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ABSTRACT
RNA-sequencing is a technique to study RNA expression in
biological material. It is quickly gaining popularity in the
field of transcriptomics. Trinity is a software tool that was
developed for efficient de novo reconstruction of transcrip-
tomes from RNA-Seq data. In this paper we first conduct a
performance study of Trinity and compare it to previously
published data from 2011. The version from 2011 is much
slower than many other de novo assemblers and biologists
have thus been forced to choose between quality and speed.
We examine the runtime behavior of Trinity as a whole as
well as its individual components and then optimize the most
performance critical parts. We find that standard best prac-
tices for HPC applications can also be applied to Trinity,
especially on systems with large amounts of memory. When
combining best practices for HPC applications along with
our specific performance optimization, we can decrease the
runtime of Trinity by a factor of 3.9. This brings the run-
time of Trinity in line with other de novo assemblers while
maintaining superior quality. The purpose of this paper is
to describe a series of improvements to Trinity, quantify the
execution improvements achieved, and document the new
version of the software.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—performance analysis; J.3 [Computer
Applications]: Life And Medical Sciences—de novo DNA
sequence assembly, RNA-Seq

Keywords
application performance analysis, de novo DNA sequence
assembly, RNA-Seq
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1. INTRODUCTION
RNA-sequencing, or RNA-Seq, is a rapidly emerging fam-

ily of laboratory techniques in the field of transcriptomics
where expressed RNA is reverse-transcribed to cDNA, and
sequenced. This technique offers a large number of advan-
tages over older microarrays, and is rapidly replacing them
in many applications [10, 12].

The National Center for Genome Analysis Support (NC-
GAS [5]) and XSEDE both support the biological research
community, and specifically genomic analysis using second
generation DNA sequencers. These sequencers produce an
extremely large number of reads, often hundreds of mil-
lions, of up to 200 bases in length, with currently targeted
datasets involving reads much shorter, such as Illumina 76
base paired-end reads from fragments ranging a few hundred
bases in length. To be of value, these reads are typically as-
sembled into contiguous reads, or sequence contigs. In the
absence of a template genome, this assembly must be done
de novo, using various implementations of a de Bruijn graph
[7]. Since de Bruijn graphs are RAM intensive, many com-
puting centers have deployed large memory computational
clusters such as Mason at NCGAS and Blacklight at the
Pittsburgh Supercomputing Center.

Over a wide dynamic range, the number of reads in a
sequencing run is proportional to the concentration of the
RNA species in the biological sample. This property is used
in RNA-Seq to detect changes in RNA expression levels be-
tween biological treatments, but it complicates the assembly
process. Applications developed for genome assembly per-
form poorly with samples containing a wide range of initial
DNA concentrations. They do not deal well with the com-
plexity of alternative splicing nor do they leverage strand
specific sequence data. Therefore, custom assembly tools
such as Trinity [8] have been developed to tackle the unique
challenges posed by the assembly of RNA-Seq data. Seven
different de novo sequence assemblers were evaluated with
regard to both their biological and computational perfor-
mance by Zhao et al. [14]. In this evaluation, Trinity was
found to produce the best results for the single k-mer class of
assemblers, but its runtime was so slow that the authors rec-
ommended using Trinity only when computational time was
not an issue. Trinity possesses an active development and
user base who are making frequent performance improve-



ments. We contributed to this development by analyzing
performance modifications that specifically tune Trinity to
run efficiently on large memory parallel computing clusters.
We have added these enhancements to the official Trinity
SourceForge repository and they are available for everyone
to use in the 2012-06-08 version. The paper serves as a
way for biologists to cite use of this newer, faster version
while documenting that nothing has been changed in the
algorithm to affect the assemblies it produces. The abil-
ity to run what is widely regarded as the best existing de
novo RNA-Seq assembler, at an execution speed comparable
or better than other assemblers will be of great benefit to
bioinformaticians and practicing biologists.

We will finish this section by outlining the structure of
Trinity and runtime performance of relevant versions and
datasets. Section 2 describes optimizations that can be ap-
plied to the whole Trinity package without hurting perfor-
mance, while section 3 outlines performance optimizations
for specific components. These changes address component-
specific performance bottlenecks.

1.1 Trinity Structure
Trinity is a Perl wrapper that calls separate applications,

each of which passes results on to the next. The first appli-
cation is Inchworm which uses a greedy search on a k-mer
graph to assemble sequence contigs. The output FastA file
is passed to Chrysalis which bundles the contigs and builds
individual de Bruijn graphs. These graphs, one per file, are
passed to Butterfly for computing the final assembly.

