
Scalable High-Quality 1D Partitioning

Matthias Lieber, Wolfgang E. Nagel
Technische Universität Dresden, 01062 Dresden, Germany

{matthias.lieber, wolfgang.nagel}@tu-dresden.de

Abstract—The decomposition of one-dimensional workload
arrays into consecutive partitions is a core problem of many
load balancing methods, especially those based on space-filling
curves. While previous work has shown that heuristics can be
parallelized, only sequential algorithms exist for the optimal
solution. However, centralized partitioning will become infeasible
in the exascale era due to the vast amount of tasks to be mapped
to millions of processors. In this work, we first introduce opti-
mizations to a published exact algorithm. Further, we investigate
a hierarchical approach which combines a parallel heuristic
and an exact algorithm to form a scalable and high-quality 1D
partitioning algorithm. We compare load balance, execution time,
and task migration of the algorithms for up to 262 144 processes
using real-life workload data. The results show a 300 times speed-
up compared to an existing fast exact algorithm, while achieving
nearly the optimal load balance.

Keywords—High performance computing, Dynamic load bal-
ancing, One-dimensional partitioning, Hierarchical partitioning,
Scalability

I. INTRODUCTION

Load balance is one of the major challenges for efficient
use of current and future HPC systems [1], [2], especially
when the workload is changing dynamically. Many scientific
simulations exhibit workload variations due to adaptive spa-
tial grids [3] or adaptive time stepping techniques [4], [5].
An additional source of workload variations are descriptions
of physical or chemical phenomena, whose runtime depend
locally on variables of the model, like detailed atmospheric
simulations [6], [7] and particle simulations [8], [9].

In this work we focus on computational scenarios with a
fixed number of work items (tasks) of spatially and temporally
varying workload that need to be distributed over a large
number of processes. The assignment of tasks to processes
needs to be adapted periodically over runtime to ensure high
balance. The calculation of a new assignment is called reparti-
tioning, which has to achieve the following objectives [10]: (a)
balanced workload in the new partitioning, (b) low communi-
cation costs between distributed tasks due to data dependencies
within the application, (c) low migration costs, and (d) fast
execution of the repartitioning. Typically, these objectives are
contradictory. For example, the optimal solution for (a) and (b)
is known to be NP-complete, which makes objective (d) hard
to reach. The balance between the four objectives therefore
depends on the application, e. g. highly dynamic applications
should focus on low migration and repartitioning costs and
accept a non-optimal load balance. Many heuristics have been
developed for (re)partitioning; Teresco et al. [10] provide a
good overview.

A widely used method is space-filling curve (SFC) par-
titioning [10], [11]. It is applied for scalable adaptive mesh

refinement [3] and dynamic load balancing of a fixed number
of tasks with varying workload [4], [8]. In general, SFCs
provide a fast mapping from n-dimensional to one-dimensional
space that preserves spatial locality. This property is used to
reduce the partitioning problem to one dimension. In compar-
ison to rectangular partitioning methods, SFC partitioning has
the advantages of better load balance due to finer granularity
(no restriction to rectangular partitions) and highly local, low-
degree task migration, which has a one-dimensional logical
structure according to the curve [11]. With respect to the
four objectives of dynamic load balancing, SFCs are a good
heuristic to implicitly optimize for low communication costs.
The remaining three objectives have to be handled by 1D
partitioning algorithms. Published 1D partitioning heuristics
execute very quickly and can be implemented in parallel [11],
but they do not achieve the optimal load balance. On the other
hand, exact algorithms [12] are, to the best of our knowledge,
sequential only. However, sequential algorithms will fail in
the exascale era due to large communication, memory, and
calculation costs. This work closes the gap between exact
algorithms and parallel heuristics. The main contributions are:

• Investigation of runtime optimizations for a published
exact 1D partitioning algorithm.

• A new hierarchical and highly scalable 1D partitioning
algorithm that provides nearly optimal balance.

• Experimental evaluation of existing and proposed algo-
rithms comparing load balance, migration costs, and cal-
culation time using real-life workload data.

The rest of the paper is organized as follows: In the next section
we define the 1D partition problem. Then, in Sec. III, we give
an overview of related work about 1D partitioning. Sec. IV
introduces the benchmark and systems we use for experimental
evaluation of the algorithms, which are described and evaluated
in Sections V and VI.

II. THE 1D PARTITIONING PROBLEM

In the 1D partitioning problem, a vector wi, i =
1, 2, . . . , N , of positive task weights, representing N com-
putational loads, is to be decomposed into P consecutive
partitions while minimizing the maximum load among the
partitions. This problem is also referred to as the chains-on-
chains partitioning problem [12]. The result is a partition vector
sp that denotes the first task in wi assigned to partition p,
with p = 0, 1, . . . P − 1. Note, that each partition contains
a contiguous subset of tasks. The load of partition p is
determined with Lp =

∑ sp+1−1
i=sp

wi. Alternatively, the load
can be computed as Lp = Wsp+1−1 − Wsp−1 using the
prefix sum of task weights Wj =

∑ j
i=1wi, j = 1, 2, . . . , N

and W0 = 0. The maximum load among all partitions

TABLE I. SUMMARY OF SYMBOLS.

