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Large number of computers (nodes) 
tightly coupled with fast network

“Supercomputers”: fastest available 
HPC systems

Batch scheduling of compute jobs

– Applications request a fixed 
amount of nodes and time

Typical programming model

– Message Passing Interface (MPI)

– Combined with OpenMP, 
OpenCL, CUDA, … within a node

Current hot topics: energy efficiency, 
fault tolerance, heterogeneity,
programmability

Introduction: High Performance Computing

Tianhe-2, CN
16 000 nodes
384 000 cores

+ 48 000 Phi
54,9 PFLOPS

17,8 MW

Titan, USA
18 688 nodes
299 008 cores

+ 18 688 GPUs
27,1 PFLOPS

8,2 MW

Sequoia, USA
98 304 nodes

1 572 864 cores
20,1 PFLOPS

7,9 MW

K Computer, JP
88 128 nodes
705 024 cores
11,3 PFLOPS

12,6 MW

http://techdissected.com/news/chinas-tianhe-2-named-
worlds-fastest-supercomputer-for-third-successive-year/

http://www.top500.org/featured/systems/titan-oak-
ridge-national-laboratory/

http://www.top500.org/featured/systems/sequoia-
lawrence-livermore-national-laboratory/
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A few examples of HPC applications:

– Earth sciences: weather/climate prediction, 
earthquake simulations

– Structural mechanics: vehicle design, crash 
simulation, civil engineering

– Computational fluid dynamics: wind tunnel, 
turbine flow

– Molecular Dynamics: drug design, structural 
biology, material science

Many HPC applications are simulations based 
on partial differential equations

Discretized in space and time to allow the
approximate numerical solution

Introduction: High Performance Computing Applications

http://civsweb01.purduecal.edu/fipse/?page_id=247

Institute of Aerospace Engineering, TU Dresden

http://commons.wikimedia.org/wiki/File:
Global_Warming_Predictions_Map.jpg
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Introduction: Discretization and Parallelization

Grid represents distribution of unknowns in space

Stencil computations to advance from one time step to the next

– Data dependencies to neighbor cells only
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Introduction: Unstructured Grids

Rectangular grids are the most simple case

Triangular meshes or arbitrary grid structures are also used

Complex geometries are better represented

Behrens, Multilevel optimization by space-
filling curves in adaptive atmospheric 
modeling, Frontiers in Simulation, 2005

Institute of Aerospace Engineering,
TU Dresden
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Few processes 
have more 
work (purple)

Most processes 
are waiting 
(red)

Load Imbalance Visualized

64 Processes

Model runtime

The colors on the 
process bars depict 

different activities: MPI 
sync and comm is red
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Introduction: Sources of Imbalances

Adaptive grids / Adaptive mesh refinement (AMR)

– Adapt the spatial grid resolution dynamically to the simulation, 
e.g. shock waves, flame fronts, cracks, ...

Adaptive time stepping

– Same, but for time step size

Adaptive refinement of 
thermal plumes in the 
mantle convection 
simulation Rhea
Burstedde et al., ALPS: A framework for 
parallel adaptive PDE solution, J. Phys. 
Conf. Ser. 180, 2009
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Introduction: Sources of Imbalances

Model-inherent sources

– Computational effort per grid cell varies with the model variables

– Particle-in-Cell: number of particles per grid cell

– Cloud microphysics: presence of droplets, temperature

60

Laser wakefield acceleration simulation (LWFA)
with particle-in-cell code PIConGPU 

max: 91.7

Cloud simulation
COSMO-SPECS

max: 6.6

Workload relative to avg

1
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Four objectives of dynamic load balancing

Dynamic Load Balancing: Objectives
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Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between partitions 
(due to data dependencies)

– Reduce migration, i.e. communication when 
changing the partitioning

– Compute partitioning as fast as possible

Contradictory goals

Optimal solution for first two goals is NP-complete

Existing methods (heuristics) provide different 
trade-offs between the four objectives

Dynamic Load Balancing: Objectives

Teresco, Devine, 
Flaherty, Partitioning 
and Dynamic Load 
Balancing for the 
Numerical Solution of 
Partial Differential 
Equations, LNCSE, vol. 
51, pp. 55-88, 2006.
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Dynamic Load Balancing: Metrics

Workload / weight of a single grid cell

Needs to be estimated for the future time step(s)

– Typical: Measurement of current load (time, cy-
cles, ...) and assume load will change slightly only 
(principle of persistence)

– Derive suitable indicators from model-specific 
variables (i.e. number of particles in grid cell)

60

max: 91.7

Workload relative to avg

1

Watts, Taylor,
A Practical Approach to 
Dynamic Load 
Balancing, IEEE Trans.
Par. Distr. Sys., vol 9, 
pp. 235-248, 1998.

