
Highly scalable SFC-based dynamic load balancing
and its application to atmospheric modeling

Matthias Lieber, Wolfgang E. Nagel

Technische Universität Dresden, 01062 Dresden, Germany

This is the peer-reviewed and revised version (post-print) of the following article:

M. Lieber and W. E. Nagel, Highly scalable SFC-based dynamic load balancing and its application to atmospheric modeling,
Future Generation Computer Systems

Once the article is published, it can be found under the DOI 10.1016/j.future.2017.04.042.

This post-print version of the article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (CC BY-NC-ND 4.0).

Publication History:

• Manuscript Accepted: 29 Apr 2017

• Manuscript Revised: 29 Mar 2017

• Manuscript Received: 29 Feb 2016

http://dx.doi.org/10.1016/j.future.2017.04.042
http://creativecommons.org/licenses/by-nc-nd/4.0/

Highly scalable SFC-based dynamic load balancing
and its application to atmospheric modeling

Matthias Lieber∗, Wolfgang E. Nagel

Technische Universität Dresden, 01062 Dresden, Germany

Abstract

Load balance is one of the major challenges for efficient supercomputing, especially for applications that exhibit workload varia-
tions. Various dynamic load balancing and workload partitioning methods have been developed to handle this issue by migrating
workload between nodes periodically during the runtime. However, on today’s top HPC systems – and even more so on future exas-
cale systems – runtime performance and scalability of these methods becomes a concern, due to the costs exceeding the benefits of
dynamic load balancing. In this work, we focus on methods based on space-filling curves (SFC), a well-established and comparably
fast approach for workload partitioning. SFCs reduce the partitioning problem from n dimensions to one dimension. The remaining
task, the so-called 1D partitioning problem or chains-on-chains partitioning problem, is to decompose a 1D workload array into
consecutive, balanced partitions. While published parallel heuristics for this problem cannot reliably deliver the required workload
balance, especially at large scale, exact algorithms are infeasible due to their sequential nature. We therefore propose a hierarchical
method that combines a heuristic and an exact algorithm and allows to trade-off between these two approaches. We compare load
balance, execution time, application communication, and task migration of the algorithms using real-life workload data from two
different applications on two different HPC systems. The hierarchical method provides a significant speed-up compared to exact
algorithms and yet achieves nearly the optimal load balance. On a Blue Gene/Q system, it is able to partition 2.6 million tasks for
524 288 processes with over 99 % of the optimal balance in 23.4 ms only, while a published fast exact algorithm requires 6.4 s. We
also provide a comparison to parallel load balancing methods implemented in the Zoltan library and present results from applying
our methods to COSMO-SPECS+FD4, a detailed atmospheric simulation model that requires frequent dynamic load balancing to
run efficiently at large scale.

Keywords: Massively parallel algorithms, Dynamic load balancing, Space-filling curves, One-dimensional partitioning, Earth and
atmospheric sciences

1. Introduction

Load balance is one of the major challenges for efficient use
of current and future HPC systems [1, 2], especially when the
workload is changing dynamically. Many scientific simula-
tions exhibit workload variations due to a non-uniform and dy-
namic distribution of simulated physical or chemical phenom-
ena over the spatial domain. Examples are seismic wave prop-
agation [3], two-phase porous media flow for reservoir simu-
lation [4], astrophysical fluid dynamics [5], simulation of tur-
bulent streams and shocks [6], atmospheric modeling of air
quality [7] and clouds [8], molecular dynamics [9], as well as
particle simulations of plasmas [10, 11] and ion beams [12].
The workload variations are caused by various numerical and
modeling techniques that (inherently) lead to a dependency of
the local computational workload from the local intensity and
space-time scales of simulated processes. In the mentioned ex-
amples, these techniques are adaptive mesh refinement [3–5],
p-adaptivity [6], adaptive time stepping [6, 7], particle-based

∗Corresponding author
Email address: matthias.lieber@tu-dresden.de (Matthias Lieber)

methods [9–12], and multiphase modeling [4, 7, 8]. For these
types of applications, a static decomposition of the simula-
tion domain leads to waiting time at synchronization points
and waste of computational resources and energy. To resolve
this issue, dynamic load balancing is applied to redistribute the
workload between computing resources periodically during the
runtime in order to ensure load balance. The runtime savings
by dynamic load balancing are specified in three of the above
mentioned publications [6, 8, 10] and lie in the range from 15
to 66 %. Moreover, the importance of a fast and scalable load
balancing method is emphasized [3, 4, 6, 8, 9]. With increasing
parallelism it becomes more complicated to keep the overhead
of dynamic load balancing low such that it does not counteract
the achieved runtime savings.

In this work we focus on computational scenarios with a
fixed number of work items (tasks) of spatially and temporally
varying workload that need to be distributed over a large num-
ber of processes. The assignment of tasks to processes needs
to be adapted periodically over runtime to ensure high balance.
The calculation of a new assignment is called repartitioning,
which has to achieve the following objectives [13]: (a) bal-
anced workload in the new partitioning, (b) low communication

Preprint submitted to Future Generation Computer Systems May 2, 2017

costs between distributed tasks due to data dependencies within
the application, (c) low migration costs, and (d) fast execution
of the repartitioning. Typically, these objectives are contradic-
tory. For example, the optimal solution for (a) and (b) is known
to be NP-complete, which makes objective (d) hard to reach.
The balance between the four objectives therefore depends on
the application, e. g. highly dynamic applications should focus
on low migration and repartitioning costs and accept a non-
optimal load balance. Many heuristics have been developed for
(re)partitioning; Teresco et al. [13] provide a good overview.

A widely used method is space-filling curve (SFC) partition-
ing [13, 14]. It is applied for scalable adaptive mesh refine-
ment [3–5] and dynamic load balancing of a fixed number of
tasks with varying workload [6, 8, 10]. In general, SFCs pro-
vide a fast mapping from n-dimensional to one-dimensional
space that preserves spatial locality. This property is used to
reduce the partitioning problem to one dimension. In com-
parison to rectangular partitioning methods, SFC partitioning
has the advantages of better load balance due to finer granu-
larity (no restriction to rectangular partitions) and highly local,
low-degree task migration, which has a one-dimensional logical
structure according to the curve [14]. With respect to the four
objectives of dynamic load balancing, SFCs are a good heuris-
tic to implicitly optimize for low communication costs. The re-
maining three objectives have to be handled by 1D partitioning
algorithms. Published 1D partitioning heuristics execute very
quickly and can be implemented in parallel [14], but they do
not achieve the optimal load balance. On the other hand, exact
algorithms [15] are, to the best of our knowledge, sequential
only. However, sequential algorithms will fail in the exascale
era due to large communication, memory, and calculation costs.
This work closes the gap between exact algorithms and parallel
heuristics. The main contributions are:

• A new hierarchical and highly scalable 1D partitioning al-
gorithm that provides nearly optimal balance in practice.

• Experimental evaluation of proposed and existing algo-
rithms, including the Zoltan [16] library, comparing load
balance, migration costs, partition surface index, and cal-
culation time using real application workload data.

• Application of the hierarchical partitioning algorithm to
an atmospheric model, which translates into a noticeable
performance improvement.

In a previous conference publication [17] we already intro-
duced the hierarchical algorithm. This work provides a sub-
stantial extension by (1) adding the partition surface index as
a comparison metric, (2) comparing with geometric algorithms
from the Zoltan library, (3) proposing the distributed partition
directory as a method to further enhance scalability, and (4) ap-
plying the algorithms to a real application.

The rest of the paper is organized as follows. In the next
section we approach the background of this work top-down,
that is we briefly describe the atmospheric model COSMO-
SPECS+FD4, introduce space-filling curve partitioning, and
define the 1D partitioning problem. Then, in section 3, we

COSMO atmospheric model
2D decomposision
static partitioning

SPECS cloud microphysics
3D block decomposition*
dynamic load balancing*

Model coupling*
periodic data
exchange*

Figure 1: Illustration of the coupling scheme of COSMO-SPECS+FD4 and the
partitionings of both model components. Each of the 8 processes owns one
partition of COSMO and one of SPECS. FD4 provides services marked by an
asterisk (*).

give an overview of related work about 1D partitioning and in-
troduce fundamental concepts and algorithms as foundation of
the following sections. In section 4 we present our hierarchi-
cal 1D partitioning algorithm and the distributed partition di-
rectory. We also provide a theoretical consideration about the
load balance quality our algorithm achieves in worst case. In
section 5 we evaluate the performance of the hierarchical al-
gorithm by means of measurements and provide a comparison
to other state-of-the-art partitioning algorithms. This also in-
cludes an evaluation of the impact on the atmospheric model.
Finally, in section 6 we summarize our contributions and give
an outlook to future work.

2. From atmospheric modeling to 1D partitioning

In this section we first introduce the atmospheric model
COSMO-SPECS+FD4. Due to the high dynamics of its load
imbalance, it benefits from applying a fast partitioning method
that is scalable and of high quality at the same time, so that load
balancing can be executed every few seconds. After that, we in-
troduce space-filling curve partitioning as it is used in COSMO-
SPECS+FD4 and define the 1D partitioning problem.

2.1. The atmospheric model COSMO-SPECS+FD4

COSMO-SPECS+FD4 [8, 18] consists of two model compo-
nents: the non-hydrostatic limited-area weather forecast model
COSMO [19] and the cloud microphysics model SPECS [18].
SPECS replaces the so-called bulk parameterization of the
COSMO model to describe cloud and precipitation processes
with a highly detailed spectral bin cloud microphysics scheme.
In this scheme, cloud particles are not modeled with their bulk
mass per grid cell only, but with a bin discretization of their
size distribution for each grid cell. This allows a more detailed
description of the interaction between aerosols, clouds, and pre-
cipitation, which is a very important topic in weather, climate,
and air quality modeling [20]. SPECS introduces 11 new vari-
ables per spatial grid cell to describe water droplets, frozen par-
ticles, and insoluble particles, each discretized into 66 size bins,
and runs with a smaller time step size than COSMO (in our case
2.5 s and 10 s, respectively). Consequently, the bin cloud micro-
physics approach is computationally very expensive compared

2

to widely used bulk schemes so that an efficient parallel imple-
mentation is required. Additionally, SPECS causes strong load
imbalance since its workload per grid cell depends on the spa-
tially and temporally varying presence of cloud particles. More
precisely, the computational effort depends on the number of
occupied size bins for each particle class, the evaporation rate,
and the presence of ice phase processes at temperatures below
freezing point.

For that reason, we and co-authors developed a coupling
scheme [8] that separates the data structures of both model
components to enable dynamic load balancing in SPECS in-
dependently of COSMO, see figure 1. COSMO uses a static
domain decomposition of the horizontal grid into regular rect-
angular partitions. When running SPECS within the decom-
position and data management of COSMO, no dynamic load
balancing is possible. Therefore, we developed the frame-
work FD4 (Four-Dimensional Distributed Dynamic Data struc-
tures [8, 21]) which provides three main services for cou-
pled applications like COSMO-SPECS+FD4, highlighted in
figure 1:

• Domain decomposition using several grid blocks per pro-
cess: data structures to store grid variables are managed
by FD4. An iterator concept is used to access blocks and
contained variables. All three spatial dimensions are used
for decomposition to minimize surface index of partitions
and to obtain a finer granularity for load balancing.

• Dynamic load balancing based on the grid blocks as mi-
gratable tasks: various repartitioning methods are avail-
able, including the hierarchical SFC-based method pre-
sented in this paper and an interface to Zoltan [16]. Migra-
tion and block allocation/deallocation is performed trans-
parently by FD4. The workload per grid block (i. e. task
weight) is specified by the application, e. g. computing
time during the previous time step.

• Model coupling: FD4 provides data exchange between
data fields managed by FD4 and data fields using a dif-
ferent partitioning of the same grid, e. g. COSMO’s parti-
tioning. The coupling is based on serial composition [22],
which means that COSMO and SPECS are executed alter-
nately by all processes allocated to the program.

FD4 has been extensively tuned for scalability, which par-
ticularly concerns the hierarchical partitioning algorithm and
the determination of partition overlaps for coupling [21].
The development of FD4 has been motivated by COSMO-
SPECS+FD4. However, it can also be used for other multi-
phase, multiscale, or multiphysics applications. FD4 is written
in Fortran 95 and uses MPI-2 for parallelization. It is available
as open source software [23].

In subsection 5.6 we will show that COSMO-SPECS+FD4 is
a challenging application for load balancing methods: 1D parti-
tioning heuristics are limited by insufficient achieved load bal-
ance, while exact methods cause high overheads for computing
the new partitioning. Our hierarchical algorithm reduces the to-
tal execution time of COSMO-SPECS+FD4 by more than 10 %

Figure 2: Example of a partitioning created with a 2D Hilbert space-filling
curve over a two-dimensional grid.

compared to these approaches by combining fast partitioning
computation with high load balance.

