
Scalability Tuning of the Load Balancing and Coupling
Framework FD4

Matthias Lieber, Wolfgang E. Nagel, and Hartmut Mix

Center for Information Services and High Performance Computing (ZIH),
Technische Universität Dresden, 01062 Dresden, Germany

E-mail: {matthias.lieber, wolfgang.nagel, hartmut.mix}@tu-dresden.de

In this paper, we discuss the scalability tuning of the HPC software framework FD4. The frame-
work provides dynamic load balancing and model coupling for multiphase and multiphysics
simulations. We first investigate scalability bottlenecks using the Vampir performance analysis
tool-set on the BlueGene/Q system at JSC. Then, we describe and evaluate our optimized algo-
rithms: A new hierarchical 1D partitioning algorithm for SFC-based dynamic load balancing
and a new method to organize the coupling metadata. The final scalability benchmark shows
that the overhead of FD4 has been reduced by a factor of 3.3 at 262 144 ranks, which leads to a
considerably increased scalability of the whole application.

1 Introduction

Driven by the growing capacity of supercomputers and the increasing knowledge about
the underlying processes, simulation models become more and more complex. For exam-
ple in the atmospheric sciences, models are coupled to incorporate more elements of the
geosphere in the simulations, e.g. climate models or earth systems models1. Additionally,
more complex descriptions of individual phenomena are included in the models. Running
such model systems efficiently on large scale supercomputers is a challenging task and re-
quires highly tuned methods for data decomposition, communication, load balancing, and
model coupling, which should be implemented preferably in an independent and reusable
software framework. In this paper, we analyze scalability bottlenecks of the framework
FD4 and describe our improvements. The work has been carried out on the BlueGene/P
and BlueGene/Q systems at Jülich Supercomputing Centre. The architecture of these sys-
tems offers an excellent platform to prepare applications and algorithms for the Exascale
era, where the number of nodes is expected to grow even further2.

FD4 (Four-Dimensional Distributed Dynamic Data structures3, 4) has been developed
for dynamic load balancing in the model system COSMO-SPECS, which describes the in-
teraction between aerosols, clouds, and precipitation with a high level of detail5. It consists
of the COSMO model6, a non-hydrostatic limited-area atmospheric model, and the spectral
cloud microphysics model SPECS7. SPECS introduces 11 new variables to describe three
types of hydrometeors (water droplets, frozen particles, and insoluble particles). These
variables are each discretized into 66 size classes, leading to a high amount of data per
grid cell. Since SPECS’ computational costs are very high and strongly depend on the
spatially and temporally varying presence of hydrometeors, a new version called COSMO-
SPECS+FD43 with dynamic load balancing has been developed: SPECS has been sep-
arated from the static partitioning of COSMO and decomposed in three dimensions into
small, rectangular blocks transparently managed by FD4, see Fig. 1. FD4 provides dy-
namic load balancing of the blocks, communication between neighbor blocks located on

1

COSMO
◦ Atmospheric dynamics
◦ 2D decomposition
◦ Static partitioning

⇐

M
od

el
co

up
lin

g

⇒

SPECS
◦ Cloud microphysics
◦ 3D decomposition
◦ Dynamic load balancing

Figure 1. Coupling concept of COSMO-SPECS+FD4. The boxes illustrate exemplary 8-way partitionings of the
3D computational domain. Services provided by FD4 are written in italics.

different MPI processes, and coupling to the static partitioning of the atmospheric model.
After first scalability experiences with COSMO-SPECS+FD4, we observed that much at-
tention needs to be paid to the load balancing and coupling methods in order to prevent an
increasing overhead that impedes any benefit of the load balancing.

2 Scalability Bottleneck Analysis of FD4

In this section, we discuss the scalability bottlenecks we detected in FD4. For a detailed
analysis, we used the Vampir performance analysis tool-set8, 9. The VampirTrace10 perfor-
mance monitor records application events from all processes, like function calls and MPI
messages, along with their time stamp to an OTF11 trace file. This data is then displayed
with the Vampir12 trace visualizer by means of several charts like timelines or statistics.
For our analysis, we performed runs with 32 768 processes on BlueGene/Q. We recorded
MPI events and certain functions of COSMO-SPECS+FD4. Additionally, we added user-
defined counters, e.g. to observe the number of FD4 blocks per process over time. To
reduce the trace file size, only a few time steps (e.g. the last 3 out of 180) have been
recorded. This selective instrumentation caused a runtime overhead of less than 1% with
additional trace writing time of approx. 90 s. In spite of the large number of application
processes, the compressed trace files have a total size of approx. 4 GiB only.