B bottleneck of a partitioning, i. e. maximum load among all partitions,B =
max(Lp)

B∗ ideal bottleneck, B∗ = Σwi/P

Bopt bottleneck of the optimal partitioning
G number of coarse partitions of the hierarchical algorithm, 2 ≤ G ≤ P/2
Lp load of partition p, i. e. sum of its task weights
Λ balance of a partitioning, Λ = B∗/B

Λopt balance of the optimal partitioning, Λopt = B∗/Bopt

N number of tasks to assign to the partitions
P number of partitions (i. e. parallel processes)
q quality factor of a partitioning, q = Λ/Λopt

sp partition vector, i. e. index of the first task assigned to partition p for
p = 0, 1, . . . , P − 1; s0 = 1

wi computational weight of task i for i = 1, 2, . . . , N

Wj prefix sum of task weights, Wj =
∑

j
i=1

wi; W0 = 0

B = max(Lp) is called the bottleneck of a partitioning.
The objective of 1D partitioning is to find a partition vector
sp with the minimal bottleneck Bopt, which is not known
a priori. The lower bound for any B is the ideal bottleneck
B∗ = Σwi/P = WN/P , which assumes equal load among
all partitions. We define the ratio of ideal bottleneck B∗ to
the bottleneck B of a partitioning as the load balance Λ of
this partitioning, i. e. Λ = B∗/B with 1/P ≤ Λ ≤ 1. The
optimal load balance Λopt of a given 1D partitioning problem
is Λopt = B∗/Bopt and the quality factor q of a partitioning
is q = Λ/Λopt = Bopt/B, which follows the definition by
Miguet and Pierson [13]. One important property of the task
weights wi is their maximum max(wi), since perfect balance
cannot be achieved if max(wi) > B∗ = Σwi/P . In this
case applies Bopt ≥ max(wi) and further parallelism will not
decrease the bottleneck. Thus, well-balanced partitionings are
only achievable if P ≤ Σwi/max(wi). Table I summarizes
the introduced symbols.

III. RELATED WORK

One of the first 1D partitioning heuristics for SFC-based
load balancing is described by Oden et al. [14]. They use
the recursive bisection approach where the weight vector is
recursively cut in two parts with as equal as possible load.
Pilkington and Baden [11] introduce a parallel heuristic. The
processes search their new partition boundaries within the local
part of the weight vector prefix sum Wj and within the part of
direct neighbors along the curve. Of course, this only works so
long as the partition borders do not shift across the neighbor
processes. Miguet and Pierson [13] describe two heuristics and
their parallelization and provide a detailed discussion about the
costs and quality bounds of the algorithms. Their first heuristic
H1 computes sp to be the smallest index such that Wsp > pB∗.
The second heuristic H2 refines the partition boundaries found
by H1 by incrementing sp if (Wsp −pB∗) < (pB∗−Wsp−1),
i. e. if the cumulated task weight Wsp is closer to the border’s
ideal cumulated task weight pB∗ than Wsp−1. They also prove
that for their heuristics the bottleneck is bounded by B <
B∗ + max(wi), which means that these algorithms are very
close to the optimal solution if max(wi)� B∗. However, this
yields the tightened requirement for well-balanced partition-
ings P � Σwi/max(wi) compared to P ≤ Σwi/max(wi)
introduced for the general case in Sec. II.

Much work has been published on exact algorithms for
the 1D partition problem; a very extensive overview is given

by Pınar and Aykanat [12]. They provide detailed descriptions
of existing heuristics and exact algorithms, improvements and
new algorithms, as well as a thorough experimental compar-
ison. However, they only consider sequential algorithms. The
fastest exact algorithm proposed by Pınar and Aykanat is the
exact bisection algorithm ExactBS. It is based on the binary
search for the optimal bottleneck Bopt. The initial search
interval is I = [B∗, BRB], where BRB is the bottleneck
achieved by the recursive bisection heuristic. To guide the
binary search, it is required to probe whether a partitioning
can be constructed for a given B or not. The Probe function
successively assigns each partition p = 0, 1, . . . P − 2 the
maximum number of tasks such that the partition’s load is not
larger than B. Probe is successful if the load of the remaining
partition P −1 is not larger then B. A simple probing method
using binary search on Wj for each sp has O(P log N)
complexity. Han et al. [15] propose an improved Probe with
O(P log(N/P)) complexity which partitions Wj in P equal-
sized segments. For each sp to be found, first the segment
containing sp is determined using linear search and then binary
search is used within the segment. Pınar and Aykanat [12]
also use binary search for probing, but they further restrict
the search space by keeping record of the lowest and highest
values found for each sp in earlier steps of the search for Bopt.
Pınar and Aykanat show that the complexity of their restricted
probe function is O(P log(P) + P log(max(wi)/avg(wi))),
which is very attractive for large N . For a detailed description
of ExactBS we refer to the original publication [12].

To the best of our knowledge, no parallel exact algorithms
for the 1D partition problem have been published. Parallel
heuristics can be used in large-scale applications requiring
frequent load balancing. However, as Miguet and Pierson [13]
have shown, the load balance is only close to optimal as
long as max(wi) � B∗. Current trends suggest that this
condition will be fulfilled less often in future [1], [2]: Firstly,
simulations incorporate more and more complex phenomena
and adaptivity, giving rise to workload variations and thus
increasing the maximum task weight max(wi) stronger than
the average load B∗ = Σwi/P . Secondly, the parallelism in
HPC systems is growing greatly, which leads to strong scaling
replacing increasingly weak scaling and thus to a reduction of
B∗. Consequently, scalable and high-quality partitioning algo-
rithms are required for many future large-scale simulations.

One solution for the scalability challenge is the application
of hierarchical methods for load balancing. Zheng et al. [16]
investigate such methods in the runtime system Charm++.
They organize processes in a tree hierarchy and use centralized
partitioning methods within each level and group indepen-
dently. The main advantages of their approach are considerable
memory savings due to data reduction strategies and faster
execution of the partitioning at large scale.

IV. EVALUATION BENCHMARK

We have developed an MPI-based benchmark to compare
existing 1D partitioning algorithms with our methods. Like in
typical applications, the task weights are only known to the
process owning the task. This distributed task weight vector is
input to the algorithms. The output is the partition vector sp,
which should be replicated on each process. Following existing
algorithms are compared to our new methods:

0
1
2
3
4
5
6

0 8 16

(a) CLOUD Dataset

0

6

12

18

24
max: 6.61

0 128 256 384 512

(b) LWFA Dataset

0

16

32

48

64

max: 91.7

Fig. 1. Visualization of workload on a slice through the center of the 3D
computational domain. The workload is shown relative to the average. The
most imbalanced time step of each dataset is shown.

