
Matthias Lieber (matthias.lieber@tu-dresden.de)

Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden, Germany

Dynamic Load Balancing of High Performance
Computing Applications

Echtzeit-AG, 25 Nov 2014, TU Dresden

Center for Information Services and High Performance Computing (ZIH)

mailto:matthias.lieber@tu-dresden.de

 2

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 3

Large number of computers (nodes)
tightly coupled with fast network

“Supercomputers”: fastest available
HPC systems

Batch scheduling of compute jobs

– Applications request a fixed
amount of nodes and time

Typical programming model

– Message Passing Interface (MPI)

– Combined with OpenMP,
OpenCL, CUDA, … within a node

Current hot topics: energy efficiency,
fault tolerance, heterogeneity,
programmability

Introduction: High Performance Computing

Tianhe-2, CN
16 000 nodes
384 000 cores

+ 48 000 Phi
54,9 PFLOPS

17,8 MW

Titan, USA
18 688 nodes
299 008 cores

+ 18 688 GPUs
27,1 PFLOPS

8,2 MW

Sequoia, USA
98 304 nodes

1 572 864 cores
20,1 PFLOPS

7,9 MW

K Computer, JP
88 128 nodes
705 024 cores
11,3 PFLOPS

12,6 MW

http://techdissected.com/news/chinas-tianhe-2-named-
worlds-fastest-supercomputer-for-third-successive-year/

http://www.top500.org/featured/systems/titan-oak-
ridge-national-laboratory/

http://www.top500.org/featured/systems/sequoia-
lawrence-livermore-national-laboratory/

 4

A few examples of HPC applications:

– Earth sciences: weather/climate prediction,
earthquake simulations

– Structural mechanics: vehicle design, crash
simulation, civil engineering

– Computational fluid dynamics: wind tunnel,
turbine flow

– Molecular Dynamics: drug design, structural
biology, material science

Many HPC applications are simulations based
on partial differential equations

Discretized in space and time to allow the
approximate numerical solution

Introduction: High Performance Computing Applications

http://civsweb01.purduecal.edu/fipse/?page_id=247

Institute of Aerospace Engineering, TU Dresden

http://commons.wikimedia.org/wiki/File:
Global_Warming_Predictions_Map.jpg

 5

Introduction: Discretization and Parallelization

Grid represents distribution of unknowns in space

Stencil computations to advance from one time step to the next

– Data dependencies to neighbor cells only

 6

Introduction: Discretization and Parallelization

Grid represents distribution of unknowns in space

Stencil computations to advance from one time step to the next

– Data dependencies to neighbor cells only

Parallelization by spatial decomposition of the grid (partitioning)

– Load-balanced and minimal communication

 7

Introduction: Discretization and Parallelization

Grid represents distribution of unknowns in space

Stencil computations to advance from one time step to the next

– Data dependencies to neighbor cells only

Parallelization by spatial decomposition of the grid (partitioning)

– Load-balanced and minimal communication

 8

Introduction: Unstructured Grids

Rectangular grids are the most simple case

Triangular meshes or arbitrary grid structures are also used

Complex geometries are better represented

Behrens, Multilevel optimization by space-
filling curves in adaptive atmospheric
modeling, Frontiers in Simulation, 2005

Institute of Aerospace Engineering,
TU Dresden

 9

Few processes
have more
work (purple)

Most processes
are waiting
(red)

Load Imbalance Visualized

64 Processes

Model runtime

The colors on the
process bars depict

different activities: MPI
sync and comm is red

 10

Introduction: Sources of Imbalances

Adaptive grids / Adaptive mesh refinement (AMR)

– Adapt the spatial grid resolution dynamically to the simulation,
e.g. shock waves, flame fronts, cracks, ...