Muszala, Alaghband, 
Hack, Connors, Natural 
Load Indices (NLI) for 
scientific simulation,
J. Supercomp., vol 59,  
pp. 1-22, 2010.
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How to measure Load Balance?
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How to measure Load Balance?

Focus on one time step

– i.e. one instance of the imbalance

Load Balance = 

Perfect balance: 1.0

Worst case: 1/<number of procs>

Similar to utilization ratio of the processes

Different definitions in the literature, but 
mostly all based on avg. and max. workload

Avg. workload among procs

Max. workload among procs
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Decompose the grid in objects for assignment to processes and
migration between processes

– Object = Single grid cell or block of grid cells

– Workload / weight of a single object: wi

Dynamic Load Balancing: Typical Approach

Grid Objects Partitioning

w1 w2 w3

...

Grid cells...
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Object size determines granularity

– Too small objects: high overhead for management of objects and 
load balancing

– Too large objects: too coarse grained to reach good load balance

Estimation for required granularity when running on P processes

– max(wi) ≤ ∑wi / P

– To run efficiently on large number of processes: decrease max(wi) 
(i.e. object size) or increase ∑wi (i.e. problem size) sufficiently

Objects size may also influence cache efficiency of the computations

Dynamic Load Balancing: Typical Approach
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Dynamic Load Balancing: Typical Approach

FOR  timeStep = 1  TO  numberOfTimeSteps

Determine load balance for this time step
(based on indicators or estimation from last time step)

IF  loadBalance < tolerance  THEN

Determine workload of each object for this time step
(based on indicators or estimation from last time step)

Call partitioning method

Migrate objects

END IF

Exchange ghost cells with neighbors

Compute model equations

NEXT

1: Load balance

2: Communication

3: Migration

4: Partitioning
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Partitioning = Assignment of objects to processes

– Objectives of load balancing should be satisfied

Input:

– Number of processes P

– Weight of all objects wi (to optimize load balance)

– Information about neighborship of objects (to optimize
communication)

– Current partitioning (to optimize migration)

Output:

– Mapping of objects to processes

Partitioning
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Partitioning: Classification of Methods

Partitioning Methods

Geometric Methods Graph-based

Recursive 
Bisection

Space-Filling 
Curves

Global 
Graph-based

Local
Graph-based

Need spatial coordinates and
object weights

Consider object decomposition 
as a weighted graph

Teresco, Devine, Flaherty, Partitioning and Dynamic Load 
Balancing for the Numerical Solution of Partial Differential 
Equations, LNCSE, vol. 51, pp. 55-88, 2006.
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Partitioning: Recursive Bisection

Cut the grid in two equal weighted parts

Apply this algorithm recursively for each part until 
number of desired partitions is reached

– Processor count ≠ 2n: cut in more than 2 parts or 
cut in unequal parts

Very fast, but moderate scalability

Requires fine granularity to reach good balance

Moderate optimization of communication costs

Versions:

– Recursive Coordinate Bisection (RCB)

– Unbalanced Recursive Bisection (URB)

– Recursive Inertial Bisection (RIB)
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Partitioning: Space-Filling Curves (SFCs)

1D traversal of the grid

nD  1D mapping / ordering→

Data locality

– Points close on the curve are also 
close in the nD grid

Self-similarity

– Constructed recursively from a 
start template in O(log n)

Most prominent for load balancing: 

– Hilbert curve (higher locality)

– Morton curve (faster)
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Partitioning: Space-Filling Curves (SFCs)

Partitioning is reduced to 1D

1D partitioning is core problem of SFC partitioning

– Decompose object chain into consecutive parts

Two classes of existing 1D partitioning algorithms:

– Heuristics: fast, parallel, no optimal solution

– Exact methods: slow, serial, but optimal

SFC implicitly optimizes for low communication and 
migration

– SFC locality leads to moderate communication 
costs

– Migration typically between neighbor ranks
Pilkington, Baden, Dynamic partitioning of non-uniform structured work-
loads with spacefilling curves, IEEE T. Parall. Distr., vol. 7, no. 3, pp. 288-
300, 1996.