• Exact algorithm ExactBS by Pınar and Aykanat [12]:
1) Parallel prefix sum of weights wi using MPI Exscan,

determination of max(wi) on rank 0 using MPI Reduce
2) Collection of prefix sum Wj on rank 0 via MPI Gatherv
3) Serial execution of ExactBS on rank 0
4) Distribution of partition vector sp with MPI Bcast

• Serial heuristic H2 of Miguet and Pierson [13]:
1) Parallel prefix sum of weights wi using MPI Exscan
2) Collection of prefix sum Wj on rank 0 via MPI Gatherv
3) Serial execution of H2 on rank 0 using the Probe

algorithm by Han et al. [15]
4) Distribution of partition vector sp with MPI Bcast

• Parallel version of H2:
1) Parallel prefix sum of weights wi using MPI Exscan
2) Point-to-point communication of first local value in Wj

to rank− 1 (to ensure consistency when using floating
point weights) and communication of total weight from
last rank to all via MPI Bcast

3) Execution of H2 on local part of Wj

4) Each found border sp is sent to rank p, final distribution
of partition vector to all processes with MPI Allgather

The benchmark determines the runtime of each phase of
the partitioning algorithm and the achieved load balance. To
observe the amount of migration, the benchmark iterates over
a set of task weight vectors. The task weights are derived from
two different HPC applications as described in the following.

A. Real-life Datasets CLOUD and LWFA

The CLOUD dataset is extracted from COSMO-
SPECS+FD4 [6], [17], which simulates the evolution of clouds
and precipitation in the atmosphere in a high level of detail.
In our scenario, a growing cumulus cloud leads to locally
increasing workload of the cloud microphysics model. We
measured the execution times of 16 × 16 × 24 = 6144 grid
blocks for 100 successive time steps. The weight imbalance
max(wi)/avg(wi) varies between 4.32 and 6.61. Fig. 1 (a) vi-
sualizes the weights of the most imbalanced step. To construct
larger weight vectors, we replicated the original block weights
in the first two (horizontal) dimensions, e. g. a replication of
13×7 results in 208×112×24 = 559 104 weights. After this,
we used a Hilbert SFC to create task weight vectors.

The second dataset originates from a laser wakefield accel-
eration (LWFA) simulation with the open source particle-in-
cell code PIConGPU [9], [18]. In LWFA, electrons are acceler-
ated by high electric fields caused by an ultrashort laser pulse
in a gas jet [19]. The dense accumulation of electrons following

 0.0001

 0.01

 1

 100

1
2 1 2 4 8

P
er

ce
nt

ag
e

Relative Task Weight

(a) CLOUD Dataset

 9
1.

03
%

 2

.2
6%

 1

.0
7%

 1

.3
7%

 1

.9
7%

 1

.8
6%

 0

.4
4%

0 1
16

1
4 1 4 16 64 256

Relative Task Weight

(b) LWFA Dataset

 2
.2

0%

 0
.2

7%

 0
.3

6%

 1
.3

2%

 3
0.

54
%

 6

4.
94

%

 0
.3

2%

 0
.0

5%

 0
.0

04
9%

 0

.0
01

2%

 0
.0

00
6%

 0

.0
00

1%

Fig. 2. Histograms of the most imbalanced task weight vectors of both
datasets. The weight is specified relative to the average. Note, that the leftmost
column in the LWFA chart includes zero weight tasks (i. e. no particles).

TABLE II. DESCRIPTION OF THE BENCHMARK SYSTEMS.

Name JUQUEEN SuperMUC (thin nodes)
System IBM BlueGene/Q IBM iDataPlex
Processor IBM PowerPC A2 1.6 GHz Intel Xeon E5-2680 2.7 GHz
Cores / RAM per node 16 cores / 16 GiB RAM 16 cores / 32 GiB RAM
Total nodes 28 672 18 × 512 = 9216
Total cores 458 752 18 × 8192 = 147 456
Network & Topology IBM proprietary 5D torus Infiniband FDR10 tree
Peak PFlop/s 5.872 PFlop/s 3.185 PFlop/s

the laser pulse leads to severe load imbalances, see Fig. 1 (b).
The computational grid consists of 32× 512× 64 = 1 048 576
supercells whose workload is determined by the number of
particles per supercell. We created task weight vectors for 2000
consecutive time steps (out of 10 000) using a Hilbert SFC. The
weight imbalance varies between 91.7 and 32.5.

Fig. 2 shows histograms of the most imbalanced task
weight vectors in both datasets. Most of the weights are near
the average, except for a few strong peaks. Due to the so-
called bubble, a region without electrons behind the laser pulse,
the LWFA dataset also contains tasks with zero weight. The
standard deviation for the shown relative task weight vectors
are 0.747 for CLOUD and 0.305 for LWFA.

B. Benchmark Systems

We performed measurements on two Top10 systems of the
November 2013 Top500 list: The IBM BlueGene/Q system
JUQUEEN and the IBM iDataPlex system SuperMUC. Their
hardware characteristics are compared in Table II. Since both
systems support simultaneous multithreading, we used 32 MPI
processes per node for our measurements.

V. IMPROVING THE EXACT BISECTION ALGORITHM

This section describes and evaluates our optimizations for
the exact bisection algorithm ExactBS [12].

A. Probe Algorithm

In ExactBS, the Probe function checks whether a partition
exists for a given bottleneck B. As introduced in Sec. III,
Pınar and Aykanat restrict the search space for each individual
sp by narrowing the search interval in Wj dynamically. We
developed a Probe algorithm which is faster without search
space restriction, if (1) the size of partitions adjacent in the
weight vector varies only little, or (2) the number of tasks N
is not orders of magnitude higher than the number of partitions
P . Our Probe algorithm, shown in Fig. 3, starts the search for

PROBE (P , N , B, W)
end := 0; sum := B; guess := N/P
for p := 0 to P − 2 do

if Wguess > sum then
i := guess− 1
while Wi > sum do i := i− 1

else
i := guess
while i+ 1 ≤ N and Wi+1 ≤ sum do i := i+ 1

guess := min(2i− end,N)
if i = N then exit
sum := Wi +B
end := i

if WN ≤ sum then return true
else return false

Fig. 3. Our proposed Probe algorithm.

the next sp at 2sp−1 − sp−2, which results in a match if the
partition p−1 has the same size as partition p−2. If this is not
the case, we start a linear search ascending or descending in
Wj . For relatively small partition sizes, the number of linear
search steps will likely be very small and outperform binary
search. Consequently, we expect our algorithm to be faster than
Pınar and Aykanat’s Probe at relatively low N/P only.