Adaptive time stepping

– Same, but for time step size

Adaptive refinement of
thermal plumes in the
mantle convection
simulation Rhea
Burstedde et al., ALPS: A framework for
parallel adaptive PDE solution, J. Phys.
Conf. Ser. 180, 2009

 11

Introduction: Sources of Imbalances

Model-inherent sources

– Computational effort per grid cell varies with the model variables

– Particle-in-Cell: number of particles per grid cell

– Cloud microphysics: presence of droplets, temperature

60

Laser wakefield acceleration simulation (LWFA)
with particle-in-cell code PIConGPU

max: 91.7

Cloud simulation
COSMO-SPECS

max: 6.6

Workload relative to avg

1

 12

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 13

Four objectives of dynamic load balancing

Dynamic Load Balancing: Objectives

 14

Four objectives of dynamic load balancing

– Balance workload

Dynamic Load Balancing: Objectives

 15

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between partitions
(due to data dependencies)

Dynamic Load Balancing: Objectives

 16

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between partitions
(due to data dependencies)

– Reduce migration, i.e. communication when
changing the partitioning

Dynamic Load Balancing: Objectives

 17

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between partitions
(due to data dependencies)

– Reduce migration, i.e. communication when
changing the partitioning

– Compute partitioning as fast as possible

Dynamic Load Balancing: Objectives

 18

Four objectives of dynamic load balancing

– Balance workload

– Reduce communication between partitions
(due to data dependencies)

– Reduce migration, i.e. communication when
changing the partitioning

– Compute partitioning as fast as possible

Contradictory goals

Optimal solution for first two goals is NP-complete

Existing methods (heuristics) provide different
trade-offs between the four objectives

Dynamic Load Balancing: Objectives

Teresco, Devine,
Flaherty, Partitioning
and Dynamic Load
Balancing for the
Numerical Solution of
Partial Differential
Equations, LNCSE, vol.
51, pp. 55-88, 2006.

 19

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 20

Dynamic Load Balancing: Metrics

Workload / weight of a single grid cell

Needs to be estimated for the future time step(s)

– Typical: Measurement of current load (time, cy-
cles, ...) and assume load will change slightly only
(principle of persistence)

– Derive suitable indicators from model-specific
variables (i.e. number of particles in grid cell)

60

max: 91.7

Workload relative to avg

1

Watts, Taylor,
A Practical Approach to
Dynamic Load
Balancing, IEEE Trans.
Par. Distr. Sys., vol 9,
pp. 235-248, 1998.

Muszala, Alaghband,
Hack, Connors, Natural
Load Indices (NLI) for
scientific simulation,
J. Supercomp., vol 59,
pp. 1-22, 2010.

 21

How to measure Load Balance?

 22

How to measure Load Balance?

Focus on one time step

– i.e. one instance of the imbalance

Load Balance =

Perfect balance: 1.0

Worst case: 1/<number of procs>

Similar to utilization ratio of the processes

Different definitions in the literature, but
mostly all based on avg. and max. workload

Avg. workload among procs

Max. workload among procs

 23

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 24

Decompose the grid in objects for assignment to processes and
migration between processes

– Object = Single grid cell or block of grid cells

– Workload / weight of a single object: wi

Dynamic Load Balancing: Typical Approach

Grid Objects Partitioning

w1 w2 w3

...

Grid cells...

 25

Object size determines granularity

– Too small objects: high overhead for management of objects and
load balancing

– Too large objects: too coarse grained to reach good load balance

Estimation for required granularity when running on P processes

– max(wi) ≤ ∑wi / P

– To run efficiently on large number of processes: decrease max(wi)
(i.e. object size) or increase ∑wi (i.e. problem size) sufficiently

Objects size may also influence cache efficiency of the computations

Dynamic Load Balancing: Typical Approach

 26

Dynamic Load Balancing: Typical Approach

FOR timeStep = 1 TO numberOfTimeSteps

Determine load balance for this time step
(based on indicators or estimation from last time step)

IF loadBalance < tolerance THEN

Determine workload of each object for this time step
(based on indicators or estimation from last time step)

Call partitioning method

Migrate objects

END IF

Exchange ghost cells with neighbors

Compute model equations

NEXT

1: Load balance

2: Communication

3: Migration

4: Partitioning

 27

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 28

Partitioning = Assignment of objects to processes

– Objectives of load balancing should be satisfied

Input:

– Number of processes P

– Weight of all objects wi (to optimize load balance)

– Information about neighborship of objects (to optimize
communication)

– Current partitioning (to optimize migration)

Output:

– Mapping of objects to processes

Partitioning

 29

Partitioning: Classification of Methods

Partitioning Methods

Geometric Methods Graph-based

Recursive
Bisection

Space-Filling
Curves

Global
Graph-based

Local
Graph-based

Need spatial coordinates and
object weights

Consider object decomposition
as a weighted graph

Teresco, Devine, Flaherty, Partitioning and Dynamic Load
Balancing for the Numerical Solution of Partial Differential
Equations, LNCSE, vol. 51, pp. 55-88, 2006.

 30

Partitioning: Recursive Bisection

Cut the grid in two equal weighted parts

Apply this algorithm recursively for each part until
number of desired partitions is reached

– Processor count ≠ 2n: cut in more than 2 parts or
cut in unequal parts

Very fast, but moderate scalability

Requires fine granularity to reach good balance

Moderate optimization of communication costs

Versions:

– Recursive Coordinate Bisection (RCB)

– Unbalanced Recursive Bisection (URB)

– Recursive Inertial Bisection (RIB)

 31

Partitioning: Space-Filling Curves (SFCs)

1D traversal of the grid

nD 1D mapping / ordering→

Data locality

– Points close on the curve are also
close in the nD grid

Self-similarity

– Constructed recursively from a
start template in O(log n)

Most prominent for load balancing:

– Hilbert curve (higher locality)

– Morton curve (faster)

 32

Partitioning: Space-Filling Curves (SFCs)

Partitioning is reduced to 1D

1D partitioning is core problem of SFC partitioning

– Decompose object chain into consecutive parts

Two classes of existing 1D partitioning algorithms:

– Heuristics: fast, parallel, no optimal solution

– Exact methods: slow, serial, but optimal

SFC implicitly optimizes for low communication and
migration

– SFC locality leads to moderate communication
costs

– Migration typically between neighbor ranks
Pilkington, Baden, Dynamic partitioning of non-uniform structured work-
loads with spacefilling curves, IEEE T. Parall. Distr., vol. 7, no. 3, pp. 288-
300, 1996.

Pinar, Aykanat, Fast optimal load balancing algorithms for 1D partitioning, J.
Parallel Distr. Com., vol. 64, no. 8, pp. 974-996, 2004.

 33

Partitioning: Space-Filling Curves for Mesh Refinement

Space-Filling Curves are well suited for structured adaptive mesh re-
finement (AMR) due to their self-similarity

Refine Refine PartitionStart template

Burstedde et al., ALPS: A framework for parallel adaptive PDE
solution, J. Phys. Conf. Ser. 180, 2009

 34

Partitioning: Global Graph-based Methods

View the decomposition as a weighted graph

– Vertex weight: object's workload

– Edge weight: comm. costs between objects

Works for irregular grids

Very good optimization of communication costs

Very time consuming, hard to parallelize efficiently

High migration costs

Different heuristics / many publications

– Greedy graph partitioning (fast, but worse quality)

– Recursive spectral bisection (very slow)

– Multilevel graph partitioning (widely used)

 35

Partitioning: Multilevel Graph Partitioning

Schloegel, Karypis, Kumar, Parallel static and dynamic multi-constraint
graph partitioning. Conc. Comp.: Pract. Exper., vol 14, pp. 219-240, 2002.

 36

Partitioning: More Advanced Global Graph-based Methods

Multilevel hypergraph partitioning

– Edges connect more than two nodes

– Accurate model of communication and
migration costs leads to higher quality

– More expensive

Multilevel + coordinate mapping + geometric
method (ScalaPart)

– Graph is mapped to a grid to get
coordinates of vertexes

– Fast geometric method + border
refinement

– Much better scalability

Catalyurek et al., A repartitioning
hypergraph model for dynamic load
balancing, J. Par. Distr. Comp., vol. 69,
pp. 711-724, 2009.