1.2 Initial Performance
To assess the baseline performance of Trinity, we used the

exact Drosophila melanogaster data used by Zhao et al. [14].
The 76 bp paired-end Illumina reads were pre-processed and
randomly subsampled to create six datasets of differing size.
The complete set has 13.08 Gbp and 107 M read pairs, with
subsets containing 7 Gbp and 58 M read pairs, 5 Gbp and
41 M read pairs, 3 Gbp and 25 M read pairs, 1 Gbp and 8 M
read pairs, and 0.5 Gbp and 4 M read pairs. We obtained
the data directly from the authors.

The performance measurements were conducted on a node
of the Mason cluster at Indiana University [3]. A node is
equipped with four Intel Xeon L7555 eight core processors
running at 1.87 GHz for a total of 32 cores and has 512 GB of
memory. The cluster is running Red Hat Enterprise Linux
version 6. Each node has access to the Indiana University
Data Capacitor Lustre filesystem [13]. By default, the mem-
ory filesystem /dev/shm is available on all nodes, offering up
to 256 GB of very fast local scratch storage.

Figure 1 shows our initial performance observations. It
compares the runtime of Trinity 2011-05-19 as observed by
Zhao et al. (dotted red curve) with the same version on
Mason (dashed green curve). In addition, we used the re-
cent Trinity 2012-03-17 to process the same data (solid blue
curve). For Trinity 2011-05-19 we used the same parameters
as Zhao et al. (--CPU 20 --run_butterfly --bfly_opts

"--edge-thr=0.05 --compatible_path_extension"). For
the recent Trinity version, we used the parameters --CPU 20

--kmer_method jellyfish --max_memory 4G --bfly_opts

"--edge-thr=0.05" --min_contig_length 300. These
changes are a result of substantial changes in Trinity, for
example the default minimum contig length has been low-
ered from 300 to 200 and Butterfly is now run by default.
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Figure 1: Runtime comparison using different
datasets and versions of Trinity.

All tests were done using a default configuration of Trinity
installed according to the documentation, using the default
compiler on our system, GCC 4.4.6. Input and output data
and all temporary files were located on the Data Capaci-
tor. The Trinity 2011-05-19 runtime on Mason closely tracks
that reported by Zhao et al. For the largest dataset, Mason
performs marginally better, but still requires roughly 110 h.
Trinity 2012-03-17 performs significantly better. The 13G
dataset finishes in 10.7 h, about the same time as the 0.5G
dataset on the old version of Trinity.

Trinity is actively developed and maintained as an open
source tool [6]. All major components were updated between
the two versions that are compared here. The modular na-
ture of Trinity allows components to be easily changed or
replaced. For example, the initial k-mer counting was previ-
ously done as first step within Inchworm, but is now imple-
mented using Jellyfish [11] or Meryl [4]. Significant paral-
lelism was also added between the two versions, for example
components of Chrysalis now use OpenMP. In the older ver-
sion, only Inchworm and Butterfly used parallelism, while
in the newer version almost all phases are parallel.

2. GENERAL OPTIMIZATION
To characterize the workload of the Trinity workflow, we

measured RAM usage, CPU utilization, and I/O through-
put using the Collectl tool [2] at a sample rate of 5 s. Fig-
ure 2 (a) shows the results for Trinity 2012-03-17 with the
13G dataset and a maximum of 20 CPU cores. The plot
shows an I/O intensive preprocessing step, which converts
the input FastQ files to FastA format. Additionally, the
Chrysalis phase includes four sub-phases, which are started
with system() from within the Chrysalis program: Graph-
FromFasta groups contigs generated by Inchworm into clus-
ters (bundles), FastaToDeBruijn creates de Bruijn graphs
for each bundle, ReadsToTranscripts assigns the original
reads to the bundles, and QuantifyGraph integrates the reads
into the structure of the graphs. In Figure 2 the approxi-
mately 70 s of FastaToDeBruijn is included in the Chrysalis
phase.

Figure 2 (a) also reveals that not all phases of Trinity make
use of multiple cores. Multithreading is implemented using
Pthreads in Jellyfish and using OpenMP in Inchworm and
small parts of GraphFromFasta, as well as ReadsToTran-
scripts. QuantifyGraph and Butterfly are executed once for
each independent bundle. Parallelism is achieved using an



(a) Trinity 2012-03-17, GNU compiler with default options, Lustre filesystem, 20 CPUs
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(b) Trinity 2012-03-17, general optimizations, shared memory filesystem, 20 CPUs
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(c) Trinity 2012-03-17, optimized version, shared memory filesystem, 32 CPUs
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Figure 2: Measurement of RAM usage, CPU core utilization, and I/O throughput over the runtime of Trinity
2012-03-17 components with the 13G dataset. The RAM usage pattern did not change substantially and is
shown for the original version only. Note that due to the sample rate of 5 s the shortest running instances of
QuantifyGraph and Butterfly are not recorded, which leads to underestimated values.