We ran COSMO-SPECS+FD4 with an artificial benchmark scenario: An initial heat
bubble leads to the formation of a precipitating cumulus cloud after 30 min simulated time.
This basic problem can be replicated arbitrarily along the horizontal axes to scale the grid
size. Note, that the benchmark does not perform any I/O of model data. For the bottleneck
analysis, we used a horizontal grid of 512× 256 cells with 48 vertical layers containing
128 replicated clouds, resulting in extremely small COSMO partitions of 2× 2× 48 cells.

2.1 Analysis of Dynamic Load Balancing

Since the workload of the blocks varies over time, COSMO-SPECS+FD4 regularly per-
forms dynamic load balancing. The workload (i.e. weight) of a block is determined by
measuring the time of the microphysics computations. FD4 uses a Hilbert space-filling
curve13 (SFC) for dynamic load balancing. The SFC linearizes the 3D block decomposi-
tion of the grid and, thus, reduces the partitioning problem from three to one dimension.
Then, the remaining 1D partitioning problem is to find consecutive partitions in the block
vector with a minimal maximum load among the partitions (i.e. bottleneck). Current pub-
lished algorithms are either fast, parallel heuristics14 or serial exact methods15.

2

(a) Heuristic partitioning leads to load imbalance. (b) Exact partitioning is serial and time consuming.

(c) New scalable high-quality partitioning. (d) High duration of coupling in a few processes.

Figure 2. Vampir performance analysis of COSMO-SPECS+FD4 running on BlueGene/Q with 32 768 ranks.

Figure 2(a) shows a Vampir timeline chart for a 1% subset of the 32 768 processes. The
time interval is approx. one time step, which starts at ca. 0.6 s and ends at ca. 2.4 s. Within
a time step, first COSMO is computed (green), then SPECS performs four micro time steps
(blue and purple), and finally dynamic load balancing is carried out. All MPI communica-
tion is shown in red. In Fig. 2(a), a parallel heuristic is used for partitioning. However, the
achieved load balance is rather poor leading to large waiting time after SPECS.

Figure 2(b) shows the same time step when using an exact partitioning method (adapted
from Pınar and Aykanat’s exact bisection algorithm15). While the load balance is clearly
better, the partitioning algorithm requires substantial serial computation time on rank 0, as
shown in the upper part of the chart (orange). This leads to large waiting time in all other
ranks (red). Additionally, all block weights need to be transferred to rank 0 first, which
causes high network traffic and non-scalable memory consumption. Overall, the benefit of
the exact method is reduced strongly due to the great overhead at large scale.

As Fig. 2(c) shows, we solved this problem with a new algorithm that is scalable and
provides high load balance at the same time. The algorithm combines the approaches of
the heuristic and the exact method. We briefly describe the algorithm in Sec. 3.1.

3

2.2 Analysis of Model Coupling

FD4 separates the decomposition of SPECS from the COSMO model. Consequently, each
process owns one dynamic partition of SPECS that does not necessarily overlap with the
process’ static COSMO partition. Since data needs to be transferred between both models
each time step, model coupling techniques are required16, i.e. firstly map the partitionings
to find communication partners (handshaking) and secondly transfer the data. In general,
handshaking needs to be done only once at initialization for static partitions. But in ap-
plications with dynamic load balancing, handshaking needs to be repeated every time the
partitioning is changed and, thus, becomes critical to performance. A naive implementa-
tion of handshaking would, for example, search the list of COSMO partitions for each local
FD4 block to find overlaps. Of course, this algorithm is not scalable at all. We optimized
the handshaking by performing this matching with the smallest bounding box containing
all local blocks. This approach strongly reduces the handshaking time in most cases. How-
ever, as shown in Fig. 2(d), we observed that at certain time steps a very small number
of (obviously arbitrary) processes require a larger handshaking time. In this example, two
ranks consumed around 66 ms for handshaking (i.e. FD4 without MPI), while most of the
processes required 15 ms only. Of course, this imbalance leads to waiting time in the cou-
pling data transfer and at subsequent synchronization points. We found out, that the slow
processes have disconnected FD4 partitions with parts far apart in the block decomposition.
This leads to a large bounding box and, thus, increased handshaking time.

