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Load balance is a major challenge for scalable HPC applications,
especially if the workload changes dynamically.
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with particle-in-cell code PIConGPU 

Cloud simulation
with COSMO-SPECSSources of workload variations:

●- Adaptive spacial grids (e.g. AMR)
●- Adaptive time stepping techniques
●- Complex models for physical phenomena
●

Common solution: dynamic load balancing
●- Requires (frequent) repartitioning of domain
●

max: 91.7

max: 6.6
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Four objectives of repartitioning algorithm

– Balance workload

– Reduce communication between partitions 
(due to data dependencies)

– Reduce migration, i.e. communication when 
changing the partitioning

– Compute partitioning as fast as possible

Contradictory goals

Existing methods (heuristics) provide different 
trade-offs between the four objectives

– Bisection methods, space-filling curves,
graph methods, diffusion methods, ...

Repartitioning

Teresco, Devine, 
Flaherty, Partitioning 
and Dynamic Load 
Balancing for the 
Numerical Solution of 
Partial Differential 
Equations, LNCSE, vol. 
51, pp. 55-88, 2006.
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Hilbert SFC 

Pilkington, Baden, 
Dynamic partitioning of 
non-uniform structured 
workloads with spacefil-
ling curves, IEEE T. 
Parall. Distr., vol. 7, no. 
3, pp. 288-300, 1996.

Pinar, Aykanat, Fast
optimal load balancing 
algorithms for 1D
partitioning, J. Parallel 
Distr. Com., vol. 64, no. 
8, pp. 974-996, 2004.

Space-filling curve (SFC) partitioning widely used

– nD space is mapped to 1D by SFC

– Mapping is fast and has high locality

– Migration typically between neighbor ranks

1D partitioning is core problem of SFC partitioning

– Decomposes task chain into consecutive parts

Two classes of existing 1D partitioning algorithms:

– Heuristics: fast, parallel, no optimal solution

– Exact methods: slow, serial, but optimal

Dynamic applications need fast, parallel, and
high-quality methods to master Exascale!

From SFC Partitioning to 1D Partitioning
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1D Partitioning Problem Definition

State of the Art 1D Partitioning

Improving an Exact Method

Scalable High-Quality 1D Partitioning

Conclusion

Overview



 6

Decompose a vector wi of N positive task weights into P
consecutive partitions while minimizing the maximum load
(i.e. bottleneck B) among the partitions.

Example for N=16 tasks and P=4 partitions:

Task weight vector wi (i=1,2, … ,N):

Optimal solution:

Load Lp of the partitions:

– Maximum load / Bottleneck B = max(Lp) = 6

– Load balance Λopt = (∑wi / P) / Bopt = 0.92 (Λ = 1 would be perfect)

1D Partitioning Problem Definition
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Recursive bisection commonly used

Heuristic H2 by Miguet and Pierson better to parallelize

Example for H2 with N=16, P=4, task weights wi:

(1) Prefix sum Wj = ∑j
i=1 wi

(2) First task of partition p: min s with Ws > p (WN / P)

(3) Increment s if Ws is closer to p (WN / P) than W(s-1)

– Bottleneck B = max(Lp) = 7

– Load balance Λ = (WN / P) / B = 5.5 / 7 = 0.79

State of the Art 1D Partitioning: Heuristics

Recursive Bisection 
Heuristic:
Oden, Patra, Feng,
Domain Decomposition 
for Adaptive hp Finite 
Element Methods,
Contemp. Math.,
vol. 180, 1994.

Method described here:
Miguet, Pierson, 
Heuristics for 1D 
rectilinear partitioning as 
a low cost and high 
quality answer to 
dynamic load balancing, 
LNCS, vol. 1225, 1997,
pp. 550-564.

L0 = 5 L1 = 6 L2 = 7 L3 = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 1918 22

1 1 1 1 1 1 1 1 1 1 1 1 1 15 3

L0 = 5 L1 = 6 L2 = 2 L3 = 9
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Various exact methods have been proposed

Fastest method by Pinar and Aykanat: ExactBS

Based on binary search for the optimal bottleneck Bopt

Search Interval: WN / P ≤ Bopt ≤ BHeuristic

Requires probing whether a partition exists for given B

– Binary search on Wj for each P: O(P log N)

– Han et al.: O(P log (N/P))

– Pinar and Aykanat: O(P log P + P log(wmax/wavg))

Problems

– Slower than heuristics

– More fatal: serial only, one process needs to 
collect task weights from all other processes

State of the Art 1D Partitioning: Exact Methods

Extensive Overview:
Pinar, Aykanat, Fast
optimal load balancing 
algorithms for 1D
partitioning, J. Parallel 
Distr. Com., vol. 64, no. 
8, pp. 974-996, 2004.

