
The Potential of Diffusive Load 
Balancing at Large Scale

Center for Information Services and High Performance Computing

EuroMPI 2016, Edinburgh, 27 September 2016

Matthias Lieber, Kerstin Gößner, Wolfgang E. Nagel
matthias.lieber@tu-dresden.de



Slide 2

Load Balance
• A challenge for HPC at large scale
• Especially for applications with workload variations

Goals of load balancing
• Repartition application to balance workload
• Reduce comm. costs between partitions (edge cut)
• Reduce task migration costs
• Fast & scalable decision making

Motivation: Load Balancing

Particle density, laser wakefield acceleration simulation with particle-in-cell code PIConGPU



Slide 3

Motivation: Diffusive Load Balancing

Fully distributed method
• Local operations lead to global 

convergence

Practical application is rare
• Well described since the 1990's
• Only few papers show real use in HPC

Motivation of this work
• Performance comparison to other

state-of-the-art methods at large scale

Cybenko,
Dynamic Load Balancing for 
Distributed Memory 
Multiprocessors,
J. Parallel Distr. Com. 7(2), 1989.

Watts, Taylor,
IEEE T. Parall. Distr. 9, 1998.

Diekmann, Preis, Schlimbach, 
Walshaw,
Parallel Computing 26(12), 2000.

Schloegel, Karypis, Kumar,
SC 2000.

Load per node over iterations



Slide 4

Contents

Motivation
• Load Balancing
• Diffusive Load Balancing

Short Diffusion Intro
• Concept
• Algorithms

Performance Comparison
• Benchmark Setup
• Other Methods
• Results

 

 



Slide 5

Short Diffusion Intro

Concept
• Arrange processes/nodes

in a graph G, e.g. mesh
• Balance virtual load with 

neighbors for several iterations 
until global convergence

• Result: minimal* load flow 
between neighbors in G that 
leads to global balance

How to realize the flows?
• 2nd step required: task selection
• Satisfy flows best possible,

keep edge cut and migration low 
(to reduce communication)

* Most methods minimize sum of squares of individual flows between nodes (two-norm)



Slide 6

Short Diffusion Intro: Algorithms

Original Diffusion Algorithm (Orig Diff)
• In each iteration i each node v updates its 

load:

Second Order Diffusion (SO Diff)
• Prev. iteration‘s transfer influences current

Improved Diffusion (Impr Diff)
• Update rule is adapted during iterations 

based on Laplacian matrix of graph G

Dimension Exchange (Dim Exch)
• Local load is updated immediately before 

exchanging with next neighbor

lv
i+1

=lv
i
+ ∑

w ∈N v

αvw(l w
i
−l v

i
)

lv ... load value of node v
N v ...neighbor nodes of node v
αvw ...diffusion parameter

Cybenko,
J. Parallel Distr. Com. 7(2), 
1989.

Muthukrishnan, Ghosh, 
Schultz,
Theory Comput. Sys. 31, 
1998.

Hu, Blake,
Parallel Computing 25(4), 
1999.

Cybenko, 1989.

Xu, Monien, Lüling, Lau,
Conc. Pract. E. 7, 1995.

Estimation:
One iteration 
should take few 
10 µs only



Slide 7

Contents

Motivation
• Load Balancing
• Diffusive Load Balancing

Short Diffusion Intro
• Concept
• Algorithms

Performance Comparison
• Benchmark Setup
• Other Methods
• Results

 

 



Slide 8

Performance Comparison: Diffusion Benchmark

Benchmark setup
• 3D task grid, 3D process mesh, 512 tasks per proc
• Artificial imbalanced workload data*
• Iterations terminate at target imbalance of 0.1%

Simplifications
• Time measurement w/o checking termination criterion
• Simple task selection algorithm (single pass)

* in the paper we also use the particle-in-cell application szenario

2D grid example of BOX scenario
Red part is overloaded such that
imbalance is 11% (i.e. max load / avg load - 1)



Slide 9

Performance Comparison: Other Methods

Zoltan load balancing library
• MPI-based library implementations
• RCB: recursive coordinate bisection
• HSFC: Hilbert space-filling curve
• ParMetis graph partitioning via Zoltan

Hierarchical space-filling curve
• Own fast and scalable method
• Leads to high migration

http://www.cs.sandia.gov/Zoltan

Boman, Catalyurek, Chevalier, Devine, 
The Zoltan and Isorropia Parallel 
Toolkits for Combinatorial Scientific 
Computing: Partitioning, Ordering, and 
Coloring,
Scientific Programming, 20(2), 2012.

Schloegel, Karypis, Kumar,
A Unified Algorithm for Load-balancing 
Adaptive Scientific Simulations,
SC 2000.

Lieber, Nagel,
Scalable High-Quality 1D Partitioning,
HPCS 2014.



Slide 10

Performance Comparison: 1Ki-8Ki weak scaling

Max tasks 
sent+received 
among all procs

= 
max(lv)

avg (lv)
 − 1

Max number of 
task mesh edges 
cut by partition 
borders among 
all procs

Median run time of 61 runs on 
Taurus, Intel Haswell + Infiniband 
FDR cluster with Intel MPI,
error bars show 25/75 percentiles

Iterations until 
flows lead to 
0.1% imbalance 
(before task 
selection)

• Diffusion leads to smallest migration
• Diffusion achieves very good edge cut
• Diffusion run time ca. 2 ms for 8192 processes, Zoltan much slower



Slide 11

Performance: 8Ki-128Ki, without task selection

• Dimension exchange scales better than
second order diffusion

• Diffusion takes few ms even on 128k processes*

* task selection time does not depend on process count and takes few ms on Juqueen

Median run time of 19 runs on 
Juqueen, IBM Blue Gene/Q,
error bars show 25/75 percentiles

Max / total load transfer 
computed by diffusion relative to 
to avg / total load of procs

Iterations until 
flows lead to 
0.1% imbalance 



Slide 12

Summary

Conclusion
Diffusive load balancing is attractive on large scale when 
overhead (time for decision making, task migration) has to 
be low, e.g. in case of frequent rebalancing.

Future work
• Improve task selection
• Scalable termination criterion:

estimate required iterations or check convergence?
• Optimal process graph topology:

match the hardware or the application?
• Add to Zoltan / Charm++ / application XYZ



Slide 13

Thank you very much for your attention

Acknowledgments / Funding:


	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

