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Load Balance
• A challenge for HPC at large scale
• Especially for applications with workload variations

Goals of load balancing
• Repartition application to balance workload
• Reduce comm. costs between partitions (edge cut)
• Reduce task migration costs
• Fast & scalable decision making

Motivation: Load Balancing

Particle density, laser wakefield acceleration simulation with particle-in-cell code PIConGPU
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Motivation: Diffusive Load Balancing

Fully distributed method
• Local operations lead to global 

convergence

Practical application is rare
• Well described since the 1990's
• Only few papers show real use in HPC

Motivation of this work
• Performance comparison to other

state-of-the-art methods at large scale
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Load per node over iterations
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Short Diffusion Intro

Concept
• Arrange processes/nodes

in a graph G, e.g. mesh
• Balance virtual load with 

neighbors for several iterations 
until global convergence

• Result: minimal* load flow 
between neighbors in G that 
leads to global balance

How to realize the flows?
• 2nd step required: task selection
• Satisfy flows best possible,

keep edge cut and migration low 
(to reduce communication)

* Most methods minimize sum of squares of individual flows between nodes (two-norm)
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Short Diffusion Intro: Algorithms

Original Diffusion Algorithm (Orig Diff)
• In each iteration i each node v updates its 

load:

Second Order Diffusion (SO Diff)
• Prev. iteration‘s transfer influences current

Improved Diffusion (Impr Diff)
• Update rule is adapted during iterations 

based on Laplacian matrix of graph G

Dimension Exchange (Dim Exch)
• Local load is updated immediately before 

exchanging with next neighbor
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lv ... load value of node v
N v ...neighbor nodes of node v
αvw ...diffusion parameter
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Estimation:
One iteration 
should take few 
10 µs only
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Performance Comparison: Diffusion Benchmark

Benchmark setup
• 3D task grid, 3D process mesh, 512 tasks per proc
• Artificial imbalanced workload data*
• Iterations terminate at target imbalance of 0.1%

Simplifications
• Time measurement w/o checking termination criterion
• Simple task selection algorithm (single pass)

* in the paper we also use the particle-in-cell application szenario

2D grid example of BOX scenario
Red part is overloaded such that
imbalance is 11% (i.e. max load / avg load - 1)



Slide 9

Performance Comparison: Other Methods

Zoltan load balancing library
• MPI-based library implementations
• RCB: recursive coordinate bisection
• HSFC: Hilbert space-filling curve
• ParMetis graph partitioning via Zoltan

Hierarchical space-filling curve
• Own fast and scalable method
• Leads to high migration

http://www.cs.sandia.gov/Zoltan

Boman, Catalyurek, Chevalier, Devine, 
The Zoltan and Isorropia Parallel 
Toolkits for Combinatorial Scientific 
Computing: Partitioning, Ordering, and 
Coloring,
Scientific Programming, 20(2), 2012.

Schloegel, Karypis, Kumar,
A Unified Algorithm for Load-balancing 
Adaptive Scientific Simulations,
SC 2000.

Lieber, Nagel,
Scalable High-Quality 1D Partitioning,
HPCS 2014.
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Performance Comparison: 1Ki-8Ki weak scaling

Max tasks 
sent+received 
among all procs

= 
max(lv)

avg (lv)
 − 1

Max number of 
task mesh edges 
cut by partition 
borders among 
all procs

Median run time of 61 runs on 
Taurus, Intel Haswell + Infiniband 
FDR cluster with Intel MPI,
error bars show 25/75 percentiles

Iterations until 
flows lead to 
0.1% imbalance 
(before task 
selection)

• Diffusion leads to smallest migration
• Diffusion achieves very good edge cut
• Diffusion run time ca. 2 ms for 8192 processes, Zoltan much slower
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Performance: 8Ki-128Ki, without task selection

• Dimension exchange scales better than
second order diffusion

• Diffusion takes few ms even on 128k processes*

* task selection time does not depend on process count and takes few ms on Juqueen

Median run time of 19 runs on 
Juqueen, IBM Blue Gene/Q,
error bars show 25/75 percentiles

Max / total load transfer 
computed by diffusion relative to 
to avg / total load of procs

Iterations until 
flows lead to 
0.1% imbalance 
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Summary

Conclusion
Diffusive load balancing is attractive on large scale when 
overhead (time for decision making, task migration) has to 
be low, e.g. in case of frequent rebalancing.

Future work
• Improve task selection
• Scalable termination criterion:

estimate required iterations or check convergence?
• Optimal process graph topology:

match the hardware or the application?
• Add to Zoltan / Charm++ / application XYZ
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