3 Improving Scalability of FD4

In this section, we briefly describe the algorithms we developed to improve the scalability
of dynamic load balancing and model coupling in FD4 and evaluate the improvement.

3.1 Improvement of Dynamic Load Balancing

We developed a novel hierarchical 1D partitioning algorithm that combines the scalability
of the parallel heuristic and the high quality of the exact method. Our algorithm starts with
a parallel heuristic, but creates only G < P partitions, where P is the total number of
processes. For sufficiently small G, this will create almost optimal partitionings14. Each of
the G coarse partitions is assigned a group of processes. In the seconds phase, each group
independently partitions their coarse partition using an exact method. This way, we reduce
the communication costs for gathering the block weights and the computation costs for the
exact method, since it is run for a subset of blocks and processes only. Because no global
vector of block weights is assembled, memory consumption is reduced in comparison to
running the exact method for all processes. For a full description of the method, we refer
to Ref. 4.

The group count G is like a slide control and tunes the influence of the heuristic versus
the exact method. Therefore, we performed a series of runs on 65 536 processes with a
horizontal grid of 512× 512 cells and varied G from 16 to 8192. The grid was decom-
posed into 786 432 FD4 blocks for balancing SPECS. Figure 3 shows the total runtime of
COSMO-SPECS+FD4 divided into main components (without initialization). Addition-
ally, three important dynamic load balancing metrics are presented: runtime of the load

4

0 50% 100%

Migrated Tasks

 60.5%

 55.5%

 50.7%

 48.9%

 46.4%

 45.3%

 42.2%

 42.6%

 41.3%

 44.3%

 84.1%

 40.3%

0.80 0.85 0.90 0.95

Avg. Load Balance

 0.925

 0.925

 0.925

 0.925

 0.924

 0.922

 0.919

 0.916

 0.905

 0.882

 0.925

 0.805

 0 120 240 360

G = 16

G = 32

G = 64

G = 128

G = 256

G = 512

G = 1024

G = 2048

G = 4096

G = 8192

Exact

Heuristic

Total Runtime (s)

COSMO

SPECS

SPECS
Comm.

FD4

 239.9

 239.7

 239.9

 239.0

 238.4

 253.1

 239.2

 239.6

 241.5

 247.1

 275.7

 266.0

 0 20 40 60

Load Balancing Time (s)

Synchro−
nization

Partitioning
Calculation

Migration

 13.0

 12.6

 12.6

 11.7

 11.3

 25.7

 11.8

 12.3

 14.3

 19.4

 50.8

 36.2

Figure 3. Influence of the group count G on the hierarchical 1D partitioning algorithm in COSMO-SPECS+FD4
with 65 536 processes on BlueGene/Q. The exact method and the heuristic are included as reference.

balancing, average load balance (defined as average process load divided by maximum
load), and the average amount of migration per time step. Note, that dynamic load balanc-
ing is carried out every time step in this benchmark, i.e. 180 times. The results show, that
our new method is almost as fast as the heuristic in terms of partitioning calculation, but
achieves the optimal average load balance. At the optimal group count G = 256, the run-
time of the application is reduced by more than 10% compared to the existing partitioning
methods. The increased partitioning calculation time at G = 512 is a reproducible artifact
resulting from some collectives on subcommunicators when distributing the result to all
ranks. The results for average load balance and migrated tasks illustrate the slide control
feature of G.

In practice, performing load balancing at every time step generates noticeable over-
head. To reduce the number of load balancing invocations, FD4 is able to decide automat-
ically if load balancing is beneficial. In this auto-mode, FD4 weighs the time lost due to
imbalance against the time required for load balancing. Both times are measured at run-
time and a history from the last 4 load balancing invocations is kept. Using the auto-mode,
the execution time of the benchmark in Fig. 3 is reduced further to 234.9 s.