B. Quality-Assuring Bisection Algorithm QBS

While the first optimization was targeted on the cost of
the Probe algorithm, this optimization reduces the number of
search steps for the optimal bottleneck, i. e. the number of
Probe calls. Fig. 4 depicts the basic idea: It shows the evolution
of the target load balance associated with the bottleneck values
ExactBS is probing for. In this particular example, 16 binary
search steps are required to find the optimal load balance
Λopt = 0.97661. But already after 6 steps, a balance of
Λ = 0.97619 is achieved, which corresponds to a quality
factor of q = 0.9996. This quality factor should absolutely
suffice for many applications, since task weights are typically
estimations and such small deviations from the optimal load
balance will hardly affect the runtime of the application. Our
optimization utilizes this observation and terminates the binary
search as soon as the distance between lower and upper bound
for B becomes smaller than ε, like in the algorithm εBS [12].
We can approximate ε from the requested q as follows: From
the termination condition we know: ε ≥ B − Bopt. Since
q = Bopt/B, we can formulate ε ≥ (1−q)B. With Λ = B∗/B
and Λ ≤ q we finally obtain:

ε ≥ 1− q
q

B∗ =
1− q
q

WN

P

This equation estimates the termination condition of the binary
search for a given quality factor q. We call the algorithm
incorporating the optimizations of this section and the previous
one QBS (quality-assuring bisection). Running QBS with q = 1
results in an exact algorithm, while q < 1 results in an approx-
imate algorithm with guaranteed quality. For the initial search
interval, we build on the findings of Miguet and Pierson [13]
and use I = [max(B∗,max(wi)), B

∗ +max(wi)].

C. Parallel Bisection Algorithm QBS*

We now describe a simple parallelization of QBS that can
be applied to ExactBS as well. Given that the complete prefix

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1 3 5 7 9 11 13 15

T
ar

ge
t

Lo
ad

 B
al

an
ce

Binary Search Step of ExactBS

0.97619
6 steps

0.97661
16 steps

Fig. 4. Exemplary development of the target load balance over the binary
search steps of ExactBS for one step of the CLOUD dataset (559 104 tasks)
and 16 384 processes. Circles denote a successful attempt to construct a
partitioning with the indicated balance during Probe, triangles a failure.

sum of the weight vector is replicated on K processes, the
search interval I for the bottleneck can be split in disjunct,
equal-sized parts Ik with I = ∪Ik. The processes now
search individually in their local parts. To ensure correctness
of the termination condition, each process first calls Probe
for its lower bound of Ik. If this is successful, no further
search steps are required in this interval. Otherwise, the binary
search is started. Finally, the smallest feasible bottleneck B is
determined with MPI Allreduce and the processes can easily
construct sp from B. The maximum number of search steps
among the processes can be reduced at most by a factor of
blog2(K)c. For QBS, it may even happen that binary search
is not necessary at all: The algorithm terminates after the first
Probe for the lower bound of Ik as soon as the length of the
interval sections Ik is smaller than ε, i. e.:

B∗ +max(wi)−max(B∗,max(wi))

K
≤ ε

In our benchmark, we implemented parallel QBS with fixed
K = P . This has the downside that Wj has to be distributed
to all processes with an MPI Allgatherv operation, but after
the determination of the best B, all processes can construct sp
individually without further communication.

D. Experimental Evaluation of QBS and QBS*

To evaluate our optimizations of ExactBS, we ran the
benchmark described in Sec. IV with the CLOUD dataset
and a replication factor of 13 × 7 on 16 384 processes. This
results in 559 104 tasks and 34.12 tasks per process on average.
Fig. 5 shows the results as averages over 100 iterations of the
benchmark. The runtime is the measured wall clock time of
the 1D partitioning calculation only, i. e. without prefix sum,
collection of weights, and broadcast of the partition vector.
For the parallel QBS* algorithm, the runtime is averaged over
all processes. The comparison of the results for the existing
algorithms H2seq and ExactBS shows, that the heuristic is
clearly faster, but it fails to achieve a sufficient load balance.
However, the percentage of migrated tasks per iteration is
much higher with the exact algorithm. The reason is that
ExactBS places the partition borders depending on all individ-
ual values in Wj . In contrast, the placement in H2seq mainly
depends on B∗, which varies much less between the iterations.
The results for QBS with q = 1 show that the improved Probe
algorithm leads to a 2.7 times speed-up over ExactBS. The
method QBS with q < 1 allows to reduce the load balance
target in a controlled fashion with further reduction of the
runtime. However, the task migration increases with decreasing

0 50% 100%
Migrated Tasks

 11.8%
 68.7%

 89.8%
 83.2%
 81.5%

 70.6%
 68.8%
 68.2%
 68.8%

 0 4 8 12 16
Avg. No. of Steps

 −
 15.04

 1.00
 4.69
 7.95

 11.00
 15.66

 1.00
 5.65

 0 30 60 90 120
Avg. Runtime (ms)

 4.58
 120.15

 4.89
 14.79

 23.48
 31.62

 44.08
 10.50

 29.06

 0.85 0.90 0.95 1.00

H2seq
ExactBS
QBS, q = 0.9
QBS, q = 0.99
QBS, q = 0.999
QBS, q = 0.9999
QBS, q = 1.0
QBS*, q = 0.9999
QBS*, q = 1.0

Avg. Load Balance

 0.880
 0.980

 0.923
 0.977
 0.980
 0.980
 0.980
 0.980
 0.980

Fig. 5. 1D partitioning benchmark results for the sequential algorithms H2seq, ExactBS, and QBS with the CLOUD dataset (559 104 tasks) for 16 384 processes
on JUQUEEN. QBS* is a version with parallelized search for the optimal bottleneck. The runtime includes the 1D partitioning calculation only.

q, because the achieved bottleneck varies over the interval
[Bopt, Bopt/q] between successive iterations, which leads to
larger shifts in the partition border placement. Finally, QBS*
accomplishes a further runtime reduction. With q = 0.9999,
binary search is not required in any iteration so that probing
is required only once per interval. However, the collection of
task weights on all ranks, as required by QBS*, is much more
expensive than gathering of task weights in rank 0 only. If we
compare the complete runtime of QBS and QBS*, including
prefix sum, collection of weights, and broadcast of partition
vector, QBS is more than 4 times faster than QBS* in this
specific case.

