
Matthias Lieber (matthias.lieber@tu-dresden.de)

Wolfgang E. Nagel

Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden, Germany

Scalable High-Quality 1D Partitioning

2014 International Conference on High Performance Computing & Simulation
(HPCS 2014)

21 – 25 July 2014, Bologna, Italy

Center for Information Services and High Performance Computing (ZIH)

mailto:matthias.lieber@tu-dresden.de

Load balance is a major challenge for scalable HPC applications,
especially if the workload changes dynamically.

6

0

1

W
or

kl
oa

d
re

la
tiv

e
to

 a
vg Laser wakefield acceleration simulation (LWFA)

with particle-in-cell code PIConGPU

Cloud simulation
with COSMO-SPECSSources of workload variations:

●- Adaptive spacial grids (e.g. AMR)
●- Adaptive time stepping techniques
●- Complex models for physical phenomena
●

Common solution: dynamic load balancing
●- Requires (frequent) repartitioning of domain
●

max: 91.7

max: 6.6

 3

Four objectives of repartitioning algorithm

– Balance workload

– Reduce communication between partitions
(due to data dependencies)

– Reduce migration, i.e. communication when
changing the partitioning

– Compute partitioning as fast as possible

Contradictory goals

Existing methods (heuristics) provide different
trade-offs between the four objectives

– Bisection methods, space-filling curves,
graph methods, diffusion methods, ...

Repartitioning

Teresco, Devine,
Flaherty, Partitioning
and Dynamic Load
Balancing for the
Numerical Solution of
Partial Differential
Equations, LNCSE, vol.
51, pp. 55-88, 2006.

 4

Hilbert SFC

Pilkington, Baden,
Dynamic partitioning of
non-uniform structured
workloads with spacefil-
ling curves, IEEE T.
Parall. Distr., vol. 7, no.
3, pp. 288-300, 1996.

Pinar, Aykanat, Fast
optimal load balancing
algorithms for 1D
partitioning, J. Parallel
Distr. Com., vol. 64, no.
8, pp. 974-996, 2004.

Space-filling curve (SFC) partitioning widely used

– nD space is mapped to 1D by SFC

– Mapping is fast and has high locality

– Migration typically between neighbor ranks

1D partitioning is core problem of SFC partitioning

– Decomposes task chain into consecutive parts

Two classes of existing 1D partitioning algorithms:

– Heuristics: fast, parallel, no optimal solution

– Exact methods: slow, serial, but optimal

Dynamic applications need fast, parallel, and
high-quality methods to master Exascale!

From SFC Partitioning to 1D Partitioning

 5

1D Partitioning Problem Definition

State of the Art 1D Partitioning

Improving an Exact Method

Scalable High-Quality 1D Partitioning

Conclusion

Overview

 6

Decompose a vector wi of N positive task weights into P
consecutive partitions while minimizing the maximum load
(i.e. bottleneck B) among the partitions.

Example for N=16 tasks and P=4 partitions:

Task weight vector wi (i=1,2, … ,N):

Optimal solution:

Load Lp of the partitions:

– Maximum load / Bottleneck B = max(Lp) = 6

– Load balance Λopt = (∑wi / P) / Bopt = 0.92 (Λ = 1 would be perfect)

1D Partitioning Problem Definition

1 1 1 1 1 1 1 1 1 1 1 1 1 15 3

1 1 1 1 1 1 1 1 1 1 1 1 1 15 3

3
5

1

1

1

1
1 1

1
11

1
1

1

1
1

L0 = 6 L1 = 6 L2=6 L3=4

 7

Recursive bisection commonly used

Heuristic H2 by Miguet and Pierson better to parallelize

Example for H2 with N=16, P=4, task weights wi:

(1) Prefix sum Wj = ∑j
i=1 wi

(2) First task of partition p: min s with Ws > p (WN / P)

(3) Increment s if Ws is closer to p (WN / P) than W(s-1)

– Bottleneck B = max(Lp) = 7

– Load balance Λ = (WN / P) / B = 5.5 / 7 = 0.79

State of the Art 1D Partitioning: Heuristics

Recursive Bisection
Heuristic:
Oden, Patra, Feng,
Domain Decomposition
for Adaptive hp Finite
Element Methods,
Contemp. Math.,
vol. 180, 1994.