2.2. Space-filling curve partitioning

Space-filling curves provide a fast mapping from n-
dimensional to one-dimensional space. One example is shown
in figure 2. They can be constructed recursively by refining
a specific stencil up to the desired level [13, 14]. One prop-
erty especially of interest for partitioning is the high locality:
discrete neighbor points on the one-dimensional curve are typ-
ically also nearby in the n-dimensional space. Relying on this
feature, SFC partitioning uses the curve to reduce the partition-
ing problem to one dimension, which is easier to solve com-
pared to the n-dimensional case. The explicit optimization of
the partition shape to reduce inter-partition communication can
now be omitted since the SFC’s locality typically leads to good
partition shapes. Another benefit of SFC partitioning is the sim-
ple structure they provide to describe the full partitioning: the
partition array s, containing the start indices sp of all partitions
p = 0, 1, . . . , P − 1, i. e. one integer per process, is sufficient to
store the location of each task, independent from the total num-
ber of tasks. Additionally, task migration as reaction to repar-
titioning is mostly between successive partitions on the curve,
which is typically highly local. Different kinds of SFCs have
been applied for partitioning. For rectangular grids, the Hilbert
SFC shows the best locality properties. Figure 2 shows a 2D
grid with a Hilbert SFC. The colors depict six partitions that
have been created after applying a 1D partitioning algorithm on
the task linearization provided by the SFC.

In this work we assume a regular rectangular grid with tasks
at each integer coordinate, i. e. like an n-dimensional matrix.
With this assumption and given that we already have a par-
titioning computed by an SFC, the outline of the SFC-based
repartitioning algorithm is as follows: (1) create an array of
weights of the local tasks, (2) sort this array by the SFC index
of the corresponding tasks, and finally (3) apply a 1D partition-
ing algorithm, either parallel or serial, on the distributed task
weight array. Since the first two steps are straightforward and
purely local, we concentrate in this work on the 1D partitioning
problem.

3

Table 1: Summary of symbols.

B bottleneck of a partitioning, i. e. maximum load among all
partitions, B = max(Lp)

B∗ ideal bottleneck, B∗ = Σwi/P
Bopt bottleneck of the optimal partitioning
G number of coarse partitions of the hierarchical algorithm,

2 ≤ G ≤ P/2
Lp load of partition p, i. e. sum of its task weights,

Lp =
∑ sp+1−1

i=sp
wi = Wsp+1−1 −Wsp−1

Λ balance of a partitioning, Λ = B∗/B
Λopt balance of the optimal partitioning, Λopt = B∗/Bopt

N number of tasks to assign to the partitions
P number of partitions (i. e. parallel processes)
p partition index, p = 0, 1, . . . , P − 1
q quality factor of a partitioning, q = Λ/Λopt

sp index of the first task assigned to partition p for p =

0, 1, . . . , P − 1; s0 = 1
wi computational weight of task i for i = 1, 2, . . . ,N
W j prefix sum of task weights, W j =

∑ j
i=1wi; W0 = 0

2.3. The 1D partitioning problem

In the 1D partitioning problem, an array wi, i = 1, 2, . . . ,N,
of positive task weights, representing N computational loads,
is to be decomposed into P consecutive partitions while mini-
mizing the maximum load among the partitions. This problem
is also referred to as the chains-on-chains partitioning prob-
lem [15]. The result is a partition array sp, p = 0, 1, . . . P − 1,
that denotes the index in w of the first task assigned to each par-
tition p. Note that each partition contains a contiguous subset
of tasks, i. e. partition p contains the tasks sp, sp+1, . . . , sp+1−1.
The load of partition p is determined with Lp =

∑ sp+1−1
i=sp

wi. Al-
ternatively, the load can be computed as Lp = Wsp+1−1 −Wsp−1

using the prefix sum of task weights W j =
∑ j

i=1wi, j =

1, 2, . . . ,N and W0 = 0. The maximum load among all par-
titions B = max(Lp) is called the bottleneck of a partition-
ing. The objective of 1D partitioning is to find a partition ar-
ray s with the minimal bottleneck Bopt, which is not known
a priori. The lower bound for any B is the ideal bottleneck
B∗ = Σwi/P = WN/P, which assumes equal load among all
partitions. We define the ratio of the ideal bottleneck B∗ to
the bottleneck B of a partitioning as the load balance Λ of
this partitioning, i. e. Λ = B∗/B with 1/P ≤ Λ ≤ 1. The
optimal load balance Λopt of a given 1D partitioning problem
is Λopt = B∗/Bopt and the quality factor q of a partitioning
is q = Λ/Λopt = Bopt/B, which follows the definition by
Miguet and Pierson [24]. One important property of the task
weights is their maximum max(wi), since perfect balance can-
not be achieved if max(wi) > B∗ = Σwi/P. In this case applies
Bopt ≥ max(wi) and increasing P will not decrease the bottle-
neck. Thus, well-balanced partitionings are only achievable if
P ≤ Σwi/max(wi). The introduced symbols are summarized in
table 1 and illustrated in figure 3. We denote complete arrays
by their symbol without index, i. e. w represents all task weights
wi, i = 1, 2, . . . ,N, similarly for W and s.

111 2 3 4 5 6 7 8 9 10 12 13 1918 22

11 1 1 1 1 1 1 1 1 1 1 1 15 3

L0=5 L1=6 L2=2 L3=9

S0=1 S1=7 S2=13 S3=15

S0=1 S1=6 S2=12 S3=15

Task weights

Prefix sum W

H1 result B=9 Λ=61%

H2 result B=7 Λ=79%

Optimal result Bopt=6 Λopt=92%

S0=1 S1=6 S2=12 S3=15RB result B=7 Λ=79%

 Tasks / partitions Bottleneck Balance

111 2 3 4 5 6 7 8 9 10 12 13 1514 16Index

S0=1 S1=6 S2=12 S3=14

L0=5 L1=6 L2=7 L3=4

L0=5 L1=6 L2=7 L3=4

L0=6 L1=6 L2=6 L3=4

N=16, P=4
B*=WN/P=5.5w

Figure 3: Example to illustrate the load balance deficit of 1D partitioning
heuristics for a 4-way partitioning of 16 tasks.

3. Related work

3.1. 1D partitioning heuristics

One of the first 1D partitioning heuristics for SFC-based load
balancing is described by Oden et al. [25]. They use the recur-
sive bisection approach where the weight array is recursively
cut in two parts with as equal as possible load. Pilkington
and Baden [14] introduce a parallel heuristic. The processes
search their new partition boundaries within the local part of the
weight array prefix sum W and within the part of direct neigh-
bors along the curve. Of course, this only works so long as
the partition borders do not shift across the neighbor processes.
Miguet and Pierson [24] describe two heuristics and their paral-
lelization and provide a detailed discussion about the costs and
quality bounds of the algorithms. Their first heuristic H1 com-
putes sp to be the smallest index such that Wsp > pB∗. The
second heuristic H2 refines the partition boundaries found by
H1 by incrementing sp if (Wsp − pB∗) < (pB∗ − Wsp−1), i. e.
if the cumulated task weight Wsp is closer to the border’s ideal
cumulated task weight pB∗ than Wsp−1. They also prove that for
their heuristics the bottleneck is bounded by B < B∗ + max(wi),
which means that these algorithms are very close to the optimal
solution if max(wi) � B∗. However, this yields the tightened
requirement for well-balanced partitionings P � Σwi/max(wi)
compared to P ≤ Σwi/max(wi) introduced for the general case
in subsection 2.3. Harlacher et al. [6] discuss the paralleliza-
tion of H2, especially how to migrate the tasks efficiently when
partition borders have been computed locally based on the dis-
tributed prefix sum W, i. e. all processes know which tasks to
send, but not which tasks to receive.

Example of the heuristics’ load balance deficit. Figure 3 shows
how the heuristic methods fail to achieve a good load balance
by means of an example. Since partition borders are set once
and are never refined after scanning the whole task weight ar-
ray, irregularities in the weight array cannot be compensated.
For example, when H2 determines the start index of the third
partition, the algorithm is not aware of that advancing the index
by one would help reducing the workload of the third partition
and, thus, reduce the bottleneck. Exact algorithms determine
the optimal bottleneck and construct a partitioning based on this
value.

4

3.2. Exact 1D partitioning algorithms

Much work has been published on exact algorithms for the
1D partitioning problem; a very extensive overview is given
by Pınar and Aykanat [15]. They provide detailed descriptions
of existing heuristics and exact algorithms, improvements and
new algorithms, as well as a thorough experimental compari-
son. However, they only consider sequential algorithms. The
fastest exact algorithms proposed by Pınar and Aykanat are an
improved version of the method by Nicol [26] and their ex-
act bisection algorithm ExactBS. Their experiments from 16 to
256 partitions reveal that ExactBS offers better performance at
larger partition counts. It is based on binary search for the opti-
mal bottleneck Bopt. The initial search interval is I = [B∗, BRB],
where BRB is the bottleneck achieved by the recursive bisection
heuristic. To guide the binary search for Bopt, it is required to
probe whether a partitioning can be constructed for a given B or
not. The probe function successively assigns each partition the
maximum number of tasks such that the partition’s load is not
larger than B, that is it determines the maximum sp such that
Lp−1 = Wsp−1 −Wsp−1−1 ≤ B for p = 1, 2, . . . , P − 1 with s0 = 1
and W0 = 0. Probe is successful if the load of the remaining par-
tition P−1 is not larger then B, i. e. LP−1 = WN−WsP−1−1 ≤ B. A
simple probe algorithm Probe using binary search on the prefix
sum of task weights W for each sp has O(P log N) complex-
ity: binary search finds sp in the interval [sp−1 + 1,N] such that
Wsp−1 −Wsp−1−1 ≤ B and Wsp −Wsp−1−1 > B with O(log N) com-
plexity and is carried out for p = 1, 2, . . . , P− 1. Han et al. [27]
propose an improved probe algorithm with O(P log(N/P)) com-
plexity which partitions W in P equal-sized segments. For each
sp to be found, first the segment containing sp is determined us-
ing linear search and then binary search is used within the seg-
ment. We refer to this improved probe algorithm as SProbe. In
their method ExactBS, Pınar and Aykanat [15] improve probing
even further, as will be explained in the next subsection. Based
on their previous work, Pınar et al. [28] investigate algorithms
for heterogeneous systems with processors of different speed.

3.3. Exact bisection algorithm ExactBS

Since our work builds on ExactBS, we describe the complete
algorithm briefly in this subsection. For a more detailed de-
scription of ExactBS, including proofs, we refer to the original
publication by Pınar and Aykanat [15]. Two features distinguish
this algorithm from an ordinary bisection search algorithm for
Bopt: (a) the probe function RProbe (restricted probe) keeps
record of the lowest and highest values found for each sp in
earlier search steps to narrow its search space and (b) the search
interval for Bopt is always divided such that the bounds are re-
alizable bottleneck values to ensure the search space is reduced
by at least one candidate at each iteration.

At first, based on the prefix sum of task weights W, the recur-
sive bisection heuristic is executed to determine an initial upper
bound BRB for the bottleneck. Recursive bisection with binary
search in W has a complexity O(P log(N)). After that, the par-
tition border’s upper bounds SHp and lower bounds SLp are ini-
tialized, which are required for RProbe used during the bisec-
tion algorithm. The initialization is performed using SProbe by

Han et al. [27] and its counterpart RL-SProbe, which begins at
the last partition and operates from right to left on s and W.
The upper bounds SHp are computed as the minima for each sp

when running SProbe on BRB and RL-SProbe on B∗. Similarly,
the lower bounds SLp are determined as the maxima for each sp

when running SProbe on B∗ and RL-SProbe on BRB.
Then, the actual bisection algorithm starts searching for the

optimal bottleneck value Bopt between the lower bound LB = B∗

and the upper bound UB = BRB. At each iteration, RProbe is
carried out on (UB + LB)/2. If successful, UB is updated; oth-
erwise LB is updated. The iteration terminates when UB = LB,
with the result Bopt = UB. In ExactBS the bounds are not
updated to (UB + LB)/2, but to the next smaller realizable
bottleneck value in case of UB and to the next larger realiz-
able bottleneck value in case of LB. Thus, the search space
is reduced by at least one candidate at each iteration which
ensures that the algorithm terminates after a finite number of
steps. After a successful RProbe, the upper bound is updated
to UB = max(Lp), i. e. the maximum load among the partitions
determined by RProbe. If RProbe fails, the lower bound is up-
dated to LB = min(LP,min(Lp +wsp+1)), i. e. the enlarged load of
the first partition that would grow if the bottleneck for probing
would be increased gradually.

The restricted probe function RProbe improves over the sim-
ple Probe function outlined in the previous subsection by re-
stricting the search space for each sp to [SLp, SHp]. Addition-
ally, these bounds are updated dynamically: if RProbe is suc-
cessful, SHp is set to the resulting sp; otherwise SLp is set to sp.
Pınar and Aykanat show that the complexity of their restricted
probe function is O(P log(P) + P log(max(wi)/avg(wi))), which
is very attractive for large N.