Pinar, Aykanat, Fast optimal load balancing algorithms for 1D partitioning, J. 
Parallel Distr. Com., vol. 64, no. 8, pp. 974-996, 2004.
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Partitioning: Space-Filling Curves for Mesh Refinement

Space-Filling Curves are well suited for structured adaptive mesh re-
finement (AMR) due to their self-similarity

Refine Refine PartitionStart template

Burstedde et al., ALPS: A framework for parallel adaptive PDE 
solution, J. Phys. Conf. Ser. 180, 2009
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Partitioning: Global Graph-based Methods

View the decomposition as a weighted graph

– Vertex weight: object's workload

– Edge weight: comm. costs between objects

Works for irregular grids

Very good optimization of communication costs

Very time consuming, hard to parallelize efficiently

High migration costs

Different heuristics / many publications

– Greedy graph partitioning (fast, but worse quality)

– Recursive spectral bisection (very slow)

– Multilevel graph partitioning (widely used)



 35

 

 

Partitioning: Multilevel Graph Partitioning

Schloegel, Karypis, Kumar, Parallel static and dynamic multi-constraint 
graph partitioning. Conc. Comp.: Pract. Exper., vol 14, pp. 219-240, 2002.
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Partitioning: More Advanced Global Graph-based Methods

Multilevel hypergraph partitioning

– Edges connect more than two nodes

– Accurate model of communication and 
migration costs leads to higher quality

– More expensive

Multilevel + coordinate mapping + geometric 
method (ScalaPart)

– Graph is mapped to a grid to get
coordinates of vertexes

– Fast geometric method + border
refinement

– Much better scalability

Catalyurek et al., A repartitioning 
hypergraph model for dynamic load 
balancing, J. Par. Distr. Comp., vol. 69, 
pp. 711-724, 2009.

Kirmani, Raghavan, Scalable parallel 
graph partitioning, SC 2013.
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Partitioning: Local Graph-based Methods

Only subsets (i.e. neighborships) of existing partitions
exchange objects

Requires an initial partitioning

Requires multiple iterations (with different subsets) to 
reach good balance

Sufficient for small workload changes or as refinement 
step for other methods

Typically very fast, but depends on number of iterations

Scalable by design: only local actions

Algorithms

– Diffusion algorithms

– Work-stealing algorithms
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Partitioning: Hierarchical Methods

Organize processes in hierarchy

– I.e. derived from network or application topology

Apply partitioning method independently in each level

Better scalability than centralized approaches

Less memory requirements than (serial) methods

Most promising methods for large scale

Teresco, Faik, Flaherty: 
Hierarchical Partitioning and 
Dynamic Load Balancing for 
Scientific Computation, 
LNCS vol. 3732,
pp. 911-920, 2006.

Zheng, Bhatele, Meneses, 
Kale, Periodic hierarchical 
load balancing for large 
supercomputers. Int. J. 
High Perf. Comp. App.,
vol. 25, pp. 371-385 2011.
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Partitioning: GrapevineLB Distributed Load Balancer

Does not fit in classification

– Does not use communication topology information 

Local migration decisions based on knowledge about 
some underloaded processes

– Information is spread with a randomized epidemic 
(gossip) algorithm, only a few rounds

– Every overloaded process knows about some ran-
domly chosen underloaded processes

Objects are transferred to random processes that are 
known to be underloaded

– They may reject the object if they already received 
enough load

Runtime comparable to diffusion, but much better load 
balance

Menon, Kale, A Distributed 
Dynamic Load Balancer for 
Iterative Applications,
SC 2013.
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Large number of processes and objects

Serial algorithms not sufficient

– Large memory and network usage when collection weights 
of 1M-1G objects at one process

– Even the simplest heuristic would be too slow

The challenge is to find algorithms that

– Leave weights distributed or communicate them only 
sparsely (e.g. within neighborship)

– Nevertheless achieve global balance (without a detailed 
global view)

Partitioning: Scalability Challenges
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Software Stack: Application Layer

Dynamic load balancing in HPC applications is usually hand-coded in 
the application

Huge coding effort when introducing load balancing to a big/real HPC 
application

3rd party libraries to compute partitioning

– ParMetis: multilevel graph, diffusion,
multiconstraint

– Jostle, PT-Scotch, DibaP: multilevel graph

– Zoltan: geometric, hypergraph, hierarchical, can use ParMetis and 
PT-Scotch
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Software Stack: Runtime / Framework Layer

MPI is static, no load balancing

MPI-based frameworks

– Frameworks for parallel PDEs: PETSc, FD4, ...

– Adaptive mesh refinement frameworks: ALPS, 
GrACE, Chombo, Racoon, ...