Han, Narahari, Choi, 
Mapping a chain task to 
chained processors,
Inform. Process. Lett., 
vol. 44, no. 3,
pp. 141-148, 1992.
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(1) New probe algorithm, tuned for small N / P

– Guess that consecutive partitions have same number of tasks, if 
not, do linear (!) search on Wj starting from guessed position

(2) QBS: Quality-Assuring Bisection Algorithm

– Stop binary search at given quality q

– Guarantees load balance Λ = q Λopt

– Reduces number of search steps

– Exact method for q = 1

(3) QBS*: Parallelization of binary search

– Search interval for Bopt is split between processes

– Reduces number of search steps

– Downside: all processes need task weights of all processes

Improving an Exact Method: ExactBS  QBS  QBS*→ →

559 104 tasks, 16 384 partitions
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Comparison to existing methods H2 and ExactBS

Averages over 100 successive task weight vectors
from the cloud simulation

System: JUQUEEN, IBM Blue Gene/Q

559 104 tasks, 16 384 partitions / MPI ranks

Improving an Exact Method: Comparison Benchmark

Runtime includes only partitioning calculation, i.e. no 
collection of task weights and no prefix sum

CLOUD 
Simulation
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↯QBS*↯QBS*

P4P2P0

P0 / P1

P0 P2 P4 P6

P6

P4 / P5

↯QBS*

Large scale applications require a fully parallel 
method, i.e. without gathering all task weights

Run parallel H2 to create G < P coarse partitions:

Run G independent instances of exact QBS* (q=1.0) to 
create final partitions within each group:

Parameter G allows trade-off between
scalability (high G  heuristic dominates) and→
load balance (small G  exact method dominates)→

Scalable High-Quality 1D Partitioning: Algorithm HIER*

H2 nearly optimal if 
wmax << WN / P:
Miguet, Pierson, 
Heuristics for 1D 
rectilinear partitioning as 
a low cost and high 
quality answer to 
dynamic load balancing, 
LNCS, vol. 1225, 1997,
pp. 550-564.

P1 P3 P5 P7

↯Parallel Heuristic H2

↯QBS*

P1 P3 P5 P7

P2 / P3 P6 / P7

Orig part.

Coarse part.

Final part.
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Comparison of HIER* with parallel heuristic H2 and QBS

Averages over 2000 successive task
weight vectors of the LWFA simulation

System: JUQUEEN, IBM Blue Gene/Q

1 048 576 tasks, 16 384 partitions / MPI ranks

Scalable High-Quality 1D Partitioning: Group Count G

LWFA Simulation (PIC)
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Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q 

HIER*, G=64 achieves 99.2% of the optimal load balance
at 262 144 processes

Scalable High-Quality 1D Partitioning: Load Balance

CLOUD
Simulation
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Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q 

HIER*, G=64 runs at 262 144 processes ~300x faster
than ExactBS 

Scalable High-Quality 1D Partitioning: BG/Q Scalability

CLOUD
Simulation

ExactBS: 2668 ms

QBS: 692 ms

H2seq: 363 ms

H2par: 40.5 ms

HIER*            : 3.77 msP/G=256

HIER*       : 8.55 msG=64
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Cloud simulation, 1 357 824 tasks

System: SuperMUC, IBM iDataPlex (E5-2680, IB FDR10)

HIER*, G=64 runs at 65 536 processes ~85x faster
than ExactBS

Scalable High-Quality 1D Partitioning: iDataPlex Scalability

CLOUD
Simulation

ExactBS: 421 ms

QBS: 328 ms

H2seq: 307 ms

H2par: 4.73 ms

HIER*            : 4.26 msP/G=256

HIER*       : 4.96 msG=64
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Optimized published exact 1D partitioning algorithm

Developed scalable, hierarchical algorithm

Implemented in the open source dynamic load 
balancing and model coupling framework FD4

– Benchmark program, and cloud dataset available to 
reproduce results

– Enables dynamic load balancing up to 262 144 
processes for COSMO-SPECS+FD4

Future work

– Comparison using other applications workload data

– 1D partitioning algorithms tuned for low migration

– Avoid replication of full partition vector on all ranks

Conclusions

FD4 website and 
benchmark download:
http://wwwpub.zih.tu-
dresden.de/~mlieber/fd4

Lieber, Nagel, Mix, 
Scalability Tuning of the 
Load Balancing and 
Coupling Framework 
FD4, NIC Symposium 
2014, pp. 363-370.
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Cloud simulation, 1 357 824 tasks

System: JUQUEEN, IBM Blue Gene/Q 

Hierarchical method lies between exact and heuristic

Scalable High-Quality 1D Partitioning: Migration

CLOUD
Simulation
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QBS and QBS* Performance (16 384 processes)
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Prefix sum of task weights + broadcast of total load

– MPI_Exscan (parallel prefix sum)

– MPI_Bsend + MPI_Recv (consistency at partition borders)

– MPI_Bcast (last rank broadcasts total load to all)

Compute coarse partitioning with parallel H2

– MPI_Isend + MPI_Recv + MPI_Waitall (send partition borders to group master)

– MPI_Bcast (group master broadcasts borders within group)

Collection of task weights within groups

– MPI_Isend + MPI_Irevc + MPI_Waitall (send weights from other groups ranks 
to the nearest ranks in the group these tasks belong to in coarse partitioning)

– MPI_Allgather (exchange task weights within group)

Exact partitioning within group with QBS*, q=1

– MPI_Allreduce

Distribition of global partition vector

– MPI_Allgather (between all group masters)

– MPI_Bcast (within groups)

HIER* Algorithm as seen from MPI
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HIER and HIER* Performance (16 384 processes)
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HIER* seen in Vampir (one Group of 256 out of 64Ki)
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Heuristic H2 in Action (COSMO-SPECS+FD4)
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ExactBS in Action (COSMO-SPECS+FD4)
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HIER* in Action (COSMO-SPECS+FD4)
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COSMO-SPECS+FD4: Comparison of Methods

Lieber, Nagel, Mix, 
Scalability Tuning of the 
Load Balancing and 
Coupling Framework 
FD4, NIC Symposium 
2014, pp. 363-370.
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