3.4. Need for parallel, high-quality 1D partitioning algorithms

To the best of our knowledge, no parallel exact algorithms for
the 1D partitioning problem have been published. Only heuris-
tics, like those of Miguet and Pierson [24], can be efficiently
parallelized such that the task weight array w stays distributed
over all processes according to the current task partitioning and
is evaluated locally only. In the probe function of exact algo-
rithms, each iteration over the partitions p = 0, 1, . . . , P − 2
depends on the task weights evaluated in the previous iteration.
This leads to a serial dependency among the processes and pre-
vents an effective parallelization. Additionally, the collection
of all task weights at one single process is infeasible at large
scale due to memory limitations and high communication costs.
Thus, only parallel heuristics can be used in large-scale appli-
cations requiring frequent load balancing. However, as Miguet
and Pierson [24] have shown, the load balance is only close to
optimal as long as max(wi) � B∗. Current trends suggest that
this condition will be fulfilled less often in future [1, 2]: firstly,
simulations incorporate more and more complex phenomena
and adaptivity, giving rise to workload variations and thus in-
creasing the maximum task weight max(wi) stronger than the
average load B∗ = Σwi/P. Secondly, the parallelism in HPC
systems is growing greatly, which leads to strong scaling re-
placing increasingly weak scaling, i. e. a decreasing number of

5

tasks per process N/P, and thus to a reduction of B∗. Conse-
quently, scalable and high-quality partitioning algorithms are
required for many future large-scale simulations. This gap has
also been observed by Meister and Bader [4], who report that
applying an exact 1D partitioning algorithm in their PDE solver
‘scales well only up to 1000 cores’ so they need to use an ap-
proximate method.

3.5. Hierarchical load balancing methods

One solution for the scalability challenge is the application of
hierarchical methods for load balancing. Zheng et al. [29] in-
vestigate such methods in the runtime system Charm++. They
organize processes in a tree hierarchy and use centralized par-
titioning methods within each level and group independently.
The main advantages of their approach are considerable mem-
ory savings due to data reduction strategies and faster execution
of the partitioning at large scale. Teresco et al. [30] use hierar-
chical load balancing in the Zoltan library [16] to adapt to the
hierarchy of HPC systems. However, they do not focus on per-
formance at large scale.

4. The proposed hierarchical 1D partitioning algorithm

In this section we propose our two-level hierarchical algo-
rithm for 1D partitioning [17] that aims to overcome the scala-
bility limits of exact algorithms. We combine the parallel com-
putation of a heuristic with the high quality of a serial exact
algorithm. Therefore, we first run a parallel heuristic to ob-
tain a coarse partitioning and then we run an exact algorithm
within each coarse partition independently. Thus, the exact al-
gorithm is parallelized to a specified degree to achieve runtime
and memory savings. We firstly describe the design of the algo-
rithm in subsection 4.1. Then we propose two further enhance-
ments: firstly, in subsection 4.2, we present optimizations for
the serial exact bisection algorithm that we apply at the second
level. And secondly, we propose a distributed partition direc-
tory to increase the scalability of disseminating the partition ar-
ray in subsection 4.3. Finally, in subsections 4.4 and 4.5 we
provide theoretical considerations on the number of required
groups and the quality bounds of the hierarchical algorithm, re-
spectively.

4.1. Design of the hierarchical algorithm HIER

The basic idea for our hierarchical method HIER picks up the
condition max(wi) � B∗ for almost optimal partitionings com-
puted by H2. If we partition the tasks not in P but G < P parts,
B∗ would be increased and the condition could be met easier.
We use this property to first create a coarse-grained partitioning
in G parts with a fully parallel heuristic. Each of the G coarse
partitions is assigned a group of processes. Second, we de-
compose each coarse part in P/G partitions using a serial exact
method. In the second level, G instances of the exact method
are running independently to each other and task weights need
only to be collected within the groups, i. e. the task weight ar-
ray of size N is not assembled. The number of groups G highly
impacts quality and performance of the hierarchical method; it

Table 2: Brief explanation of MPI collective operations [31] used in the algo-
rithm descriptions. Note: all or a group of ranks may participate.

MPI Bcast One-to-all: broadcasts a message from a specified
rank to all other ranks.

MPI Gatherv All-to-one: gathers messages (of different size)
from all ranks in a consecutive buffer in rank order
at a specified rank.

MPI Allgather All-to-all: gathers messages (of same size) from all
ranks in a consecutive buffer in rank order and repli-
cates this buffer on all ranks.

MPI Reduce Performs a reduction operation (e. g. maximum or
sum) of values provided by all ranks and sends the
result to a specified rank.

MPI Exscan With sum as reduction operation it computes a par-
allel prefix sum such that ranks i > 0 receive the
sum of the send buffers of ranks 0, 1, . . . , i − 1.

is actually like a slide control which allows to tune the influ-
ence of the heuristic versus the exact method. We expect that
increasing G should lead to faster execution times and less load
balance, whereas decreasing G should result in a slower algo-
rithm but better load balance. In the following, we provide a
more detailed description of the five successive phases of our
hierarchical method HIER. Please refer to table 2 for a brief
explanation of the MPI operations we apply.

1. Prefix sum of weights and broadcast of total load. The prefix
sum of task weights is computed in parallel using MPI Exscan
with the sum of local weights as input. Then all ranks p > 0
send Wsp−1 to rank − 1 to ensure consistency at the partition
borders when using floating point weights. Finally, the total
load WN , which is available in the last process, is communicated
to all ranks via MPI Bcast.

2. Construction of the coarse partitioning. All processes
search their local part of W for coarse partition borders using
the method H2 with B∗ = WN/G. If a process finds a border,
it sends the position to the group masters (first ranks) of both
groups adjacent to that border. Accordingly, all group masters
receive two border positions (except first and last group master,
which receive one only) and broadcast them, together with the
ID of the rank that found the border, to all processes within the
group using MPI Bcast.

3. Collection of task weights within the groups. All processes
owning tasks that are not part of their coarse partition send the
respective W j to the nearest process (rank-wise) of the group
that owns these tasks in the coarse partitioning. Then, the
(prefix-summed) task weights are exchanged within each group
independently using MPI Gatherv such that the master receives
all W j for its group.

4. Exact partitioning within the groups. Based on the local pre-
fix sum of the weight array for the group, the group masters
compute the final partitioning with an exact method. We use a

6

Input Task weight array w for N = 60 tasks distributed over
P = 12 processes, group count G = 4

 0

 2

 4

 6

Process: 0 1 2 3 4 5 6 7 8 9 10 11

w
i

Phase 1 Task weight prefix sum W is computed in parallel

 0

 50

 100

s
3
 = 17 s

6
 = 32 s

9
 = 51Parallel H2 result:

W
j

Phase 2 Based on distributed W, coarse partition borders s3, s6,
s9 are determined with parallel method H2

Phase 3 Weights of each group are sent to master, master assem-
bles complete weight prefix sum WG of the group

 0

 10

 20

 30

s
1
 = 8 s

2
 = 14Exact result: s

4
 = 21 s

5
 = 26 s

7
 = 39 s

8
 = 45

s
10

 = 53

s
11

 = 56

W
j

G

Phase 4 Group masters independently compute partitioning of
their group using a serial exact 1D partitioning method

Phase 5 Group masters distribute final partition array s to all
processes

 0

 2

 4

 6

Tasks, N = 60

w
i

Figure 4: Visual depiction of the 1D partitioning algorithm HIER for a small example.

modified version of the exact bisection algorithm, see subsec-
tion 4.2. During this phase, G instances of the exact method are
running independently to each other.

5. Distribution of the partition array. The final partition ar-
ray s is communicated to all ranks in a two-stage process:
first, the group masters assemble the global array by exchang-
ing the partition array of their group among each other using
MPI Allgather. Second, the masters distribute the global parti-
tion array to their group members via MPI Bcast.

However, since replicating the full partition array on all pro-
cesses is costly and typically not necessary, we also developed
an alternative method that uses a distributed directory of the
partition array, see subsection 4.3.

Example. Figure 4 visualizes HIER and its 5 phases for a small
weight array extracted from the CLOUD2 dataset (see subsec-
tion 5.1).

4.2. Modifications to the serial exact bisection algorithm

In the second level of our hierarchical method any exact
1D partitioning algorithm can be used. Because of its ex-
ecution speed we decided for the exact bisection algorithm
ExactBS [15]. We applied two slight modifications to this algo-
rithm to achieve further speed improvements that we investigate
experimentally in subsection 5.2.

ExactBS+P: New probe algorithm. In ExactBS, the RProbe
function checks whether a partitioning exists for a given bot-
tleneck B. As introduced in subsection 3.3, Pınar and Aykanat
restrict the search space for each individual sp by narrowing
the search interval in W dynamically depending on previous

RProbe calls. Despite the initial runtime overhead of 4 SProbe
calls to initialize the bounds for each sp, this results in a fast
probe algorithm, especially for large number of tasks N, since
the complexity is independent of N.

We developed a probe algorithm which is faster without
search space restriction, if (1) the size (number of tasks) of
consecutive partitions varies only little, or (2) the number of
tasks N is not orders of magnitude higher than the number
of partitions P. Our probe algorithm EProbe, shown in fig-
ure 5, is based on the estimation that adjacent partitions have the
same size, i. e. the same number of tasks. In the first iteration,
s1 = N/P is estimated and, if necessary, linear search ascend-
ing or descending in W is performed to find the correct value of
s1. In the remaining iterations, sp is estimated at sp−1 plus the
size of the previous partition, i. e. sp = sp−1 + (sp−1 − sp−2) =

2sp−1 − sp−2. This results in an immediate match if the parti-
tion p − 1 has the same size as partition p − 2 and explains as-
sumption (1). If there is no match, we again start linear search.
For relatively small partition sizes, the number of linear search
steps will likely be very small and outperform binary search,
which explains assumption (2). Consequently, for highly irreg-
ular weight arrays we expect our algorithm to be faster than
Pınar and Aykanat’s RProbe at relatively low N/P only.

ExactBS+PI: New initial search interval. In the original
ExactBS algorithm, Pınar and Aykanat [15] first run the recur-
sive bisection heuristic to use the achieved bottleneck BRB as
upper bound in the search. That means their start interval for
the binary search for Bopt is I = [B∗, BRB]. To avoid running the
recursive bisection heuristic first, we build on the findings of
Miguet and Pierson [24] and use I = [max(B∗,max(wi)), B∗ +

max(wi)] as initial search interval.

7

ExactBS+PI (P, N, B, W, wmax)
B∗ := WN/P
LB := max(B∗,wmax); UB := B∗ + wmax
while LB < UB do

B := (UB + LB)/2
if EProbe (B) then

UB := B−

else
LB := B+

Bopt = UB
PartitionArray (Bopt)

EProbe (B)
start := 0; sum := B; guess := N/P
B− := 0; B+ := WN
for p := 1 to P − 1 do

if Wguess > sum then
i := guess − 1
while Wi > sum do i := i − 1

else
i := guess
while i + 1 ≤ N and Wi+1 ≤ sum do i := i + 1

guess := min(2i − start,N)
B− := max(B−,Wi −Wstart)
B+ := min(B+,Wmin(i+1,N) −Wstart)
if i = N then exit
sum := Wi + B ; start := i

if WN ≤ sum then return true
else return f alse

PartitionArray (B)
start := 0; sum := B; guess := N/P
s0 := 1
for p := 1 to P − 1 do

if Wguess > sum then
i := guess − 1
while Wi > sum do i := i − 1

else
i := guess
while i + 1 ≤ N and Wi+1 ≤ sum do i := i + 1

guess := min(2i − start,N)
sp := i + 1
sum := Wi + B ; start := i

Figure 5: Our proposed exact 1D partitioning algorithm ExactBS+PI including its probe algorithm EProbe. PartitionArray uses the same principle as EProbe to
compute the final partition array s from the optimal bottleneck Bopt .

The algorithm ExactBS+PI includes both the new probe al-
gorithm EProbe and the new initial search interval. The com-
plete algorithm is shown in figure 5, including the function
PartitionArray that computes the final partition array from the
optimal bottleneck determined in ExactBS+PI. In contrast to
the original ExactBS, the EProbe algorithm of ExactBS+PI
does not restrict the search space for the partition borders us-
ing (dynamically updated) lower and upper bounds. For divid-
ing the search interval for Bopt, ExactBS+PI uses the method
of ExactBS that ensures that interval bounds are set to realiz-
able bottleneck values (see B− and B+ in figure 5). In our pre-
vious work [17] we introduced another algorithm called QBS
(quality-assuring bisection) that allows reducing the load bal-
ance target in a controlled fashion to reduce the number of bi-
nary search steps. ExactBS+PI is the same algorithm as QBS
with quality factor q = 1, i. e. without reduction of target load
balance.