VI. IMPROVING SCALABILITY WITH A HIERARCHICAL
ALGORITHM

At large scale, the collection of all task weights at one
or multiple processes is infeasible due to memory limitations
and high communication costs. Only heuristics, like those of
Miguet and Pierson [13], can by parallelized completely such
that the task weights are evaluated locally only. In this section,
we propose a two-level hierarchical method [20] that combines
the distributed computation of the heuristic H2 with the high
quality of the QBS algorithm.

A. Design of the Hierarchical Algorithms HIER and HIER*

The basic idea picks up the condition max(wi)� B∗ for
almost optimal partitionings computed by H2. If we partition
the tasks not in P but G < P parts, B∗ would be increased and
the condition could be met easier. In our hierarchical approach,
we use this property to first create a coarse-grained partitioning
in G parts with a fully parallel heuristic. Each of the G
coarse partitions is assigned a group of processes. Second,
we decompose each coarse part in P/G partitions using the
exact methods QBS or QBS* with q = 1. In the second phase,
G instances of the exact method are running independently to
each other and task weights need only to be collected within
the groups, i. e. no vector of all task weights needs to be
assembled. The number of groups G highly impacts quality
and performance of the hierarchical method; it is actually like a
slide control which allows to tune the influence of the heuristic
versus the exact method. In the following, we provide a more
detailed description of the methods HIER and HIER*:

1) Prefix sum of weights and broadcast of total load:
The prefix sum of task weights is computed in parallel using
MPI Exscan with the sum of local weights as input. Then all
ranks p > 0 send Wsp−1 to rank− 1 to ensure consistency at

the partition borders when using floating point weights. Finally,
the total load WN , which is available in the last process, is
communicated to all ranks via MPI Bcast.

2) Construction of the coarse partitioning: All processes
search in their local part of Wj for coarse partition borders
using the method H2 with B∗ = WN/G. If a process finds a
border, it sends the position to the group masters (first ranks)
of both groups adjacent to that border. The group masters
broadcast them to all processes within the group.

3) Collection of task weights within the groups: All pro-
cesses owning tasks that are not part of their coarse partition
send the respective Wj to the nearest process of the group
that owns these tasks in the coarse partitioning. Then, the
(prefix-summed) task weights are exchanged within each group
independently using MPI Gather in HIER, such that the master
receives Wj for its group, or MPI Allgather in HIER*, such
that all ranks in the group receive Wj .

4) Exact partitioning within the groups: Based on the
local prefix sum of the weight vector for the group, the final
partitioning is computed with QBS or QBS* in HIER or HIER*,
respectively, using q = 1. Now, G instances of the exact
method are running independently to each other.

5) Distribution of the partition vector: The final partition
vector is communicated to all ranks in a two-stage process:
First, the group masters assemble the global vector by ex-
changing the partition vector of their group among each other
using MPI Allgather. Second, the masters distribute the global
partition vector to their group members via MPI Bcast.

B. Quality Bounds of the Hierarchical Algorithm

The load balance achieved with our hierarchical algorithm
is limited by the initial coarse partitioning. Even if the initial
partitioning was perfect (i. e. each group has exactly the
same load) non-optimal results can be achieved if the optimal
bottlenecks Bopt of the individual group partitionings vary. Of
course, the quality of HIER is never worse than the quality of
H2, since the coarse partition borders are also borders in H2,
but HIER runs an optimal method for the rest of the borders.
Miguet and Pierson [13] have shown that the quality factor of
H2 is q ≥ 1/2. We can construct an artificial case where this
lower bound is reached for HIER: Let N � P , wi = wH for
i = 1, 2, . . . , P2 + 1 and wi = 1 for i = P

2 + 2, P2 + 3, . . . , N
with wH as the maximum weight such that sP/2 = P

2 + 2 in
H2, i. e. the first half of the partitions contains P

2 + 1 ‘heavy’
tasks with weight wH . The bottleneck of HIER is B = 2wH ,

0 50% 100%
Migrated Tasks

 36.0%
 28.8%

 23.1%
 18.2%
 15.2%
 13.4%
 12.6%
 12.2%
 11.8%

 68.8%

 0.85 0.90 0.95 1.00

G = 8
G = 16
G = 32
G = 64
G = 128
G = 256
G = 512
G = 1024
H2par
QBS

Avg. Load Balance

 0.980
 0.979
 0.978
 0.976
 0.973

 0.966
 0.957

 0.944
 0.880

 0.980

 0 2 4 6 8 10 12
HIER Average Runtime (ms)

Prefix sum of task weights
Collection of task weights
1D partitioning calculation
Distribution of partition vector

 10.20
 5.42

 3.08
 1.93

 1.36
 1.13
 1.08

 1.57
 1.84

 69.37 ⊲

 0 2 4 6 8 10 12
HIER* Average Runtime (ms)

Prefix sum of task weights
Collection of task weights
1D partitioning calculation
Distribution of partition vector

 11.60
 5.12

 2.80
 1.57

 1.21
 1.06
 1.03

 1.69
 1.84

 69.37 ⊲

Fig. 6. 1D partitioning benchmark results of the hierarchical methods HIER and HIER* with the CLOUD dataset (559 104 tasks) for 16 384 processes on
JUQUEEN. For comparison, the results of the parallel heuristic H2par and the sequential exact algorithm QBS (q = 1) are shown.