3.2 Improvement of Model Coupling

Handshaking with disconnected FD4 partitions that cause large bounding boxes has been
tuned by replacing the simple bounding box with a cluster of a limited number of boxes.
The clustering leads to small additional costs, but effectively solves the load imbalance
issue when performing handshaking.

However, the total costs for handshaking are still very high at large scale, because every
partition of the model coupled to FD4 (i.e. COSMO) has to be checked for overlap with
the local blocks. We developed a general method4 to dramatically reduce the search space
by spatially decomposing the meta data that describes the coupled partitions (i.e. position,
size, variables, owner). The so-called meta data subdomains (MDSDs) are rectangular
subsets of the domain and cover multiple FD4 blocks. They contain the descriptions of

5

Blocks of a
processRequired

meta data
subdomains

Contained
partitionsRequired

meta data
subdomains

(a) Required meta data subdomains. (b) Contained coupled partitions.

Figure 4. Exemplary illustration of meta data subdomains.

 0 120 240 360

M = 1

M = 2

M = 4

M = 8

M = 16

M = 64

M = 256

M = 1024

M = 4096

No Clustering

Total Runtime (s)

COSMO

SPECS

SPECS
Comm.

FD4

 263.7

 256.7

 250.8

 247.6

 246.5

 245.5

 245.3

 245.4

 245.4

 338.0

 0 5 10 15 20

Coupling Time (s)

Communication

Calculation

 18.8

 10.6

 6.7

 4.7

 3.8

 3.1

 2.9

 2.9

 2.9

 14.7

Figure 5. Influence of the meta data subdomain count M on the runtime of COSMO-SPECS+FD4 and the
coupling time with 131 072 processes on BlueGene/Q. The original method without clustering is included as
reference.

all partitions that begin within the region of the MDSD, i.e. each partition is assigned to
a unique MDSD. For handshaking, only the MDSDs that overlap with the FD4 blocks
and additionally the MDSDs at the spatially next lower coordinates need to be evaluated,
given that no coupled partition is larger than the MDSDs (see Fig. 4). Since the MDSD
decomposition is straightforward, the necessary MDSDs can be identified in constant time.
Thus, the effort for handshaking does not depend on the total number of coupled partitions.
The advantage of the MDSD concept is that arbitrary partition structures are supported, i.e.
more complex geometries than rectangular partitions as in COSMO.

We evaluated the improvement achieved by the clustering and the meta data subdo-
mains by running the COSMO-SPECS+FD4 benchmark on 131 072 ranks with a hori-
zontal grid of 1024× 512 cells. Fig. 5 shows that the calculation part of coupling (i.e.
handshaking) is strongly accelerated with increasing number of MDSDs. Without the op-
timizations, the imbalanced handshaking (see Sec. 2.2) leads to waiting time in COSMO
and FD4 load balancing, which increases the respective runtimes.

6

 0 100 200 300 400 500 600 700

16384

32768

65536

131072

262144

Total node hours (original)

 483.2

 496.1

 516.7

 556.1

 657.4

 0 100 200 300 400 500 600

Total node hours (optimzed)

COSMO

SPECS

SPECS
Comm.

FD4

 477.2

 485.2

 495.4

 506.3

 544.7

Figure 6. Strong scalability comparison of original COSMO-SPECS+FD4 and the tuned version on BlueGene/Q.
Runtimes times number of nodes (32 processes each) are shown (without initialization).

3.3 Scalability Benchmark

We evaluated the scalability of COSMO-SPECS+FD4 with a strong scaling benchmark
using a horizontal grid size of 1024× 1024 cells and 3 145 728 FD4 blocks. Figure 6 com-
pares the results for the original version and the version incorporating the optimizations
described above. In both versions, the auto-mode to trigger dynamic load balancing was
used. The speed-up of the original version from 16 384 to 262 144 ranks is 11.8, while
a speed-up of 14.0 is achieved with the optimized version. At 262 144 processes, the
overhead of FD4 has been reduced by a factor of 3.3, not considering the side-effects of
handshaking imbalance.