4.3. Distributed partition directory
In previous work [17] we already identified the replication

of the full partition array on all processes (after the partitioning
has been computed) as the major scalability bottleneck of the
1D partitioning heuristic H2par and our hierarchical algorithm
HIER. In most applications, knowledge about the location of
all other partitions is not required, since communication takes
place typically between neighbor partitions only. Therefore, we
developed versions of the parallel methods that do not include
the distribution of the full partition array, but rather a distribu-
tion of only the parts of the partition array required to perform
migration. For migration, each rank needs to know at least the
new location of its current tasks, see figure 6 (a). This can be
described usually with a very small fraction of the partition ar-
ray, especially at large scale.

Our method is based on a distributed partition directory,
where the partition array itself is partitioned in a fixed, easily
to compute way by means of the task index and is distributed
over all processes. That means we cut the N SFC-ordered tasks
in P consecutive parts of size N/P and assign the start and end
indices of these parts consecutively the processes as their fixed

proc 4 proc 6proc 2

Current partition of process x: tasks →

New partition of process x:

sx
cur sx+1

cur

sx
new sx+1

new

(b) Put stage: process x sends new lower border
to processes 5-7 to initialize their directory

Proc 0 proc 1 proc 3 proc 5 proc 7

Partition directory stores
current and new borders
distributed by their position:

sx
new sx+1

newsx
news y+1

new s y+2
news y

new ...

new owner unknown to process x

sx
cur sx+1

cur

......

...... ...

proc 0

sent to process x

Process x is ready for
task migration:

sx
cur sx+1

cur

migrated to process y migrated to process y+1

(a)

(c)

(e)

(d) Get stage: processes 1-3 send new borders to process x
that are adjacent or contained in process x’s current partition

Figure 6: Concept of the distributed partition directory.

part of the partition directory. Each process stores partition bor-
ders that are located within its part of the directory, see fig-
ure 6 (c). After parallel partitioning computation, we assume
that the processes know their own (current and new) partition
borders and additionally all still current borders within their
part of the partition directory. Our implementation works in
two stages. In the put stage, the partition directory is updated
with the new partition borders: each process p sends its new
lower border sp to ranks that manage partition directory parts
overlapping with p’s partition, see figure 6 (b). In the follow-
ing get stage, all ranks receive the information they require to
perform migration: the location of all new borders that are ad-
jacent to or contained in their current partition, see figure 6 (d).
Since the partition directory contains current and new borders,
implicit knowledge is present about which information has to
be sent to which rank.

With the described procedure the processes do not know from
which other processes they will receive their new tasks. This
knowledge is not required, if task migration is using point-to-
point messages with so-called wildcard receives (receive from

8

any rank) or one-sided communication. We implemented a
small addition, such that the approach also works for point-to-
point messages without wildcard receives: during the get stage,
all processes receive additionally the location of all current bor-
ders that are adjacent to or contained in their new partition.

We did not implement the update of the location for tasks ad-
jacent to a partition in the multidimensional application space,
since the exact requirements are application-specific. However,
in general it could be implemented in a scalable way like this:
after partitioning calculation and before migration, all neighbor
pairs in the still current partitioning exchange the new owner of
their tasks that are located at the corresponding partition bound-
ary. These neighbor IDs are stored within the task and, if a task
is migrated, they are also communicated to the new owner.

In the last phase of the 1D partitioning algorithm HIER, the
distributed partition directory replaces an MPI Allgather and an
MPI Bcast, both on sub-communicators, by a sparse point-to-
point communication pattern with small messages.

4.4. Determining the number of groups

As already mentioned, the number of groups G has an enor-
mous influence on the runtime and quality characteristics of the
hierarchical method. Since increasing G reduces both execu-
tion time and load balance, it would be practical if we could
estimate an upper bound G(qmin) that guarantees a lower bound
qmin for the quality factor of the coarse partitioning. Miguet
and Pierson [24] have shown that the bottleneck achieved with
their heuristics is BH2 < B∗ + max(wi). If we use this to replace
B in the definition of the quality factor q = Bopt/B and insert
Bopt ≥ B∗, we obtain: qH2 > B∗/(B∗ + max(wi)) = qmin which
leads to 1/B∗ = (1/qmin − 1)/max(wi). The average load of the
coarse partitions is B∗ = Σwi/G. Thus, we obtain the following
equation:

G(qmin) = (1/qmin − 1)
Σwi

max(wi)

This equation provides an estimation of the maximum group
count G(qmin) that guarantees a minimum quality factor qmin for
the coarse partitioning

4.5. Quality bounds of the hierarchical algorithm

The load balance achieved with our hierarchical algorithm is
limited by the initial coarse partitioning. Even if the initial par-
titioning was perfect (i. e. each group has exactly the same load)
non-optimal results can be achieved if the optimal bottlenecks
of the individual group partitionings vary. Of course, the quality
of HIER is never worse than the quality of H2, since the coarse
partition borders are also borders in H2, but HIER runs an opti-
mal method for the rest of the borders. Miguet and Pierson [24]
have shown that the quality factor of H2 is q ≥ 1/2.

We can construct an artificial case where this lower bound is
reached for HIER. The idea is to cause a situation where one of
the groups is assigned P/G+1 tasks of equal weight. Assuming
G = 2 for now, this can be achieved by setting the weights such
that H2 places the bisecting coarse partition border after the
first P

2 + 1 tasks, i. e. sP/2 = P
2 + 2. In detail that means: let

N ≥ P, wi = wle f t for i = 1, 2, . . . , P
2 + 1, and wi = wright for i =

P
2 +2, P

2 +3, . . . ,N. To enforce the unfortunate placement of sP/2,
we set WP/2+1 = Σwi/2 and consequently wle f t = WP/2+1/(P

2 +

1) = Σwi/(P + 2). The weight of the remaining N − P
2 − 1 tasks

in the second coarse partition is wright = Σwi/(2N − P − 2).
The bottleneck of HIER is BHIER = 2wle f t, since at least one
partition in the first half needs to take two tasks. Consequently,
the resulting load balance is:

ΛHIER =
B∗

BHIER =
Σwi/P
2wle f t =

P + 2
2P

=
1
2

+
1
P
,

which is 1/2 for P→ ∞.
In the optimal partitioning, however, sP/2 would be P

2 + 1,
i. e. the first P

2 + 1 partitions each take one of the P
2 + 1 ‘left’

tasks. Assuming the number of ‘right’ tasks is a multiple of the
number of remaining partitions, i. e. N − P

2 − 1 = k(P
2 − 1) with

integer k, the optimal bottleneck would be Bopt = kwright. Thus,
the optimal load balance can be determined with:

Λopt =
B∗

Bopt =
Σwi/P
kwright =

(P
2 − 1)(2N − P − 2)

P(N − P
2 − 1)

= 1 −
2
P
,

which is 1 for P → ∞. This case can be applied to other
even groups counts G, because sP/2 would also be determined
by the heuristic. For odd G, similar cases can be constructed.
This theoretical example shows that HIER reaches a quality of
q = ΛHIER/Λopt = 1/2 in the worst case. However, the follow-
ing results show that nearly optimal balance is reached for two
representative applications.

5. Experimental performance evaluation

In this section we present results from measuring the per-
formance of the hierarchical 1D partitioning method and com-
paring to various other partitioning methods. Firstly, we de-
scribe the benchmark program, workload data sets, and HPC
systems used. Then, in subsection 5.2, we evaluate the serial
exact bisection algorithm to be used at the second level of the
hierarchical method. In subsection 5.3 we analyze the group
count’s impact followed by a comparison to methods from the
Zoltan library in subsection 5.4. In subsection 5.5 we show a
strong scalability measurement up to 524 288 processes, and, fi-
nally, in subsection 5.6 we evaluate the performance impact of
the hierarchical partitioning method on an atmospheric model.
By combining fast partitioning computation with high load bal-
ance, we achieve more than 10 % reduction of application run-
time compared to exact methods and parallel heuristics.

5.1. Evaluation benchmark

We have developed an MPI-based benchmark to compare ex-
isting 1D partitioning algorithms and partitioning algorithms
from the Zoltan library with our methods. Like in typical appli-
cations, the task weights are only known to the process owning
the task. This distributed task weight array is input to the al-
gorithms. For the 1D partitioning algorithms, the output is the
partition array s, which should be replicated on each process.
The output of the Zoltan methods are for each process local

9

lists of tasks that are migrated: the tasks to receive including
their current owners and the tasks to send including their new
owners.

5.1.1. Existing algorithms implemented in the benchmark
The benchmark program contains several previously pub-

lished serial and parallel 1D partitioning algorithms as well as
an interface to Zoltan to provide a comparison of our proposed
algorithms. Please refer to section 3 for a description of the ac-
tual 1D partition algorithms. For the serial methods, additional
communication steps are necessary to collect task weights and
distribute the computed partition array. Here, we outline the ex-
isting algorithms in the benchmark and their phases for which
we individually collected timings.

• ExactBS – Serial exact bisection algorithm by Pınar and
Aykanat [15]:

1. Parallel prefix sum of weights w using MPI Exscan,
determination of max(wi) on rank 0 using
MPI Reduce

2. Collection of prefix sum W on rank 0 via
MPI Gatherv

3. Serial execution of ExactBS on rank 0
4. Distribution of partition array s with MPI Bcast

• H1seq and H2seq – Serial heuristics H1 and H2 of Miguet
and Pierson [24]:

1. Parallel prefix sum of weights w using MPI Exscan
2. Collection of prefix sum W on rank 0 via

MPI Gatherv
3. Serial execution of H1 or H2 on rank 0 using the

SProbe algorithm by Han et al. [27]
4. Distribution of partition array s with MPI Bcast

• RB – Serial recursive bisection heuristic:

1. Parallel prefix sum of weights w using MPI Exscan
2. Collection of prefix sum W on rank 0 via

MPI Gatherv
3. Serial execution of recursive bisection of W on rank

0 using binary search to find the level separators
4. Distribution of partition array s with MPI Bcast

• H2par – Parallel version of H2:

1. Parallel prefix sum of weights w using MPI Exscan
2. Point-to-point communication of first local value in

W to rank − 1 (to ensure consistency when using
floating point weights) and communication of sum of
all weights WN from last rank to all via MPI Bcast

3. Execution of H2 on local part of W
4. Each found border sp is sent to rank p, final dis-

tribution of partition array to all processes with
MPI Allgather or, in case of H2par+, using the dis-
tributed partition directory (see section 4.3)

0

2

4

6

8

0 12 24 36

(a) CLOUD Dataset

0

12

24

36

48

max: 8.02

0 128 256 384 512

(b) LWFA Dataset

0

16

32

48

64

max: 91.7

Figure 7: Visualization of workload on a slice through the center of the 3D
computational domain. The workload is shown relative to the average. The
most imbalanced time step of each dataset is shown.

• Zoltan – Recursive coordinate bisection and space-filling
curve partitioning from the Zoltan [16] library: The algo-
rithms are applied on the 3D domain, not on the lineariza-
tion after SFC traversal. We treat Zoltan as a black box,
i. e. no timings of internal phases are collected. For more
details, refer to subsection 5.4.

The benchmark determines the runtime of each phase of the
partitioning algorithm, the achieved load balance, and the sur-
face index of the partitioning. To observe the amount of migra-
tion, the benchmark iterates over a time series of task weight
arrays. The task weights are derived from two different HPC
applications as described in the following.

5.1.2. Real-life datasets CLOUD2 and LWFA
The CLOUD2 dataset is extracted from COSMO-

SPECS+FD4 [8, 18], which simulates the evolution of
clouds and precipitation in the atmosphere in a high level
of detail (refer to subsection 2.1 for a short description). In
this scenario, a growing cumulus cloud in the center of the
rectangular domain leads to locally increasing workload of the
spectral bin cloud microphysics model SPECS. We measured
the execution times of 36 × 36 × 48 = 62208 grid cells for 100
successive time steps. The weight imbalance max(wi)/avg(wi)
varies between 5.17 and 8.02. Figure 7 (a) visualizes the
weights of the most imbalanced step. To construct larger
weight arrays, we replicated the original block weights in the
first two (horizontal) dimensions, e. g. a replication of 3 × 3
results in 108×108×48 = 559 872 weights. After this, we used
a Hilbert SFC to create task weight arrays. In subsection 5.6 we
show that our new hierarchical algorithm for SFC partitioning
improves the runtime of COSMO-SPECS+FD4.

The second dataset originates from a laser wakefield acceler-
ation (LWFA) simulation with the open source particle-in-cell
code PIConGPU [11, 32]. In LWFA, electrons are accelerated
by high electric fields caused by an ultrashort laser pulse in a
gas jet [12]. The dense accumulation of electrons following the
laser pulse leads to severe load imbalances, see figure 7 (b). The
computational grid consists of 32×512×64 = 1 048 576 super-
cells whose workload is determined by the number of particles
per supercell. We created task weight arrays for 200 consecu-
tive time steps (out of 10 000) using a Hilbert SFC. The weight
imbalance varies between 44.1 and 91.7.