Load balancing of virtual MPI processes: Adaptive MPI

Alternative runtime systems: Charm++, PREMA

Huang et al., 
Performance Evaluation 
of Adaptive MPI,
PPoPP 2006

Acun et al., Parallel 
Programming with 
Migratable Objects: 
Charm++ in Practice,
SC 2014

Charm++ system view
https://charm.cs.illinois.edu/tutorial/CharmRuntimeSystem.htm
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Software Stack: Operating System Layer

Typical HPC system: OS reduced as much as possible

Single-System Image (SSI) OS's allow load balancing 
and transparent process migration in a cluster

– Used for load balancing between different applica-
tions, but not within an application

Systems

– Kerrighed, (open)Mosix, OpenSSI

Few installations with ~100 nodes

No experience with large state-of-the-art HPC systems

FFMK seeks to migrate (oversubscribed) MPI
processes for load balancing

Lottiaux et al., 
OpenMosix, OpenSSI 
and Kerrighed:
A Comparative Study, 
INRIA Research Report 
5399, 2004.
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Model Coupling

Cloud Microphysics Model

Block-based 3D Decomposition

Dynamic Load Balancing

Large (legacy) Codebase

2D Decomposition

COSMO-SPECS+FD4: Parallelization and Coupling Concept

COSMO Atmospheric Model

Static Partitioning
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COSMO-SPECS+FD4: Space-filling Curve vs. Graph Part.

Space-filling 
curve

Graph
partitioning 
(ParMetis)

SFC achieves better 
load balance

ParMetis reduces 
communication better

SFC migration is 
faster at large scale*

SFC computes much 
faster

* due to local communication pattern that leads 
to less network usage & contention
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COSMO-SPECS+FD4: SFC Partitioning with Heuristic
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COSMO-SPECS+FD4: SFC Partitioning with Exact Method
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↯QBS*↯QBS*

P4P2P0

P0 / P1

P0 P2 P4 P6

P6

P4 / P5

↯QBS*

Large scale applications require a fully parallel 
method, i.e. without gathering all task weights

Run parallel H2 to create G < P coarse partitions:

Run G independent instances of exact QBS* (q=1.0) to 
create final partitions within each group:

Parameter G allows trade-off between
scalability (high G  heuristic dominates) and→
load balance (small G  exact method dominates)→

Scalable High-Quality 1D Partitioning: Algorithm HIER*

H2 nearly optimal if 
wmax << WN / P:
Miguet, Pierson, 
Heuristics for 1D 
rectilinear partitioning as 
a low cost and high 
quality answer to 
dynamic load balancing, 
LNCS, vol. 1225, 1997,
pp. 550-564.

P1 P3 P5 P7

↯Parallel Heuristic H2

↯QBS*

P1 P3 P5 P7

P2 / P3 P6 / P7

Orig part.

Coarse part.

Final part.
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COSMO-SPECS+FD4: SFC Partitioning with Hier. Method
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ExactBS: exact method, but slow and serial

H2: fast heuristic, but may result in poor load balance

HIER*: hierarchical algorithm implemented in FD4,
achieves nearly optimal load balance

COSMO-SPECS+FD4: Comparison of Partitioning Time

ExactBS: 2668 ms

QBS: 692 ms

H2seq: 363 ms

H2par: 40.5 ms

HIER*            : 3.77 msP/G=256

HIER*       : 8.55 msG=64

Lieber, Nagel, Scalable 
High-Quality 1D Parti-
tioning, HPCS 2014,
pp. 112-119, 2014

Balancing 1 357 824 objects, IBM Blue Gene/Q
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ExactBS: exact method, but slow and serial

H2: fast heuristic, but may result in poor load balance

HIER*: hierarchical algorithm implemented in FD4,
achieves nearly optimal load balance

COSMO-SPECS+FD4: Comparison of Load Balance

Lieber, Nagel, Scalable 
High-Quality 1D Parti-
tioning, HPCS 2014,
pp. 112-119, 2014

HIER*, G=64 
achieves 99.2%
of optimal load
balance

Balancing 1 357 824 objects, IBM Blue Gene/Q
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Load balancing is important for many HPC applications

Will get more important in future

– Models get more complicated  load variations→

– Hardware gets more complicated  capacity variations→

Quest for high-quality and highly scalable dynamic load balancing 
methods

– We will see more hierarchical and fully distributed methods

Application developers need better support

– Use (domain-specific) frameworks?

– Replace (much too static) MPI by new runtime?

– Get help from OS?

Conclusion
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