0 50% 100%
Migrated Tasks

 25.2%
 19.4%
 16.1%
 14.2%
 13.1%
 12.5%
 12.3%
 12.2%
 12.0%

 70.7%

 0.7 0.8 0.9 1.0

G = 8
G = 16
G = 32
G = 64
G = 128
G = 256
G = 512
G = 1024
H2par
QBS

Avg. Load Balance

 0.950
 0.949
 0.949
 0.948
 0.946
 0.941
 0.931

 0.913
 0.732

 0.951

 0 5 10 15 20 25 30
HIER Average Runtime (ms)

Prefix sum of task weights
Collection of task weights
1D partitioning calculation
Distribution of partition vector

 19.04
 10.92

 7.25
 4.92

 3.56
 2.74
 2.29
 2.56
 2.64

 103.57 ⊲

 0 5 10 15 20 25 30
HIER* Average Runtime (ms)

Prefix sum of task weights
Collection of task weights
1D partitioning calculation
Distribution of partition vector

 32.18
 17.28

 7.62
 5.05

 3.62
 2.77
 2.36
 2.76
 2.64

 103.57 ⊲

Fig. 7. 1D partitioning benchmark results of the hierarchical methods HIER and HIER* with the LWFA dataset (1 048 576 tasks) for 16 384 processes on
JUQUEEN. For comparison, the results of the parallel heuristic H2par and the sequential exact algorithm QBS (q = 1) are shown.

since one partition in the first half needs to take two tasks. With
wH = Σwi/(P + 1 + ε) the load balance can be computed as
Λ = (P +1+ε)/2P , which is 1/2 for P →∞. In the optimal
partitioning, however, sP/2 would be P

2 +1 and the bottleneck
Bopt would be found in the second half of the partitions.
Assuming the weights are such that all partitions of the second
half have equal load, Bopt would be (Σwi − wH P

2)/P2 . For
the optimal load balance for this case we can thus formulate:
Λopt = P+1+ε

P+2+2ε , which is 1 for P → ∞. This theoretical
example shows that HIER reaches a quality of q = 1/2 in the
worst case. However, the following results show that nearly
optimal balance is reached for two representative applications.

C. Experimental Evaluation of the Group Count’s Impact

To investigate the impact of the group count G on the char-
acteristics of the hierarchical algorithm we ran the benchmark
described in Sec. IV with 16 384 processes on JUQUEEN.
Fig. 6 shows the results averaged over the 100 iterations
of the CLOUD dataset with a replication factor of 13 × 7.
The runtimes are shown as averages over all MPI processes
classified into the phases of the partitioning methods. Com-
paring H2par and QBS, we see that the serial exact method
consumes a large amount of runtime collecting the task weights
and even more distributing the partition vector to all ranks.
The latter results from the waiting time of 16 383 processes
while rank 0 computes the partitioning, which takes 44 ms on
average. The two hierarchical methods show exactly the same
behavior for load balance and migration and a very similar total
runtime. In HIER, most time is consumed waiting for the group
master to compute the partitioning before the partition vector
can be distributed to all processes. The predicted influence
of the group count is clearly visible; up to G = 512 the

runtime is decreasing, even below the runtime of the heuristic.
However, with 1024 groups the runtime is increasing because
the MPI Bcast operation to distribute the partition vector to
all group members consumes substantially more time. Even
with a small number of 8 groups, migration and runtime are
clearly reduced in comparison to QBS, while nearly reaching
optimal load balance. The comparison of runtimes for HIER
and HIER* shows no clear winner, though HIER* is faster for
6 out of 8 group counts.

Fig. 7 shows the results for the LWFA dataset, averaged
over the 2000 time steps. This dataset achieves a lower optimal
load balance than the CLOUD dataset, due to the very large
maximum relative task weights. As a result of the higher
number of tasks, all partitioning algorithms have a larger
runtime compared to the CLOUD dataset. However, the group
count G shows a very similar influence on performance and
quality. With LWFA, HIER runs faster than HIER* for all
group counts. This can be explained by the higher number
of tasks and a noticeable contiguous region within wi with
very low values, which both increases the maximum number
of tasks within a single group and, thus, increases the costs
of communicating the task weights to all group members.
Additionally, the high imbalance of tasks per group leads to
waiting time when distributing the partition vector to all ranks.

In summary, these results show that changing the number of
groups enables to adjust the hierarchical methods to the needs
of the application: For highly dynamic applications requiring
frequent load balancing one will prefer a larger group count,
such that the costs of partitioning and migration are minimal.
On the contrary, a smaller group count is beneficial for less
dynamic applications, as the higher costs for partitioning and
migration will be compensated by the improved load balance.

 1

 10

 100

 1000

 10000

 2048 4096 8192 16Ki 32Ki 64Ki 128Ki 256Ki
Number of Processes

(a) Average Runtime on JUQUEEN (ms)

ExactB
S

QBS, q=1.0

H2seq

H2par

HIER*, G=64

HIER*, P/G=256
 1

 10

 100

 1000

 10000

 2048 4096 8192 16Ki 32Ki 64Ki 128Ki 256Ki
Number of Processes

(b) Average Runtime on SuperMUC (ms)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2048 4096 8192 16Ki 32Ki 64Ki 128Ki 256Ki
Number of Processes

(c) Average Load Balance

0

25%

50%

75%

100%

 2048 4096 8192 16Ki 32Ki 64Ki 128Ki 256Ki
Number of Processes

(d) Migrated Tasks

ExactBS
QBS, q = 1.0
H2seq
H2par
HIER*, G = 64
HIER*, P/G = 256

Fig. 8. 1D partitioning benchmark results showing the scalability of the sequential exact algorithms ExactBS and QBS, the heuristic H2 (sequential and
parallelized), as well as the proposed hierarchical method HIER* with fixed number of groups G=64 and fixed group size P/G=256. The CLOUD dataset with
1 357 824 tasks has been used for this benchmark.

