with spectral microphysics in atmospheric
models. Additional improvements could render this possible in the very near
future. As a next step we are aiming to reduce the computational costs of the
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microphysics by dynamically deciding for each grid cell whether the fast bulk
parameterization scheme is sufficient (clear sky) or the spectral model is required.
Another important aspect is the proper selection of the time integration step for
the microphysics. The time scales of cloud processes are very heterogeneous in
time and space, and thus, multirate time integration schemes provide a further
approach of saving computational costs.
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9. Lieber, M., Grützun, V., Wolke, R., Müller, M.S., Nagel, W.E.: FD4: A Framework
for Highly Scalable Load Balancing and Coupling of Multiphase Models. AIP Conf.
Proc. 1281(1), 1639–1642 (2010)

10. Lieber, M., Wolke, R.: Optimizing the coupling in parallel air quality model sys-
tems. Environ. Modell. Softw. 23(2), 235–243 (2008)
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