Kirmani, Raghavan, Scalable parallel
graph partitioning, SC 2013.

 37

Partitioning: Local Graph-based Methods

Only subsets (i.e. neighborships) of existing partitions
exchange objects

Requires an initial partitioning

Requires multiple iterations (with different subsets) to
reach good balance

Sufficient for small workload changes or as refinement
step for other methods

Typically very fast, but depends on number of iterations

Scalable by design: only local actions

Algorithms

– Diffusion algorithms

– Work-stealing algorithms

 38

Partitioning: Hierarchical Methods

Organize processes in hierarchy

– I.e. derived from network or application topology

Apply partitioning method independently in each level

Better scalability than centralized approaches

Less memory requirements than (serial) methods

Most promising methods for large scale

Teresco, Faik, Flaherty:
Hierarchical Partitioning and
Dynamic Load Balancing for
Scientific Computation,
LNCS vol. 3732,
pp. 911-920, 2006.

Zheng, Bhatele, Meneses,
Kale, Periodic hierarchical
load balancing for large
supercomputers. Int. J.
High Perf. Comp. App.,
vol. 25, pp. 371-385 2011.

 39

Partitioning: GrapevineLB Distributed Load Balancer

Does not fit in classification

– Does not use communication topology information

Local migration decisions based on knowledge about
some underloaded processes

– Information is spread with a randomized epidemic
(gossip) algorithm, only a few rounds

– Every overloaded process knows about some ran-
domly chosen underloaded processes

Objects are transferred to random processes that are
known to be underloaded

– They may reject the object if they already received
enough load

Runtime comparable to diffusion, but much better load
balance

Menon, Kale, A Distributed
Dynamic Load Balancer for
Iterative Applications,
SC 2013.

 40

Large number of processes and objects

Serial algorithms not sufficient

– Large memory and network usage when collection weights
of 1M-1G objects at one process

– Even the simplest heuristic would be too slow

The challenge is to find algorithms that

– Leave weights distributed or communicate them only
sparsely (e.g. within neighborship)

– Nevertheless achieve global balance (without a detailed
global view)

Partitioning: Scalability Challenges

 41

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 42

Software Stack: Application Layer

Dynamic load balancing in HPC applications is usually hand-coded in
the application

Huge coding effort when introducing load balancing to a big/real HPC
application

3rd party libraries to compute partitioning

– ParMetis: multilevel graph, diffusion,
multiconstraint

– Jostle, PT-Scotch, DibaP: multilevel graph

– Zoltan: geometric, hypergraph, hierarchical, can use ParMetis and
PT-Scotch

 43

Software Stack: Runtime / Framework Layer

MPI is static, no load balancing

MPI-based frameworks

– Frameworks for parallel PDEs: PETSc, FD4, ...

– Adaptive mesh refinement frameworks: ALPS,
GrACE, Chombo, Racoon, ...

Load balancing of virtual MPI processes: Adaptive MPI

Alternative runtime systems: Charm++, PREMA

Huang et al.,
Performance Evaluation
of Adaptive MPI,
PPoPP 2006

Acun et al., Parallel
Programming with
Migratable Objects:
Charm++ in Practice,
SC 2014

Charm++ system view
https://charm.cs.illinois.edu/tutorial/CharmRuntimeSystem.htm

 44

Software Stack: Operating System Layer

Typical HPC system: OS reduced as much as possible

Single-System Image (SSI) OS's allow load balancing
and transparent process migration in a cluster

– Used for load balancing between different applica-
tions, but not within an application

Systems

– Kerrighed, (open)Mosix, OpenSSI

Few installations with ~100 nodes

No experience with large state-of-the-art HPC systems

FFMK seeks to migrate (oversubscribed) MPI
processes for load balancing

Lottiaux et al.,
OpenMosix, OpenSSI
and Kerrighed:
A Comparative Study,
INRIA Research Report
5399, 2004.