Figure 8 shows histograms of the most imbalanced task
weight arrays in both datasets. Most of the weights are near

10

 0.0001

 0.01

 1

 100

1
2 1 2 4 8 16

P
er

ce
n
ta

g
e

Relative Task Weight

(a) CLOUD Dataset

 6
4
.6

2
%

 3
3
.4

2
%

 0

.5
8
%

 0

.2
4
%

 0
.5

0
%

 0

.4
3
%

 0

.2
0
%

 0
.0

0
1
6
%

0 1
16

1
4 1 4 16 64 256

Relative Task Weight

(b) LWFA Dataset
 2

.2
0
%

 0
.2

7
%

 0
.3

6
%

 1
.3

2
%

 3
0
.5

4
%

 6
4
.9

4
%

 0
.3

2
%

 0
.0

5
%

 0
.0

0
4
9
%

 0
.0

0
1
2
%

 0
.0

0
0
6
%

 0
.0

0
0
1
%

Figure 8: Histograms of the most imbalanced task weight arrays of both
datasets. The weight is specified relative to the average. Note that the leftmost
column in the LWFA chart includes zero weight tasks (i. e. no particles).

the average, except for a few strong peaks. Due to the so-called
bubble, a region without electrons behind the laser pulse, the
LWFA dataset also contains tasks with zero weight. The stan-
dard deviation for the shown relative task weight arrays are 0.41
for CLOUD2 and 0.31 for LWFA.

5.1.3. Performance metrics and summarization
According to the objectives of repartitioning, we are inter-

ested in four important metrics to assess the performance of a
repartitioning algorithm:

Load balance of the computed partitioning. As introduced in
subsection 2.3, we define load balance as the average load
among the partitions divided by the maximum load (i. e. the bot-
tleneck): Λ = B∗/B. The optimal case is 100 %, which means
that all partitions have exactly the same workload.

Surface index of the computed partitioning. The surface index
is a measure of the inter-partition communication the partition-
ing induces if tasks communicate with their direct neighbor
tasks (up to 6 neighbors in case of a 3D grid of tasks). It is sim-
ilar to the edge-cut in graph partitioning problems. The global
surface index is defined as the number of faces between neigh-
bor tasks that cross partition borders divided by total number
of faces between neighbor tasks [33]. The worst case is 100 %,
i. e. no task has a neighbor task in the same partition.

Task migration. The amount of migration is measured as the
number of tasks that are migrated after a new partitioning is
computed divided be the total number of tasks. Again, the worst
case is 100 %, i. e. all tasks are migrated.

Runtime. The benchmark measures the runtime for each phase
of the partitioning algorithm (except for Zoltan, which we treat
as a black box) and reports averages over all processes. We
ensure (as far as possible with MPI) that all processes start the
partitioning algorithm timely synchronized.

Summarization over time steps. The benchmark reports the
above mentioned metrics per time step of the datasets. To sum-
marize the runtime over the time steps we use median and add
percentiles where applicable to show the variation. The other
three metrics are averaged over the time steps. In each run, we
use a warm-up phase of 10 additional time steps before collect-
ing the metrics.

Table 3: Description of the HPC systems.

Name JUQUEEN Taurus
(one HPC island)

System IBM Blue Gene/Q Bullx DLC 720
Processor IBM PowerPC A2

1.6 GHz
Intel Xeon E5-2680v3
2.5 GHz,
no hyper-threading

Cores per node 16 cores 24 cores
RAM per node 16 GiB RAM 64 GiB RAM
Total nodes 28 672 612
Total cores 458 752 14 688
Network IBM proprietary Infiniband FDR
Topology 5D torus Fat tree
MPI MPICH2 based,

version V1R2M3,
xl.legacy.ndebug

Intel MPI 5.1.2.150

Compiler IBM XL 14.1 Intel 2015.3.187

Table 4: Choice of I MPI ADJUST * parameters for the Intel MPI library.

Parameter name Value Meaning
ALLGATHER 2 Bruck’s algorithm
ALLGATHERV 3 Ring algorithm
ALLREDUCE 9 Knomial algorithm
BCAST 1 Binomial algorithm
EXSCAN 1 Partial results gathering algorithm
GATHER 3 Shumilin’s algorithm
GATHERV 1 Linear algorithm

5.1.4. HPC systems used for the benchmark
We performed measurements on two Petaflop-class HPC sys-

tems: the IBM Blue Gene/Q system JUQUEEN installed at the
Jülich Supercomputing Centre, Germany, and the Bull HPC
Cluster Taurus at Technische Universität Dresden, Germany.
Their hardware characteristics and the software used in our
measurements are shown in table 3. Since JUQUEEN sup-
ports simultaneous multithreading, we used 32 MPI processes
per node for our measurements. Taurus is organized in several
heterogeneous islands and only one of the HPC islands used for
the benchmarks is described in table 3. On Taurus, we observed
that the performance of our benchmarks highly depends on the
choice of tuning parameters of the Intel MPI library [34]. We
experimentally determined optimal parameters for tuning MPI
collectives and used the same for all measurements, as listed in
table 4.

5.2. Evaluation of the serial 1D partitioning algorithms

In this subsection we investigate the effect of our modifi-
cations to ExactBS presented in subsection 4.2 to justify the
choice of the second level algorithm of the hierarchical 1D
partitioning method HIER. We compare existing heuristics
(H1seq, H2seq, RB) and the exact algorithm ExactBS with
our variants ExactBS+P (new probe function) and ExactBS+PI
(new probe function and modified start interval). Figure 9
shows the performance results with the LFWA dataset for 8192
partitions on JUQUEEN and Taurus. The average number of

11

tasks per process is 128. The runtime is the measured wall clock
time of the 1D partitioning calculation at rank 0 only, i. e. with-
out prefix sum, collection of weights, and broadcast of the parti-
tion array. The comparison between the heuristics and ExactBS
shows, that the heuristics are clearly faster, but they fail to
achieve a sufficient load balance. However, the percentage of
migrated tasks per iteration is higher with the exact algorithm.
The reason is that ExactBS places the partition borders depend-
ing on all individual values in W. In contrast, the placement
in the heuristics mainly depends on B∗, which varies much less
between the iterations than the individual weights. Comparing
ExactBS and ExactBS+P, we can see that both require the same
amount of steps and both compute the optimal load balance.
However, due to the improved probe algorithm, ExactBS+P is
clearly faster on both HPC systems (factor 3.2 on Taurus and
factor 2 on JUQUEEN). The variations in the task migration
are caused by the bounding technique for sp in ExactBS, which
leads to different partition borders. Since the LWFA dataset
contains many tasks with weight much smaller than the aver-
age task weight, partition borders may be set differently in some
cases without impacting load balance. For ExactBS+PI we ob-
serve a small runtime reduction over ExactBS+P, but a higher
number of search steps. That means that the RB heuristic helps
to determine a narrower initial search interval than our estima-
tion based on max(wi) used in ExactBS+PI. But it does not
translate into a runtime improvement, since the additional cost
of the RB heuristic does not pay off. Based on these results, we
have chosen ExactBS+PI as the second level 1D partitioning al-
gorithm for our evaluation of the hierarchical method HIER in
the following subsections.

5.3. Evaluation of the group count’s impact

To investigate the impact of the group count G on the charac-
teristics of the hierarchical algorithm and perform a comparison
with the parallel version of the heuristic H2 and the sequential
exact algorithms, we ran the benchmark described in subsec-
tion 5.1 with 16 384 processes on JUQUEEN.

Results with the CLOUD2 dataset. Figure 10 shows the results
with the CLOUD2 dataset with a replication factor of 3 × 3.
The runtimes are classified into the phases of the partitioning
methods. The serial exact methods ExactBS and ExactBS+PI
consume a large amount of runtime collecting the task weights
and even more distributing the partition array to all ranks (not
shown in the graph). The latter results from the waiting time of
16 383 processes while rank 0 computes the partitioning, which
takes 40 ms on average in case of ExactBS+PI. The hierarchical
method HIER is much faster and yet able to compete with the
exact methods with respect to load balance. With group count
G = 16 more than 99 % of the optimal balance is achieved
while the runtime is decreased by a factor of 12 compared to
ExactBS+PI and 28 compared to ExactBS. In HIER, the most
time is consumed waiting for the group master to compute the
partitioning before the partition array can be distributed to all
processes. The expected influence of the group count is clearly
visible; up to G = 256 the runtime is decreasing down to only

two times the runtime of the parallel heuristic H2par. How-
ever, with 1024 groups the runtime is increasing because the
MPI Bcast operation to distribute the partition array to all group
members consumes substantially more time. The amount of mi-
gration is also influenced by the group count. Interestingly, it is
much closer to the low amount observed for the heuristic. Even
with a small number of 16 groups, migration is clearly reduced
in comparison to the exact methods. Regarding surface index,
all methods achieve approximately the same results, which is
not unexpected since the same Hilbert SFC is used in all cases
for mapping of tasks from three dimensions to one dimension.

Results with the LWFA dataset. Figure 11 shows the results for
the LWFA dataset. This dataset achieves a lower optimal load
balance than the CLOUD2 dataset, due to the very large max-
imum relative task weights. As a result of the higher number
of tasks, all partitioning algorithms have a larger runtime com-
pared to the CLOUD2 dataset. However, the group count G
shows a very similar influence on performance and quality. For
the same G, an even higher quality factor and a lower task mi-
gration (relative to the task migration of the exact methods) is
achieved for the LWFA dataset compared to CLOUD2. The
difference in task migration between the heuristic and the exact
methods is extremely high for the LWFA dataset and we ob-
serve that HIER achieves relatively low migration very close to
the heuristic.

Summary. In summary, these results show that changing the
number of groups enables to adjust the hierarchical methods to
the needs of the application: for highly dynamic applications
requiring frequent load balancing one will prefer a larger group
count, such that the costs of partitioning and migration are min-
imal. On the contrary, a smaller group count is beneficial for
less dynamic applications, as the higher costs for partitioning
and migration will be compensated by the improved load bal-
ance. Even with a very small number of groups, the runtime is
reduced considerably compared to exact methods with negligi-
ble impact on load balance.

5.4. Comparison with geometric methods from Zoltan

The previous comparison has shown that the hierarchical
method for partitioning with space-filling curves is able to
achieve a very good trade-off between partition quality and
runtime performance. Now we want to compare the partition
quality with other implementations of partitioning methods in-
cluded in the Zoltan library [16] that is available as open source
software [35]. Zoltan implements various parallel geometric
and graph-based partitioning methods under the same interface,
which allows testing different methods for the same applica-
tion. Specifically, we include three geometric methods from
Zoltan in the comparison: (1) Zoltan SFC: Hilbert space-filling
curve partitioning, (2) Zoltan RCB: rectangular bisection, and
(3) Zoltan RCB/R: rectangular bisection with rectilinear parti-
tions. We did not include RIB (recursive inertial bisection) in
the comparison, because this method is not suitable for repar-
titioning. We also excluded graph methods because our test

12

0 50% 100%

Migrated tasks

 21.9%

 21.9%

 15.9%

 6.5%

 6.5%

 6.5%

 0 4 8 12 16

Number of steps

 15.0

 12.6

 12.6

 −

 −

 −

0 50% 100%

ExactBS+PI

ExactBS+P

ExactBS

RB

H2seq

H1seq

Load balance

 99.52%

 99.52%

 99.52%

 90.46%

 88.57%

 80.86%

 0 5 10 15

Runtime on Taurus (ms)

 4.86

 5.33

 17.72

 1.15

 0.61

 0.55

 0 20 40 60 80

Runtime on JUQUEEN (ms)

 37.51

 38.23

 79.72

 5.64

 4.11

 3.93

Figure 9: Comparison of the sequential 1D partitioning algorithms with the LWFA dataset (1 048 576 tasks) for 8192 partitions. The reported runtimes include the
1D partitioning calculation only, i. e. no prefix sum and communication.

0 30% 60%

Migrated tasks

 38.0%

 38.1%

 38.7%

 41.2%

 56.0%

 56.1%

 37.9%

0 25% 50%

Surface index

 36.5%

 36.5%

 36.5%

 36.5%

 36.5%

 36.5%

 36.5%

0 50% 100%

HIER, G=1024

HIER, G=256

HIER, G=64

HIER, G=16

ExactBS

ExactBS+PI

H2par

Load balance

 93.46%

 95.72%

 97.58%

 98.09%

 98.42%

 98.42%

 88.36%

 0 1 2 3 4 5 6

Runtime on JUQUEEN (median, ms)

Prefix sum of task weights

Collection of task weights

1D partitioning calculation

Distribution of partition array

 1.78

 1.48

 2.20

 5.49

 153.50

 66.69

 0.73

 >

 >

Total runtime percentiles

5% 25% 75% 95%

Figure 10: Comparison between the hierarchical method HIER, sequential exact algorithms, and the parallel heuristic H2par for partitioning the CLOUD2 dataset
(559 872 tasks) on 16 384 processes on JUQUEEN. Runtime variation among the 100 iterations is shown as lines (5/95-percentiles) and boxes (25/75-percentiles).