Method described here:
Miguet, Pierson,
Heuristics for 1D
rectilinear partitioning as
a low cost and high
quality answer to
dynamic load balancing,
LNCS, vol. 1225, 1997,
pp. 550-564.

L0 = 5 L1 = 6 L2 = 7 L3 = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 1918 22

1 1 1 1 1 1 1 1 1 1 1 1 1 15 3

L0 = 5 L1 = 6 L2 = 2 L3 = 9

 8

Various exact methods have been proposed

Fastest method by Pinar and Aykanat: ExactBS

Based on binary search for the optimal bottleneck Bopt

Search Interval: WN / P ≤ Bopt ≤ BHeuristic

Requires probing whether a partition exists for given B

– Binary search on Wj for each P: O(P log N)

– Han et al.: O(P log (N/P))

– Pinar and Aykanat: O(P log P + P log(wmax/wavg))

Problems

– Slower than heuristics

– More fatal: serial only, one process needs to
collect task weights from all other processes

State of the Art 1D Partitioning: Exact Methods

Extensive Overview:
Pinar, Aykanat, Fast
optimal load balancing
algorithms for 1D
partitioning, J. Parallel
Distr. Com., vol. 64, no.
8, pp. 974-996, 2004.

Han, Narahari, Choi,
Mapping a chain task to
chained processors,
Inform. Process. Lett.,
vol. 44, no. 3,
pp. 141-148, 1992.

 9

(1) New probe algorithm, tuned for small N / P

– Guess that consecutive partitions have same number of tasks, if
not, do linear (!) search on Wj starting from guessed position

(2) QBS: Quality-Assuring Bisection Algorithm

– Stop binary search at given quality q

– Guarantees load balance Λ = q Λopt

– Reduces number of search steps

– Exact method for q = 1

(3) QBS*: Parallelization of binary search

– Search interval for Bopt is split between processes

– Reduces number of search steps

– Downside: all processes need task weights of all processes

Improving an Exact Method: ExactBS QBS QBS*→ →

559 104 tasks, 16 384 partitions

 10

Comparison to existing methods H2 and ExactBS

Averages over 100 successive task weight vectors
from the cloud simulation

System: JUQUEEN, IBM Blue Gene/Q

559 104 tasks, 16 384 partitions / MPI ranks

Improving an Exact Method: Comparison Benchmark

Runtime includes only partitioning calculation, i.e. no
collection of task weights and no prefix sum

CLOUD
Simulation

 11

↯QBS*↯QBS*

P4P2P0

P0 / P1

P0 P2 P4 P6

P6

P4 / P5

↯QBS*

Large scale applications require a fully parallel
method, i.e. without gathering all task weights

Run parallel H2 to create G < P coarse partitions:

Run G independent instances of exact QBS* (q=1.0) to
create final partitions within each group:

Parameter G allows trade-off between
scalability (high G heuristic dominates) and→
load balance (small G exact method dominates)→

Scalable High-Quality 1D Partitioning: Algorithm HIER*

H2 nearly optimal if
wmax << WN / P:
Miguet, Pierson,
Heuristics for 1D
rectilinear partitioning as
a low cost and high
quality answer to
dynamic load balancing,
LNCS, vol. 1225, 1997,
pp. 550-564.

P1 P3 P5 P7

↯Parallel Heuristic H2

↯QBS*

P1 P3 P5 P7

P2 / P3 P6 / P7

Orig part.

Coarse part.

Final part.