 45

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 46

Model Coupling

Cloud Microphysics Model

Block-based 3D Decomposition

Dynamic Load Balancing

Large (legacy) Codebase

2D Decomposition

COSMO-SPECS+FD4: Parallelization and Coupling Concept

COSMO Atmospheric Model

Static Partitioning

 47

COSMO-SPECS+FD4: Space-filling Curve vs. Graph Part.

Space-filling
curve

Graph
partitioning
(ParMetis)

SFC achieves better
load balance

ParMetis reduces
communication better

SFC migration is
faster at large scale*

SFC computes much
faster

* due to local communication pattern that leads
to less network usage & contention

 48

COSMO-SPECS+FD4: SFC Partitioning with Heuristic

 49

COSMO-SPECS+FD4: SFC Partitioning with Exact Method

 50

↯QBS*↯QBS*

P4P2P0

P0 / P1

P0 P2 P4 P6

P6

P4 / P5

↯QBS*

Large scale applications require a fully parallel
method, i.e. without gathering all task weights

Run parallel H2 to create G < P coarse partitions:

Run G independent instances of exact QBS* (q=1.0) to
create final partitions within each group:

Parameter G allows trade-off between
scalability (high G heuristic dominates) and→
load balance (small G exact method dominates)→

Scalable High-Quality 1D Partitioning: Algorithm HIER*

H2 nearly optimal if
wmax << WN / P:
Miguet, Pierson,
Heuristics for 1D
rectilinear partitioning as
a low cost and high
quality answer to
dynamic load balancing,
LNCS, vol. 1225, 1997,
pp. 550-564.

P1 P3 P5 P7

↯Parallel Heuristic H2

↯QBS*

P1 P3 P5 P7

P2 / P3 P6 / P7

Orig part.

Coarse part.

Final part.

 51

COSMO-SPECS+FD4: SFC Partitioning with Hier. Method

 52

ExactBS: exact method, but slow and serial

H2: fast heuristic, but may result in poor load balance

HIER*: hierarchical algorithm implemented in FD4,
achieves nearly optimal load balance

COSMO-SPECS+FD4: Comparison of Partitioning Time

ExactBS: 2668 ms

QBS: 692 ms

H2seq: 363 ms

H2par: 40.5 ms

HIER* : 3.77 msP/G=256

HIER* : 8.55 msG=64

Lieber, Nagel, Scalable
High-Quality 1D Parti-
tioning, HPCS 2014,
pp. 112-119, 2014

Balancing 1 357 824 objects, IBM Blue Gene/Q

 53

ExactBS: exact method, but slow and serial

H2: fast heuristic, but may result in poor load balance

HIER*: hierarchical algorithm implemented in FD4,
achieves nearly optimal load balance

COSMO-SPECS+FD4: Comparison of Load Balance

Lieber, Nagel, Scalable
High-Quality 1D Parti-
tioning, HPCS 2014,
pp. 112-119, 2014

HIER*, G=64
achieves 99.2%
of optimal load
balance

Balancing 1 357 824 objects, IBM Blue Gene/Q

 54

Introduction

Dynamic Load Balancing

– Objectives

– Metrics: Workload, Load Balance

– Typical Approach

Partitioning Methods

Software Stack

Experiences with COSMO-SPECS+FD4

Conclusion

Outline

 55

Load balancing is important for many HPC applications

Will get more important in future

– Models get more complicated load variations→

– Hardware gets more complicated capacity variations→

Quest for high-quality and highly scalable dynamic load balancing
methods

– We will see more hierarchical and fully distributed methods

Application developers need better support

– Use (domain-specific) frameworks?

– Replace (much too static) MPI by new runtime?

– Get help from OS?

Conclusion

 56

Acknowledgments

Thank you very much for your attention!

Funding

Verena Grützun, Ralf Wolke,
Oswald Knoth, Martin Simmel,
René Widera, Matthias Jurenz,

Matthias Müller, Wolfgang E. Nagel

www.tropos.de www.cosmo-model.org picongpu.hzdr.de

www.vampir.eu

	Title slide
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56