0 50% 100%

Migrated tasks

 13.0%

 13.3%

 14.7%

 19.5%

 66.1%

 81.1%

 12.9%

0 25% 50%

Surface index

 29.2%

 29.2%

 29.2%

 29.1%

 28.5%

 28.2%

 29.2%

0 50% 100%

HIER, G=1024

HIER, G=256

HIER, G=64

HIER, G=16

ExactBS

ExactBS+PI

H2par

Load balance

 88.40%

 90.19%

 90.67%

 90.82%

 90.93%

 90.93%

 73.97%

 0 2 4 6 8 10 12

Runtime on JUQUEEN (median, ms)

Prefix sum of task weights

Collection of task weights

1D partitioning calculation

Distribution of partition array

 2.38

 2.77

 4.94

 10.53

 216.47

 98.43

 1.35

 >

 >

Total runtime percentiles

5% 25% 75% 95%

Figure 11: Comparison between the hierarchical method HIER, sequential exact algorithms, and the parallel heuristic H2par for partitioning the LWFA dataset
(1 048 576 tasks) on 16 384 processes on JUQUEEN. Runtime variation among the 200 iterations is shown as lines (5/95-percentiles) and boxes (25/75-percentiles).

0 25% 50%

Migrated tasks

 30.4%

 30.5%

 30.8%

 32.2%

 48.7%

 48.9%

 30.4%

 40.3%

 12.6%

 3.2%

0 25% 50%

Surface index

 33.3%

 33.3%

 33.3%

 33.3%

 33.3%

 33.3%

 33.3%

 36.4%

 33.4%

 28.2%

0 50% 100%

HIER, G=1024

HIER, G=256

HIER, G=64

HIER, G=16

ExactBS

ExactBS+PI

H2par

Zoltan SFC

Zoltan RCB

Zoltan RCB/R

Load balance

 94.75%

 96.61%

 98.15%

 98.56%

 98.82%

 98.82%

 91.15%

 92.05%

 93.07%

 51.59%

 0 1 2 3

Runtime on Taurus (median, ms)

Prefix sum of task weights

Collection of task weights

1D partitioning calculation

Distribution of partition array

 0.29

 0.35

 0.54

 2.14

 1020.44

 1007.74

 0.37

 205.72

 1137.12

 141.23

 >

 >

 >

 >

 >

Total runtime percentiles

5% 25% 75% 95%

Figure 12: Comparison between the hierarchical method HIER, sequential exact algorithms, the parallel heuristic H2par, and Zoltan methods for partitioning
the CLOUD2 dataset (559 872 tasks) on 12 288 processes on Taurus. Runtime variation among the 100 iterations is shown as lines (5/95-percentiles) and boxes
(25/75-percentiles). Note: the runtimes of both Zoltan RCB methods vary extremely strong such that the semi-interquartile range is larger than median.

0 25% 50%

Migrated tasks

 9.7%

 9.8%

 10.5%

 12.7%

 34.2%

 43.3%

 9.7%

 10.8%

 8.2%

 0.8%

0 25% 50%

Surface index

 26.2%

 26.2%

 26.2%

 26.2%

 26.2%

 26.1%

 26.2%

 42.6%

 26.0%

 22.2%

0 50% 100%

HIER, G=1024

HIER, G=256

HIER, G=64

HIER, G=16

ExactBS

ExactBS+PI

H2par

Zoltan SFC

Zoltan RCB

Zoltan RCB/R

Load balance

 94.52%

 97.74%

 98.85%

 99.12%

 99.19%

 99.19%

 81.73%

 81.49%

 82.72%

 65.03%

 0 1 2 3 4 5

Runtime on Taurus (median, ms)

Prefix sum of task weights

Collection of task weights

1D partitioning calculation

Distribution of partition array

 0.42

 0.54

 0.93

 2.95

 1052.88

 1032.57

 0.43

 221.49

 127.86

 126.64

 >

 >

 >

 >

 >

Total runtime percentiles

5% 25% 75% 95%

Figure 13: Comparison between the hierarchical method HIER, sequential exact algorithms, the parallel heuristic H2par, and Zoltan methods for partitioning
the LWFA dataset (1 048 576 tasks) on 12 288 processes on Taurus. Runtime variation among the 200 iterations is shown as lines (5/95-percentiles) and boxes
(25/75-percentiles). Note: the runtimes of Zoltan RCB/R vary extremely strong such that the semi-interquartile range is larger than median.

13

applications have regular rectangular grids best suited for ge-
ometric methods and we already tested a graph partitioner in
previous work [36]. One of Zoltan’s design goals is a high gen-
erality of the implemented methods. They are not tuned for a
specific application case. For example, the geometric methods
do not know the grid size and need to determine a bounding
box around all objects (i. e. tasks) passed to the library before
computing a partitioning. Furthermore, objects may exist at
arbitrary (floating point) coordinates, whereas the methods we
developed assume a fixed-size, cuboid-shaped regular grid with
objects at each integer coordinate. Consequently, the primary
goal of this comparison is not to evaluate the runtime perfor-
mance, but the partition quality indicators load balance, surface
index, and task migration.

Zoltan setup. For the measurements we used Zoltan version
3.83 with the following non-default parameters: REMAP=1
(maximize overlap between old and new partition), IM-
BALANCE TOL=1.0 (strive for best possible balance),
RCB REUSE=1 (reuse previous RCB cuts as initial guesses),
and RCB LOCK DIRECTIONS=1 (keep order of directions
of cuts constant when repeating RCB). Zoltan RCB/R is the
same as Zoltan RCB except that additionally the parame-
ter RCB RECTILINEAR BLOCKS=1 is set to force cuboid-
shaped partitions. In case of Zoltan RCB, objects located on a
cutting plane may be moved either to one or the other partition
to improve the load balance. However, this also increases the
surface index.

Comparison at 12 288 processes. Figures 12 and 13 show re-
sults of the comparison with 12 288 processes on Taurus for
the CLOUD2 and the LWFA datasets, respectively. Our hi-
erarchical method shows generally the same behavior as on
JUQUEEN: a strong improvement of runtime compared the
exact methods, a very good trade-off with respect to load bal-
ance and migration, and a tunable quality by adapting the group
count G. However, the runtime improvement is even more pro-
nounced on Taurus, which is due to the very efficient imple-
mentation of global MPI collectives on the IBM Blue Gene/Q
that enables the serial methods to run much faster than on Tau-
rus. Regarding the Zoltan methods, we can see that none of
the three methods is able to improve the load balance strongly
over the parallel heuristic H2par. However, both versions of
Zoltan RCB are able improve the migration clearly over the all
SFC-based methods, especially in case of RCB/R. This method
also achieves the best surface index, but it fails with respect
to load balance, which comes not unexpected given the restric-
tion to cuboid-shaped partitions. Zoltan RCB achieves approx-
imately the same surface index than our SFC-based methods
while Zoltan SFC achieves the worst surface index among all
methods. The runtime of the Zoltan methods is much higher
compared to our parallel methods, but at least in some cases
clearly faster than the serial SFC-based methods. However,
the runtimes of the RCB-based methods are varying strongly
among the time steps of the datasets. For example in case
of Zoltan RCB/R and the LWFA dataset, the semi-interquartile
range, defined as 0.5×(75-percentile−25-percentile), is two

times higher than the median among the 200 time steps. The
RCB implementation of Zoltan is based on repeatedly splitting
the MPI communicator when performing the recursive cuts and
relies on heavy MPI collective communication. We identified
this as the main source of variations.

Scalability comparison. Figure 14 shows a scalability com-
parison of the partitioning methods using the LWFA dataset
(1 048 576 tasks) on Taurus. Based on the findings from fig-
ure 13, we selected two different options for the group count of
HIER: a fixed group count of G = 64, which should result in
very high load balance, and a fixed group size of P/G = 48,
which should be more scalable at the cost of balance at high
process counts. Note that both versions are identical at 3072
ranks.

Load balance. The comparison of load balance shows three
groups: the best ones are the exact 1D partitioning methods
and the hierarchical method, with the P/G = 48 version falling
slightly behind at 12 288 processes. The second group shows
still a very high balance at low process counts but drops no-
tably starting at 3072 processes. It is made up by Zoltan RCB,
Zoltan SFC, and H2par. And finally the third group consists of
Zoltan RCB/R only, which achieves very poor load balance.

Surface index. Regarding surface index, our own SFC-based
methods are very close together, whereas Zoltan SFC achieves
a more than 60 % higher surface index only. This is probably
due to the different kind of mapping of tasks to the SFC and the
high aspect ratio of the LWFA dataset’s grid (32×512×64). The
rectangular bisection methods of Zoltan are able to improve the
surface index, especially Zoltan RCB/R.

Task migration. Zoltan RCB/R also achieves the lowest task
migration at all processor counts which increases by a factor
of 3.3 from 768 to 12 288 ranks. The exact SFC-based meth-
ods ExactBS and ExactBS+PI show a very strong increase of
migration over the process count range, more than factor 40.
The other SFC-based methods, including Zoltan SFC, are very
close and grow by factors 15 to 18, approximately the factor 16
by which the number of processes increases, which indicates
a reasonable result. Zoltan RCB shows the best scalability be-
havior for task migration growing only by a factor of 2.5, but
only at 12 288 ranks it is able to improve over the SFC-based
methods.

Runtime. The runtime scalability comparison shows two
groups: as expected, our parallel SFC-based methods show the
best runtime performance. They require always below 1 ms for
the repartitioning calculation. H2par is fastest, but HIER is only
factor 2 to 3 slower, which is remarkable considering the great
improvement in load balance over H2par. The other methods
take one to three orders of magnitude more runtime than the
group of the three fastest, with Zoltan RCB and RCB/R showing
at least much better scalability behavior than the exact SFC-
based methods.

14

0

25%

50%

75%

100%

 768 1536 3072 6144 12288

Number of Processes

(a) Load balance

H2par

Zoltan SFC

Zoltan RCB

ExactBS

ExactBS+PI

HIER

0

10%

20%

30%

40%

50%

 768 1536 3072 6144 12288

Number of Processes

(b) Surface index

ExactBS

ExactBS+PI

H2par

HIER

Zoltan RCB

0

10%

20%

30%

40%

50%

 768 1536 3072 6144 12288

Number of Processes

(c) Migrated tasks

H2par

HIER

Zoltan SFC

 0.1

 1

 10

 100

 1000

 768 1536 3072 6144 12288

Number of Processes

(d) Runtime on Taurus (ms, log scale)

 0

 0.2

 0.4

 0.6

 0.8

 1

 768 1536 3072 6144 12288

Number of Processes

(e) Runtime on Taurus, detail (ms)

ExactBS

ExactBS+PI

Zoltan SFC

Zoltan RCB

Zoltan RCB/R

HIER, G=64

HIER, P/G=48

H2par

Figure 14: Comparison of scalability between the hierarchical method HIER, sequential exact algorithms, the parallel heuristic H2par, and Zoltan methods for
partitioning the LWFA dataset (1 048 576 tasks) on Taurus. Overlapping lines are additionally labeled within the plots.

Summary. In summary, the comparison with Zoltan has shown
that our SFC-based hierarchical methods achieve a better load
balance and a comparable surface index for two realistic
datasets. In case migration is the major target for optimiza-
tion, methods based on recursive bisection might be a better
choice than SFC-based methods. However, in our implemen-
tations the migration is expressed as shifts of borders along the
space-filling curve so that tasks are migrated between processes
that are nearby (rank-wise), mostly even neighbor ranks. Such
communication can often be satisfied within a node via shared
memory or via short network paths (i. e. torus neighbors in case
of Blue Gene/Q or only a few hops in a fat tree network without
going over the top-level switch), which reduces network con-
tention and thus improves bandwidth and latency.

5.5. Evaluation of strong scalability up to 524 288 processes

We used the CLOUD2 dataset with a replication factor of
6×7 (2 612 736 tasks) to compare the scalability to large process
counts on JUQUEEN. Again, we used two modes to handle the
group count when changing the number of processes: a fixed
group count of G = 64 and a fixed group size of P/G = 256.
Both versions are identical at 16 384 ranks. We also included an
evaluation of the distributed partition directory for the methods
H2par and HIER, which we label H2par+ and HIER+, respec-
tively. Note that for the metrics load balance, surface index,
and task migration, the versions with distributed partition di-
rectory behave exactly the same as their counterparts without
distributed partition directory. Figure 15 compares the relevant
metrics among the various 1D partitioning algorithms.

Load balance. The exact algorithms ExactBS and ExactBS+PI
always achieve the optimal balance, while HIER with fixed
group count G = 64 is close behind. As expected, we observe
that a fixed group size for HIER leads to less balance at large
scale, which is yet clearly higher than the balance achieved by
the heuristic.