D. Experimental Evaluation of Scalability

We used the CLOUD dataset with a replication factor of
13 × 17 (1 357 824 tasks) to compare the scalability of the
partitioning methods on JUQUEEN and SuperMUC. Based on
the findings from Fig. 6, we selected HIER* as hierarchical
method with two different options for the group count: A fixed
group count of G = 64, which should result in very high load
balance, and a fixed group size of P/G = 256, which should
be more scalable at the cost of balance at high process counts.
Note, that both versions are identical at 16 384 ranks. Fig. 8
compares the relevant metrics for both configurations of HIER*
with the sequential exact algorithms ExactBS and QBS as well
as the heuristic H2 (parallel and sequential).

Scalability on JUQUEEN: The runtime on JUQUEEN,
presented in Fig. 8 (a), shows a considerable gap between
parallel and sequential methods at large scale. The exact
algorithm ExactBS requires 2.67 s wall clock time on average
to decompose 1.36 million tasks into 262 144 partitions. QBS
scales little better and achieves 0.69 s. The high-quality hierar-
chical method HIER* with G = 64 achieves almost the same
balance with an average quality factor q = 0.992 but requires
8.55 ms only, which is more than 300 times faster compared
to ExactBS. HIER* with fixed group size P/G = 256 is even
faster with 3.77 ms, but achieves lower quality q = 0.953.
The scalability clearly shows the advantage of the hierarchical
methods. HIER* with P/G = 256 is even able to provide
superlinear speed-up from 2048 to 32 768 processes. However,
the execution time does not decrease further, which is mainly
due to the final distribution of the partition vector. Similarly,
the performance of H2 suffers from the poor scalability of the
global MPI Allgather to distribute the final partition.

Scalability on SuperMUC: The scalability behavior, shown
in Fig. 8 (b), is similar to JUQUEEN, except that the hierar-
chical methods show less scalability. HIER* with fixed group
count achieves approximately the same runtime as H2par
and runs 85 times faster than ExactBS on 65 536 processes.
The runtime difference between the three serial methods is
much less on SuperMUC compared to JUQUEEN. This is
caused by the faster computation speed of the processor, which
reduces the influence of the serial method on the overall speed.
We also observed that global MPI collectives scale better on
JUQUEEN, except for MPI Allgather in H2par.

Load balance: Fig. 8 (c) compares the load balance of
the methods. The exact algorithms ExactBS and QBS always
achieve the optimal balance, while HIER* with fixed group
count G = 64 is close behind. As expected, we observe that a
fixed group size for HIER* leads to less balance at large scale,
which is yet clearly higher than the balance achieved by the
heuristics.

Task migration: Fig. 8 (d) shows the percentage of mi-
grated tasks. We can see a large difference between heuristics
and exact methods. At 262 144 processes, on average 98.6 %
of the tasks are migrated every iteration using exact methods,
while heuristics migrate 58.0 % only. The hierarchical methods
lie in between the heuristics and the exact methods.

VII. CONCLUSIONS

Large-scale simulations with strong workload variations in
both space and time require scalable and accurate dynamic
load balancing techniques. Such applications will benefit from
our improved 1D partitioning algorithms presented in this

paper. After determining that no parallel exact 1D partitioning
algorithms exist, we first investigated runtime optimizations
for a published exact algorithm. Second, we introduced a
new parallel method that makes high-quality dynamic load
balancing feasible at large scale. Our method applies a scalable
heuristic to parallelize an exact algorithm and avoid the high
communication costs of a centralized method. The hierarchi-
cal approach enables to adjust the partitioning algorithm to
the dynamical behavior of the application. Our experimental
evaluation on 262 144 processes shows that the hierarchical
algorithm runs more than 300 times faster compared to the
fastest published exact algorithm, while the load balance is
almost optimal. Comparing the benchmark results presented
in this paper with results based on different artificial datasets
of the same total size, we discovered that the task weights have
only minor influence on the execution time of the algorithms,
due to a dominant amount of communication. On the other
hand, load balance and migration costs strongly depend on
the characteristics of the task weights. Regarding these two
load balancing metrics, the hierarchical algorithm turned out
to offer a very good compromise between heuristics and
exact methods. Our methods are implemented in the dynamic
load balancing and model coupling framework FD4, which is
available as open source [21]. The framework has been used to
enable scalable load balancing up to 262 144 processes in the
coupled cloud simulation model COSMO-SPECS+FD4 [22].

In this practical study we introduced our new hierarchical
1D partitioning methods and compared them to existing algo-
rithms using two datasets. A thorough comparison using more
datasets from various applications and bounds on the runtime
performance would be beneficial to understand the applicabil-
ity of the algorithms for certain applications. However, this
was out of the scope of this paper and remains future work.
While our hierarchical approach considerably reduces the total
migration volume, it is not yet clear how 1D partitioning
algorithms could explicitly reduce these costs for applications
where migration is expensive. Furthermore, our hierarchical
method could be extended by automatic runtime tuning for the
optimal group count. It should be checked regularly whether
the execution time of the application benefits from modifying
the group count. To improve the scalability of dynamic load
balancing, it will be necessary to avoid the replication of the
full partition vector on all processes. As we have seen in our
measurements, this is the largest scalability bottleneck of the
presented methods. Typically, applications based on domain
decomposition require knowledge of the neighbor partitions
only. In these cases, it is sufficient to update the partition vector
of a process only for the tasks adjacent to the local partition
in the multidimensional domain.

ACKNOWLEDGMENT

We thank the Jülich Supercomputing Centre, Germany,
for access to JUQUEEN, the Leibniz Supercomputing Centre,
Germany, for access to SuperMUC, and the German Meteoro-
logical Service for providing the COSMO model. Furthermore,
we want to thank Verena Grützun, Ralf Wolke, and Oswald
Knoth for their support regarding the COSMO-SPECS model,
René Widera for providing the LWFA dataset, and Daniel
Hackenberg for his suggestions. This work was supported by
the German Research Foundation grant No. NA 711/2-1 and
by the ‘Center for Advancing Electronics Dresden’ (cfaed).