4 Conclusion and Outlook

We discussed scalability optimizations for the HPC software framework FD4 that com-
bines dynamic load balancing and model coupling. Scalability bottlenecks were analyzed
using the Vampir performance analysis tools-set and optimizations were developed, imple-
mented, and tested in FD4. The results show exemplary, that complex coupled simulation
models with dynamic workload behavior can be run efficiently on large-scale HPC sys-
tems. FD4 is available as open source17.

Future scalability improvements include the elimination of global meta data to reduce
the memory consumption and global communication overheads. This would benefit the
dynamic load balancing, since no global partitioning information needs to be distributed to
all ranks, as well as the model coupling, since no global coupling meta data is stored on a
single rank. Therefore, the meta data subdomains can be used to store local meta data only
and dynamically redistribute the meta data after load balancing.

Acknowledgments

We thank the Jülich Supercomputing Centre, Germany, for access to JUGENE and
JUQUEEN and the German Weather Service (Deutscher Wetterdienst) for providing the
COSMO model. Furthermore, we want to thank Verena Grützun, Ralf Wolke, and Oswald
Knoth for their support regarding the COSMO-SPECS model. This work was funded by
the German Research Foundation (DFG), grant No. NA 711/2-1.

7

References

1. Warren M. Washington, Lawrence Buja, and Anthony Craig, The computational fu-
ture for climate and Earth system models: on the path to petaflop and beyond, Philo-
sophical Transactions A, 367, no. 1890, 833–846, 2009.

2. Jack Dongarra et al., The International Exascale Software Project Roadmap, Int. J.
High Perform. C., 25, no. 1, 3–60, 2011.

3. Matthias Lieber, Verena Grützun, Ralf Wolke, Matthias S. Müller, and Wolfgang E.
Nagel, Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling Sys-
tem COSMO-SPECS+FD4, in: Applied Parallel and Scientific Computing, vol. 7133
of LNCS, pp. 131–141, 2012.

4. Matthias Lieber, Dynamische Lastbalancierung und Modellkopplung zur hochskalier-
baren Simulation von Wolkenprozessen, Dissertation, Technische Universität Dres-
den, 2012.

5. Verena Grützun, Oswald Knoth, and Martin Simmel, Simulation of the influence of
aerosol particle characteristics on clouds and precipitation with LM–SPECS: Model
description and first results, Atmos. Res., 90, no. 2-4, 233–242, 2008.

6. “Consortium for small-scale modeling”, http://www.cosmo-model.org.
7. Martin Simmel and Sabine Wurzler, Condensation and activation in sectional cloud

microphysical models, Atmos. Res., 80, no. 2-3, 218–236, 2006.
8. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl

Solchenbach, VAMPIR: Visualization and Analysis of MPI Resources, Supercomputer
63, XII, no. 1, 69–80, 1996.

9. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel, The Vampir Performance
Analysis Tool-Set, in: Tools for High Performance Computing, pp. 139–155, Springer.
2008.

10. “VampirTrace website”, http://www.tu-dresden.de/zih/vampirtrace.
11. “OTF website”, http://www.tu-dresden.de/zih/otf.
12. “Vampir website”, http://vampir.eu.
13. James D. Teresco, Karen D. Devine, and Joseph E. Flaherty, “Partitioning and dy-

namic load balancing for the numerical solution of partial differential equations”, in:
Numerical Solution of Partial Differential Equations on Parallel Computers, vol. 51
of LNCSE, pp. 55–88. Springer, 2006.

14. Serge Miguet and Jean-Marc Pierson, “Heuristics for 1D rectilinear partitioning as a
low cost and high quality answer to dynamic load balancing”, in: High-Performance
Computing and Networking, vol. 1225 of LNCS, pp. 550–564. Springer, 1997.

15. Ali Pınar and Cevdet Aykanat, Fast optimal load balancing algorithms for 1D parti-
tioning, J. Parallel Distrib. Comput., 64, no. 8, 974–996, 2004.

16. Jay Larson, Robert Jacob, and Everest Ong, The Model Coupling Toolkit: A New
Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models, Int. J. High
Perf. Comput. Appl., 19, no. 3, 277–292, 2005.

17. “FD4 website”, http://wwwpub.zih.tu-dresden.de/∼mlieber/fd4/.

8