Surface index. Regarding surface index, all methods behave
nearly the same. The very high surface index at large scale
is due to the very small number of tasks per process; at 512 Ki1

processes only an average of 4.98 blocks is assigned to each
process, which also explains the relatively low optimal load bal-
ance.

Task migration. The percentage of migrated tasks is rising
strongly with the number of processes for all studied methods,
but the serial exact methods are worse than the others, which
are all close together. At 128 Ki processes the exact methods
migrate on average more than 88 % of the tasks per time step,
whereas the fraction is 77 % for the parallel methods, which is
still quiet high.

Runtime. The runtime scalability shows that, firstly, there is a
huge gap of four orders of magnitude between the serial ex-
act methods and the heuristic H2par+ with distributed parti-
tion directory. The partition directory enables the heuristic to
show a very good scalability behavior, improving its speed up
to 16 Ki processes and then only slightly slowing down up to

1The binary prefix Ki denotes 1024 as opposed the decimal prefix k.

15

0

25%

50%

75%

100%

 2048
 4096

 8192
16Ki

32Ki
64Ki

128Ki

256Ki

512Ki

Number of Processes

(a) Load balance

H2par

H2par+
HIER, P/G=256

HIER+, P/G=256

ExactBS

ExactBS+PI

HIER, G=64

HIER+, G=64

0

25%

50%

75%

100%

 2048
 4096

 8192
16Ki

32Ki
64Ki

128Ki

256Ki

512Ki

Number of Processes

(b) Surface index

0

25%

50%

75%

100%

 2048
 4096

 8192
16Ki

32Ki
64Ki

128Ki

256Ki

512Ki

Number of Processes

(c) Migrated tasks

ExactBS

ExactBS+PI

HIER

HIER+

H2par

H2par+

 1

 10

 100

 1000

 10000

 2048
 4096

 8192
16Ki

32Ki
64Ki

128Ki

256Ki

512Ki

Number of Processes

(d) Runtime on Juqueen (ms, log scale)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2048
 4096

 8192
16Ki

32Ki
64Ki

128Ki

256Ki

512Ki

Number of Processes

(e) Runtime on Juqueen, detail (ms)

ExactBS

ExactBS+PI

HIER, G=64

HIER+, G=64

HIER, P/G=256

HIER+, P/G=256

H2par

H2par+

Figure 15: Comparison of scalability between the hierarchical method HIER, sequential exact algorithms, and the parallel heuristic H2par for partitioning the
CLOUD2 dataset with 2 612 736 tasks on JUQUEEN. HIER+ and H2par+ are versions using the distributed partition directory instead of the distribution of the full
partition array. Overlapping lines are additionally labeled within the plots.

512 Ki processes. The version with distribution of the full parti-
tion array to all ranks, H2par, is clearly hampered by the global
MPI Allgather operation. Similarly, HIER with P/G = 256
shows a great improvement through the distributed partition di-
rectory and even achieves a speed-up up to 256 Ki processes,
but of course at costs of load balance. HIER with G = 64
achieves a very high load balance with 98.5 % of the optimal
balance in the worst case (at 256 Ki processes) and requires
only 42.1 ms (23.4 ms for HIER+) at 512 Ki processes. This is a
substantial speed-up compared to the 6.4 s of ExactBS and 1.3 s
of ExactBS+PI. The outliers at 8192 and 32 Ki processes are
reproducible and are caused by longer runtime of the MPI col-
lectives for distributing the full partition array at specific group
counts.

Summary. We observed that the hierarchical method is able to
close the gap between fast, but inexact heuristics and serial ex-
act algorithms for the 1D partitioning problem. Even with a rel-
atively small group count a huge speed-up compared to the ex-
act methods can be achieved, while maintaining nearly the opti-
mal balance. Tuning the group count allows trading off quality
against runtime performance and, thus, adapting to the require-
ments of the application. If the processes do not need to know
the location of all other partitions, a considerable scalability
improvement is possible by communicating only the required
parts of the partition array.

5.6. Application to atmospheric modeling
The benefit of an optimized partitioning algorithm for highly

parallel applications can be determined ultimately only by mea-
suring the end user application runtime. In this subsection we
evaluate the impact of our hierarchical 1D partitioning method
for load balancing the atmospheric simulation model COSMO-
SPECS+FD4 (refer to subsection 2.1 for a brief description).
We first evaluate the impact of the partitioning method on the
runtime performance of the simulation and then show scalabil-
ity results.

For PIConGPU we cannot directly measure the runtime ben-
efit of an improved partitioning algorithm, since load balancing
is currently not implemented. However, PIConGPU achieves
strong scaling such that a single time step of LWFA is computed
in less than 100 ms [37]. Together with our findings from sec-
tions 5.3 and 5.4 that LWFA requires a high-quality method to
achieve high balance and exact methods require approximately
one second to compute a partitioning, this indicates a large po-
tential for our algorithm.

Impact of partitioning method. Figure 16 shows the impact of
the choice of partitioning method and parameter G on the to-
tal runtime of COSMO-SPECS+FD4. In this study the grid
of 512 × 512 × 48 was decomposed into 786 432 grid blocks
for load balancing SPECS. Note that dynamic load balancing is
carried out every time step in this case (180 steps) and that the
reported load balance value is the one measured after computa-
tions have been performed, i. e. not the load balance based on
the task weights (i. e. execution times) from the previous time

16

0 50% 100%

Migrated tasks per time step

 60.5%

 50.7%

 46.4%

 42.2%

 41.3%

 44.3%

 16.4%

 84.1%

 40.3%

 19.4%

0 50% 100%

Load balance

 92.5%

 92.5%

 92.4%

 91.9%

 90.5%

 88.2%

 91.0%

 92.5%

 80.5%

 80.2%

 0 120 240 360

HIER, G=16

HIER, G=64

HIER, G=256

HIER, G=1024

HIER, G=4096

HIER, G=8192

HIER, G=256 / auto

ExactBS

H2par

H2par / auto

Total runtime on JUQUEEN (s)

COSMO

SPECS

SPECS
comm.

FD4

 239.9

 239.9

 238.4

 239.2

 241.5

 247.1

 235.0

 275.7

 266.0

 263.4

 0 100 200 300

Avg. load balancing time per time step (ms)

Synchronization

Partitioning
calculation

Migration

 71.8

 69.8

 62.7

 65.4

 78.9

 107.4

 62.4

 280.5

 199.7

 196.7

Figure 16: Comparison of the hierarchical 1D partitioning algorithm in COSMO-SPECS+FD4 with ExactBS and H2par on 65 536 processes on JUQUEEN.

0 200 400 600

16Ki

32Ki

64Ki

128Ki

256Ki

Total JUQUEEN node hours (runtime × node count)

COSMO

SPECS

SPECS
Comm.

FD4

 477.2

 485.2

 495.4

 506.3

 544.7

 0 1800 3600

Runtime (s)

 3355.5

 1705.7

 870.8

 445.0

 239.4

0 50% 100%

Load balance

 97.2%

 96.2%

 94.8%

 93.7%

 89.9%

Figure 17: Strong scaling of COSMO-SPECS+FD4 with hierarchical 1D par-
titioning on JUQUEEN.

step that are used to calculate the partitioning. The results show
that the exact method ExactBS achieves a high load balance
but introduces a noticeable overhead for partitioning calcula-
tion. The heuristic H2par, on the other side, is fast, but fails
to provide a sufficient load balance, which leads to increased
synchronization costs. Though, the heuristic achieves a bet-
ter total runtime. With the hierarchical 1D partitioning method
with group count G = 256, the runtime of the application is
reduced by more than 10 % compared to the heuristic. One can
also see that the task migration is relatively high. But even with
84.1 % migrated tasks on average per time step with ExactBS,
the runtime fraction of task migration is only 1.5 %.

In practice, performing load balancing at every time step may
generate noticeable overhead. To reduce the number of load
balancing invocations, FD4 is able to decide automatically if
load balancing is beneficial. In this auto mode, FD4 weighs the
time lost due to deferring repartitioning (i. e. the increased syn-
chronization time when not performing repartitioning) against
the time required for repartitioning (i. e. partitioning calculation
and migration times). Both times are measured at runtime and
a history from the last 4 load balancing invocations is kept. Us-
ing the auto mode, load balancing is carried out only at 30 % of
the time steps. Note that synchronization happens at every time
step, even if repartitioning is not carried out, to measure the im-
balance. As can be seen in figure 16 (line HIER, G=256 / auto),
the execution time of COSMO-SPECS+FD4 is reduced further
to 235 s and the amount of migration is strongly reduced.

Strong scalability. Figure 17 shows results from a strong scal-
ability measurement with COSMO-SPECS+FD4 using our
method HIER with auto mode for dynamic load balancing.
Here, we used a horizontal grid size of 1024× 1024 cells and
3 145 728 FD4 blocks. The speed-up from 16 384 to 262 144
processes is 14.0, mainly due to the nearly perfectly scaling
SPECS computations that dominate the execution time. The

FD4 load balancing achieves a speed-up of 3.7 only, which
is mainly caused by synchronization times. Not surprisingly,
the load balance is decreasing with the process count, since the
number of blocks per process decrease.

In summary, the good scalability of COSMO-SPECS+FD4
allows to run atmospheric simulations with detailed cloud mi-
crophysics and a large grid size faster than forecast time. In
this case, a 30 min forecast has been computed in 4 min with
262 144 processes.

6. Conclusions

Large-scale simulations with strong workload variations in
both space and time require scalable and accurate dynamic load
balancing techniques. Partitioning based on space-filling curves
is comparably fast and has a high potential for scalable applica-
tions. However, attention has to be paid on the 1D partitioning
algorithm since heuristics may fail to achieve a good load bal-
ance. Therefore, we introduce a new parallel and hierarchical
method that makes high-quality dynamic load balancing based
on SFCs feasible at large scale. Our method applies a scal-
able heuristic to parallelize an exact algorithm and avoid the
high communication costs of a centralized method. Addition-
ally, the hierarchical approach allows adjusting the partitioning
algorithm’s characteristics to the dynamical behavior of the ap-
plication. Our experimental evaluation on up to 524 288 pro-
cesses shows that our new algorithm runs more than two orders
of magnitude faster compared to the fastest published exact al-
gorithm, while the load balance is almost optimal. To improve
the scalability further, we propose a method to avoid the repli-
cation of the full partition array on all processes and communi-
cate only the few parts necessary for migration. The compari-
son with other implementations of geometric partitioning meth-
ods shows that the hierarchical SFC-based method runs clearly
faster and achieves better load balance and comparable surface
index. We show that the improvement in the partitioning al-
gorithm leads to a more than 10 % performance improvement
of an atmospheric simulation model with detailed cloud micro-
physics. Since the partitioning algorithm is implemented as a
library, this reduction in execution time comes at almost no ef-
fort for users and could benefit various applications. All meth-
ods studied in this work are implemented in the dynamic load
balancing and model coupling framework FD4, which is avail-
able as open source [23], including the benchmark program and

17

the CLOUD2 dataset to allow reproducibility of our measure-
ments.

The benefits of our hierarchical 1D partitioning algorithm for
dynamic applications on highly parallel systems are twofold:
(1) the overhead of high-quality repartitioning is reduced
strongly allowing more frequent dynamic load balancing and
(2) trading off between repartitioning costs and quality is en-
abled by the group count. With our improvements it is now fea-
sible to perform effective load balancing in cases where appli-
cation dynamics lead to strong imbalances every few seconds,
since repartitioning takes less than 100 ms at half a million pro-
cesses compared to several seconds with prior published meth-
ods. Our measurements indicate that this gap will stay or even
be widened at higher concurrency expected for exascale sys-
tems.

Our practical comparison with workload datasets from two
different relevant applications on two HPC systems showed the
applicability and performance of our proposed methods. How-
ever, it remains future work to study which type of workloads
and applications are less well-suited for our partitioning algo-
rithms and how the algorithms could be improved, especially
with regard to the theoretical lower bound on load balance,
which we found to be as low as the one for the heuristics. While
our hierarchical approach reduces the total migration volume
compared to exact algorithms, it is not yet clear how 1D par-
titioning algorithms could explicitly reduce these costs for ap-
plications where migration is expensive. Furthermore, our hi-
erarchical method could be extended by automatic runtime tun-
ing for the optimal group count. It should be checked regu-
larly whether the execution time of the application benefits from
modifying the group count.

Acknowledgments

We thank the Jülich Supercomputing Centre, Germany, for
access to JUQUEEN and the German Meteorological Service
for providing the COSMO model. Furthermore, we want to
thank Verena Grützun, Ralf Wolke, and Oswald Knoth for their
support regarding the COSMO-SPECS model, René Widera for
providing the LWFA dataset, and the anonymous reviewers who
helped improving the paper. This work was supported by the
German Research Foundation grant No. NA 711/2-1 and by the
‘Center for Advancing Electronics Dresden’ (cfaed).