REFERENCES

[1] J. Dongarra et al., “The International Exascale Software Project
Roadmap,” Int. J. High Perform. C., vol. 25, no. 1, pp. 3–60, 2011.

[2] A. Geist and R. Lucas, “Major Computer Science Challenges At
Exascale,” Int. J. High Perform. C., vol. 23, no. 4, pp. 427–436, 2009.

[3] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton,
and L. Wilcox, “Extreme-Scale AMR,” in Proc. SC ’10, 2010.

[4] D. F. Harlacher, H. Klimach, S. Roller, C. Siebert, and F. Wolf,
“Dynamic Load Balancing for Unstructured Meshes on Space-Filling
Curves,” in Proc. IPDPSW 2012, 2012, pp. 1661–1669.

[5] R. Wolke, O. Knoth, O. Hellmuth, W. Schröder, and E. Renner,
“The Parallel Model System LM-MUSCAT for Chemistry-Transport
Simulations: Coupling Scheme, Parallelization and Applications,” in
Proc. ParCo 2003, ser. Adv. Par. Com., vol. 13, 2004, pp. 363–369.

[6] M. Lieber, V. Grützun, R. Wolke, M. S. Müller, and W. E. Nagel,
“Highly Scalable Dynamic Load Balancing in the Atmospheric Mod-
eling System COSMO-SPECS+FD4,” in Proc. PARA 2010, ser. LNCS,
vol. 7133, 2012, pp. 131–141.

[7] M. Xue, K. K. Droegemeier, and D. Weber, “Numerical Prediction
of High-Impact Local Weather: A Driver for Petascale Computing,”
in Petascale Computing: Algorithms and Applications. Chapman &
Hall/CRC, 2008, pp. 103–124.

[8] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, and P. Gibbon,
“A massively parallel, multi-disciplinary Barnes-Hut tree code for
extreme-scale N-body simulations,” Comput. Phys. Commun., vol. 183,
no. 4, pp. 880–889, 2012.

[9] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juck-
eland, T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm,
J. Schuchart, and R. Widera, “Radiative Signatures of the Relativistic
Kelvin-Helmholtz Instability,” in Proc. SC ’13, 2013.

[10] J. D. Teresco, K. D. Devine, and J. E. Flaherty, “Partitioning and Dy-
namic Load Balancing for the Numerical Solution of Partial Differential
Equations,” in Numerical Solution of Partial Differential Equations on
Parallel Computers, ser. LNCSE. Springer, 2006, vol. 51, pp. 55–88.

[11] J. R. Pilkington and S. B. Baden, “Dynamic partitioning of non-uniform
structured workloads with spacefilling curves,” IEEE T. Parall. Distr.,
vol. 7, no. 3, pp. 288–300, 1996.

[12] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms for
1D partitioning,” J. Parallel Distr. Com., vol. 64, no. 8, pp. 974–996,
2004.

[13] S. Miguet and J.-M. Pierson, “Heuristics for 1D rectilinear partitioning
as a low cost and high quality answer to dynamic load balancing,” in
Proc. High-Performance Computing and Networking, ser. LNCS, vol.
1225, 1997, pp. 550–564.

[14] J. T. Oden, A. Patra, and Y. G. Feng, “Domain Decomposition for
Adaptive hp Finite Element Methods,” in Contemp. Math., vol. 180,
1994.

[15] Y. Han, B. Narahari, and H.-A. Choi, “Mapping a chain task to chained
processors,” Inform. Process. Lett., vol. 44, no. 3, pp. 141–148, 1992.

[16] G. Zheng, A. Bhatelé, E. Meneses, and L. V. Kalé, “Periodic hierarchi-
cal load balancing for large supercomputers,” Int. J. High Perform. C.,
vol. 25, no. 4, pp. 371–385, 2011.

[17] V. Grützun, O. Knoth, and M. Simmel, “Simulation of the influence of
aerosol particle characteristics on clouds and precipitation with LM–
SPECS: Model description and first results,” Atmos. Res., vol. 90, no.
2-4, pp. 233–242, 2008.

[18] PIConGPU website. [Online]. Available: http://picongpu.hzdr.de
[19] A. D. Debus et al., “Electron Bunch Length Measurements from Laser-

Accelerated Electrons Using Single-Shot THz Time-Domain Interfer-
ometry,” Phys. Rev. Lett., vol. 104, p. 084802, 2010.

[20] M. Lieber, “Dynamische Lastbalancierung und Modellkopplung zur
hochskalierbaren Simulation von Wolkenprozessen,” Dissertation, Tech-
nische Universität Dresden, 2012, http://nbn-resolving.de/urn:nbn:de:
bsz:14-qucosa-95674.

[21] FD4 website. [Online]. Available: http://wwwpub.zih.tu-dresden.de/
∼mlieber/fd4

[22] M. Lieber, W. E. Nagel, and H. Mix, “Scalability Tuning of the Load
Balancing and Coupling Framework FD4,” in NIC Symposium 2014,
ser. NIC Series, vol. 47, 2014, pp. 363–370.

http://picongpu.hzdr.de
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-95674
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-95674
http://wwwpub.zih.tu-dresden.de/~mlieber/fd4
http://wwwpub.zih.tu-dresden.de/~mlieber/fd4

	Introduction
	The 1D Partitioning Problem
	Related Work
	Evaluation Benchmark
	Real-life Datasets CLOUD and LWFA
	Benchmark Systems

	Improving the Exact Bisection Algorithm
	Probe Algorithm
	Quality-Assuring Bisection Algorithm QBS
	Parallel Bisection Algorithm QBS*
	Experimental Evaluation of QBS and QBS*

	Improving Scalability with a Hierarchical Algorithm
	Design of the Hierarchical Algorithms HIER and HIER*
	Prefix sum of weights and broadcast of total load
	Construction of the coarse partitioning
	Collection of task weights within the groups
	Exact partitioning within the groups
	Distribution of the partition vector

	Quality Bounds of the Hierarchical Algorithm
	Experimental Evaluation of the Group Count's Impact
	Experimental Evaluation of Scalability

	Conclusions
	References