 12

Comparison of HIER* with parallel heuristic H2 and QBS

Averages over 2000 successive task
weight vectors of the LWFA simulation

System: JUQUEEN, IBM Blue Gene/Q

1 048 576 tasks, 16 384 partitions / MPI ranks

Scalable High-Quality 1D Partitioning: Group Count G

LWFA Simulation (PIC)

 13

Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q

HIER*, G=64 achieves 99.2% of the optimal load balance
at 262 144 processes

Scalable High-Quality 1D Partitioning: Load Balance

CLOUD
Simulation

 14

Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q

HIER*, G=64 runs at 262 144 processes ~300x faster
than ExactBS

Scalable High-Quality 1D Partitioning: BG/Q Scalability

CLOUD
Simulation

ExactBS: 2668 ms

QBS: 692 ms

H2seq: 363 ms

H2par: 40.5 ms

HIER* : 3.77 msP/G=256

HIER* : 8.55 msG=64

 15

Cloud simulation, 1 357 824 tasks

System: SuperMUC, IBM iDataPlex (E5-2680, IB FDR10)

HIER*, G=64 runs at 65 536 processes ~85x faster
than ExactBS

Scalable High-Quality 1D Partitioning: iDataPlex Scalability

CLOUD
Simulation

ExactBS: 421 ms

QBS: 328 ms

H2seq: 307 ms

H2par: 4.73 ms

HIER* : 4.26 msP/G=256

HIER* : 4.96 msG=64

 16

Optimized published exact 1D partitioning algorithm

Developed scalable, hierarchical algorithm

Implemented in the open source dynamic load
balancing and model coupling framework FD4

– Benchmark program, and cloud dataset available to
reproduce results

– Enables dynamic load balancing up to 262 144
processes for COSMO-SPECS+FD4

Future work

– Comparison using other applications workload data

– 1D partitioning algorithms tuned for low migration

– Avoid replication of full partition vector on all ranks

Conclusions

FD4 website and
benchmark download:
http://wwwpub.zih.tu-
dresden.de/~mlieber/fd4

Lieber, Nagel, Mix,
Scalability Tuning of the
Load Balancing and
Coupling Framework
FD4, NIC Symposium
2014, pp. 363-370.

 17

Acknowledgments

Thank you very much for your attention!

Funding

Verena Grützun, Ralf Wolke,
Oswald Knoth, René Widera,

Daniel Hackenberg

www.tropos.de www.cosmo-model.org picongpu.hzdr.de

www.vampir.eu

 18

Backup Slides

 19

Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q

Hierarchical method lies between exact and heuristic

Scalable High-Quality 1D Partitioning: Migration

CLOUD
Simulation

 20

QBS and QBS* Performance (16 384 processes)

 21

Prefix sum of task weights + broadcast of total load

– MPI_Exscan (parallel prefix sum)

– MPI_Bsend + MPI_Recv (consistency at partition borders)

– MPI_Bcast (last rank broadcasts total load to all)

Compute coarse partitioning with parallel H2

– MPI_Isend + MPI_Recv + MPI_Waitall (send partition borders to group master)

– MPI_Bcast (group master broadcasts borders within group)

Collection of task weights within groups

– MPI_Isend + MPI_Irevc + MPI_Waitall (send weights from other groups ranks
to the nearest ranks in the group these tasks belong to in coarse partitioning)

– MPI_Allgather (exchange task weights within group)

Exact partitioning within group with QBS*, q=1

– MPI_Allreduce

Distribition of global partition vector

– MPI_Allgather (between all group masters)

– MPI_Bcast (within groups)

HIER* Algorithm as seen from MPI

 22

HIER and HIER* Performance (16 384 processes)

 23

HIER* seen in Vampir (one Group of 256 out of 64Ki)

 24

Heuristic H2 in Action (COSMO-SPECS+FD4)

 25

ExactBS in Action (COSMO-SPECS+FD4)

 26

HIER* in Action (COSMO-SPECS+FD4)

 27

COSMO-SPECS+FD4: Comparison of Methods

Lieber, Nagel, Mix,
Scalability Tuning of the
Load Balancing and
Coupling Framework
FD4, NIC Symposium
2014, pp. 363-370.

	Title slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