References

[1] J. Dongarra, et al., The International Exascale Software Project Roadmap,
Int. J. High Perform. C. 25 (1) (2011) 3–60. doi:10.1177/

1094342010391989.
[2] R. Lucas, et al., Top Ten Exascale Research Challenges, DOE ASCAC

subcommittee report (2014).
[3] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton,

L. Wilcox, Extreme-Scale AMR, in: Proc. SC ’10, 2010, pp. 1–12. doi:
10.1109/SC.2010.25.

[4] O. Meister, M. Bader, 2D adaptivity for 3D problems: Parallel SPE10
reservoir simulation on dynamically adaptive prism grids, J. Comput. Sci.
9 (2015) 101–106. doi:10.1016/j.jocs.2015.04.016.

[5] J. J. Carroll-Nellenback, B. Shroyer, A. Frank, C. Ding, Efficient paral-
lelization for AMR MHD multiphysics calculations; implementation in
AstroBEAR, J. Comput. Phys. 236 (2013) 461–476. doi:10.1016/j.

jcp.2012.10.004.
[6] D. F. Harlacher, H. Klimach, S. Roller, C. Siebert, F. Wolf, Dynamic Load

Balancing for Unstructured Meshes on Space-Filling Curves, in: Proc.
IPDPSW 2012, 2012, pp. 1661–1669. doi:10.1109/IPDPSW.2012.

207.
[7] M. Lieber, R. Wolke, Optimizing the coupling in parallel air quality model

systems, Environ. Modell. Softw. 23 (2) (2008) 235–243. doi:10.1016/
j.envsoft.2007.06.007.

[8] M. Lieber, V. Grützun, R. Wolke, M. S. Müller, W. E. Nagel, Highly
Scalable Dynamic Load Balancing in the Atmospheric Modeling System
COSMO-SPECS+FD4, in: Proc. PARA 2010, Vol. 7133 of LNCS, 2012,
pp. 131–141. doi:10.1007/978-3-642-28151-8_13.

[9] J. Phillips, K. Schulten, A. Bhatele, C. Mei, Y. Sun, E. Bohm, L. Kalé,
Scalable Molecular Dynamics with NAMD, in: A. Bhatele, L. Kalé
(Eds.), Parallel Science and Engineering Applications: The Charm++

Approach, CRC Press, 2013, Ch. 4, pp. 61–77.
[10] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, P. Gibbon, A

massively parallel, multi-disciplinary Barnes-Hut tree code for extreme-
scale N-body simulations, Comput. Phys. Commun. 183 (4) (2012) 880–
889. doi:10.1016/j.cpc.2011.12.013.

[11] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland,
T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart,
R. Widera, Radiative Signatures of the Relativistic Kelvin-Helmholtz In-
stability, in: Proc. SC ’13, 2013. doi:10.1145/2503210.2504564.

[12] A. D. Debus, et al., Electron Bunch Length Measurements from Laser-
Accelerated Electrons Using Single-Shot THz Time-Domain Interferom-
etry, Phys. Rev. Lett. 104 (2010) 084802. doi:10.1103/PhysRevLett.
104.084802.

[13] J. D. Teresco, K. D. Devine, J. E. Flaherty, Partitioning and Dynamic
Load Balancing for the Numerical Solution of Partial Differential Equa-
tions, in: Numerical Solution of Partial Differential Equations on Par-
allel Computers, Vol. 51 of LNCSE, Springer, 2006, pp. 55–88. doi:

10.1007/3-540-31619-1_2.
[14] J. R. Pilkington, S. B. Baden, Dynamic partitioning of non-uniform struc-

tured workloads with spacefilling curves, IEEE T. Parall. Distr. 7 (3)
(1996) 288–300. doi:10.1109/71.491582.

[15] A. Pınar, C. Aykanat, Fast optimal load balancing algorithms for 1D par-
titioning, J. Parallel Distr. Com. 64 (8) (2004) 974–996. doi:10.1016/
j.jpdc.2004.05.003.

[16] E. G. Boman, U. V. Catalyurek, C. Chevalier, K. D. Devine, The Zoltan
and Isorropia parallel toolkits for combinatorial scientific computing: Par-
titioning, ordering, and coloring, Scientific Programming 20 (2) (2012)
129–150. doi:10.3233/SPR-2012-0342.

[17] M. Lieber, W. Nagel, Scalable high-quality 1D partitioning, in: Proc.
HPCS 2014, 2014, pp. 112–119. doi:10.1109/HPCSim.2014.

6903676.
[18] V. Grützun, O. Knoth, M. Simmel, Simulation of the influence of aerosol

particle characteristics on clouds and precipitation with LM–SPECS:
Model description and first results, Atmos. Res. 90 (2-4) (2008) 233–242.
doi:10.1016/j.atmosres.2008.03.002.

[19] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, M. Raschendor-
fer, T. Reinhardt, Operational Convective-Scale Numerical Weather
Prediction with the COSMO Model: Description and Sensitivities,
Mon. Weather Rev. 139 (12) (2011) 3887–3905. doi:10.1175/

MWR-D-10-05013.1.
[20] IPCC, Climate Change 2013: The Physical Science Basis. Contribution

of Working Group I to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC), Cambridge University Press,
2013. doi:10.1017/CBO9781107415324.

[21] M. Lieber, W. E. Nagel, H. Mix, Scalability Tuning of the Load Balancing
and Coupling Framework FD4, in: NIC Symposium 2014, Vol. 47 of NIC
Series, 2014, pp. 363–370, http://hdl.handle.net/2128/5919.

[22] J. W. Larson, Ten organising principles for coupling in multiphysics
and multiscale models, ANZIAM J. 48 (2009) C1090–C1111. doi:

10.21914/anziamj.v48i0.138.
[23] FD4 website, http://www.tu-dresden.de/zih/clouds (accessed

03/2017).
[24] S. Miguet, J.-M. Pierson, Heuristics for 1D rectilinear partitioning as a

18

http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1109/SC.2010.25
http://dx.doi.org/10.1109/SC.2010.25
http://dx.doi.org/10.1016/j.jocs.2015.04.016
http://dx.doi.org/10.1016/j.jcp.2012.10.004
http://dx.doi.org/10.1016/j.jcp.2012.10.004
http://dx.doi.org/10.1109/IPDPSW.2012.207
http://dx.doi.org/10.1109/IPDPSW.2012.207
http://dx.doi.org/10.1016/j.envsoft.2007.06.007
http://dx.doi.org/10.1016/j.envsoft.2007.06.007
http://dx.doi.org/10.1007/978-3-642-28151-8_13
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://dx.doi.org/10.1145/2503210.2504564
http://dx.doi.org/10.1103/PhysRevLett.104.084802
http://dx.doi.org/10.1103/PhysRevLett.104.084802
http://dx.doi.org/10.1007/3-540-31619-1_2
http://dx.doi.org/10.1007/3-540-31619-1_2
http://dx.doi.org/10.1109/71.491582
http://dx.doi.org/10.1016/j.jpdc.2004.05.003
http://dx.doi.org/10.1016/j.jpdc.2004.05.003
http://dx.doi.org/10.3233/SPR-2012-0342
http://dx.doi.org/10.1109/HPCSim.2014.6903676
http://dx.doi.org/10.1109/HPCSim.2014.6903676
http://dx.doi.org/10.1016/j.atmosres.2008.03.002
http://dx.doi.org/10.1175/MWR-D-10-05013.1
http://dx.doi.org/10.1175/MWR-D-10-05013.1
http://dx.doi.org/10.1017/CBO9781107415324
http://hdl.handle.net/2128/5919
http://dx.doi.org/10.21914/anziamj.v48i0.138
http://dx.doi.org/10.21914/anziamj.v48i0.138
http://www.tu-dresden.de/zih/clouds

low cost and high quality answer to dynamic load balancing, in: Proc.
High-Performance Computing and Networking, Vol. 1225 of LNCS,
1997, pp. 550–564. doi:10.1007/BFb0031628.

[25] J. T. Oden, A. Patra, Y. G. Feng, Domain Decomposition for Adaptive hp
Finite Element Methods, in: Contemporary Mathematics, Vol. 180, 1994,
pp. 295–301. doi:10.1090/conm/180.

[26] D. M. Nicol, Rectilinear partitioning of irregular data parallel computa-
tions, J. Parallel Distr. Com. 23 (1994) 119–134. doi:10.1006/jpdc.

1994.1126.
[27] Y. Han, B. Narahari, H.-A. Choi, Mapping a chain task to chained pro-

cessors, Inform. Process. Lett. 44 (3) (1992) 141–148. doi:10.1016/

0020-0190(92)90054-Y.
[28] A. Pınar, E. K. Tabak, C. Aykanat, One-dimensional partitioning for het-

erogeneous systems: Theory and practice, J. Parallel Distr. Com. 68 (11)
(2008) 1473–1486. doi:10.1016/j.jpdc.2008.07.005.

[29] G. Zheng, A. Bhatelé, E. Meneses, L. V. Kalé, Periodic hierarchical load
balancing for large supercomputers, Int. J. High Perform. C. 25 (4) (2011)
371–385. doi:10.1177/1094342010394383.

[30] J. D. Teresco, J. Faik, J. E. Flaherty, Hierarchical Partitioning and Dy-
namic Load Balancing for Scientific Computation, in: Applied Parallel
Computing, Vol. 3732 of LNCS, Springer, 2006, pp. 911–920. doi:

10.1007/11558958_110.
[31] MPI: A Message-Passing Interface Standard, Version 3.1, 2015, http:

//www.mpi-forum.org/docs (accessed 03/2017).
[32] PIConGPU website, http://picongpu.hzdr.de (accessed 03/2017).
[33] J. D. Teresco, L. P. Ungar, A comparison of Zoltan dynamic load bal-

ancers for adaptive computation, Tech. Rep. CS-03-02, Williams College
Department of Computer Science (2003).

[34] Intel Corp., Intel MPI Library for Linux OS Reference Manual, version
5.1.2, https://software.intel.com/en-us/intel-mpi-library
(accessed 03/2017).

[35] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, V. Leung,
C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, Zoltan home page,
http://www.cs.sandia.gov/Zoltan (accessed 03/2017).

[36] M. Lieber, R. Wolke, V. Grützun, M. S. Müller, W. E. Nagel, A frame-
work for detailed multiphase cloud modeling on HPC systems, in: Proc.
ParCo 2009, Vol. 19 of Adv. Par. Com., IOS Press, 2010, pp. 281–288.
doi:10.3233/978-1-60750-530-3-281.

[37] A. Debus, M. Bussmann, R. Pausch, U. Schramm, R. Widera, Simulating
Radiation from Laser-wakefield Accelerators, in: ICAP2012, 2012,
http://accelconf.web.cern.ch/accelconf/icap2012/talks/

tusbc1_talk.pdf (accessed 03/2017).

19

http://dx.doi.org/10.1007/BFb0031628
http://dx.doi.org/10.1090/conm/180
http://dx.doi.org/10.1006/jpdc.1994.1126
http://dx.doi.org/10.1006/jpdc.1994.1126
http://dx.doi.org/10.1016/0020-0190(92)90054-Y
http://dx.doi.org/10.1016/0020-0190(92)90054-Y
http://dx.doi.org/10.1016/j.jpdc.2008.07.005
http://dx.doi.org/10.1177/1094342010394383
http://dx.doi.org/10.1007/11558958_110
http://dx.doi.org/10.1007/11558958_110
http://www.mpi-forum.org/docs
http://www.mpi-forum.org/docs
http://picongpu.hzdr.de
https://software.intel.com/en-us/intel-mpi-library
http://www.cs.sandia.gov/Zoltan
http://dx.doi.org/10.3233/978-1-60750-530-3-281
http://accelconf.web.cern.ch/accelconf/icap2012/talks/tusbc1_talk.pdf
http://accelconf.web.cern.ch/accelconf/icap2012/talks/tusbc1_talk.pdf

	Introduction
	From atmospheric modeling to 1D partitioning
	The atmospheric model COSMO-SPECS+FD4
	Space-filling curve partitioning
	The 1D partitioning problem

	Related work
	1D partitioning heuristics
	Exact 1D partitioning algorithms
	Exact bisection algorithm ExactBS
	Need for parallel, high-quality 1D partitioning algorithms
	Hierarchical load balancing methods

	The proposed hierarchical 1D partitioning algorithm
	Design of the hierarchical algorithm HIER
	Modifications to the serial exact bisection algorithm
	Distributed partition directory
	Determining the number of groups
	Quality bounds of the hierarchical algorithm

	Experimental performance evaluation
	Evaluation benchmark
	Existing algorithms implemented in the benchmark
	Real-life datasets CLOUD2 and LWFA
	Performance metrics and summarization
	HPC systems used for the benchmark

	Evaluation of the serial 1D partitioning algorithms
	Evaluation of the group count's impact
	Comparison with geometric methods from Zoltan
	Evaluation of strong scalability up to 524288 processes
	Application to atmospheric modeling

	Conclusions