OpenMP program, which starts QuantifyGraph and Butter-
fly in a parallel loop using system(). Note that Butterfly is
written in Java, while all other phases are written in C++.

We started optimizing Trinity by employing general high
performance computing best practices. We changed the lo-
cation of the Trinity working directory to be located in a
memory filesystem. This should benefit all I/O operations.
Next we built all components using the Intel compiler and
allowed the compiler to use more aggressive optimization
techniques. Finally, we added thread and process pinning.
This is especially important on machines that exhibit non-
uniform memory access (NUMA) behavior.

2.1 Memory Filesystem
When possible, placing input and output files on a mem-

ory filesystem can greatly improve the performance of I/O
intensive applications. Figure 2 (a) shows the I/O charac-
teristics of Trinity. Up to and including GraphFromFasta,
read and write operations are performed on a small num-
ber of large files. For these phases to run efficiently, the
filesystem that holds the Trinity working directory needs to
provide sufficient I/O bandwidth, effective file caching, and
read ahead capability. Comparing Trinity running on Lustre
with Trinity running on /dev/shm, a Linux implementation
of a memory filesystem, we found no performance difference.
For these phases, Lustre performs just as well as a memory
filesystem since all actual I/O is hidden from the applica-
tion by the filesystem cache, especially on systems with large
amounts of memory. In contrast, ReadsToTranscripts and
subsequent phases operate on a large number of small files.
For these phases, the filesystem needs to provide sufficient
metadata performance and to be able to deal with a large
number of small files. For example, during the processing of
the 13G dataset, 254 485 temporary files are created in 287
subdirectories. We found that ReadsToTranscripts benefits
the most from running on a memory filesystem. For the
13G dataset, the execution time of ReadsToTranscripts is
reduced by 43%, from 3h 33min to 2h 02min, when switch-
ing from a Lustre filesystem to /dev/shm.

However, even 512 GiB of memory are not enough to hold
the Trinity working directory while providing enough heap
space for Butterfly. For the 13G dataset, we reduced the
default heap size from 20 GiB to 8 GiB and the number of
Java garbage collection threads to 4. By default, the Java
Virtual Machine (JVM) creates as many garbage collection
threads as it finds cores in the machine, in our case 32. We
noticed no performance impact by changing those settings.

In general, using a node local filesystem, like /dev/shm or
/tmp, will reduce the dependency of a Trinity run on the
performance of the cluster-wide filesystem. When running
on a shared resource, the I/O bandwidth available to Trinity
depends heavily on the I/O characteristics of other concur-
rent jobs. When the working directory is located on a node
local filesystem, this dependency is removed and there will
be less fluctuation in the execution time of a Trinity job.

2.2 Compilers and Thread Placement
By default Trinity builds all components with the GNU C

and C++ compilers. The GNU compiler is a good default
choice, since it is available on every platform. However,
when users have access to other compilers, like the ones from
Intel or PGI, they can offer performance advantages. Since
our test system was based on an Intel Nehalem processor,

we have tested the Intel compilers. We found that some
components benefit greatly from using the Intel compilers
while the runtime of others is unchanged.

We built all components of Trinity, except Jellyfish, with
the Intel Compiler. This was implemented by either mod-
ifying the configure line of the component or changing
the makefile. Whenever possible, we changed the compiler
flags to -fast, which covers broadly applicable optimization
flags, including interprocedural optimization and optimiza-
tion specific for the microarchitecture, such as enabling SSE
and AVX when available. Because Jellyfish called GCC spe-
cific functions, it was the only component that we did not
build with the Intel compiler.

Thread placement and pinning can have a large effect on
performance of parallel applications. In general, there are
two strategies for placing processes and threads on a sys-
tem with multiple sockets. The default placement strategy
on Linux is load balancing, that is, processes and threads
are placed on different sockets, so that the available mem-
ory bandwidth of the system is shared optimally. Alterna-
tively with compact placement, a socket is filled first, before
processes and threads are placed on the next socket. De-
pending on the needs of the application, either strategy can
be optimal. During our analysis of Trinity, we found that
thread placement has a noticeable effect on only Inchworm
and Chrysalis. In Inchworm, forcing a compact thread place-
ment is beneficial up to 8 threads, as outlined in section 3.1.
On the contrary, forcing a compact thread placement for
Chrysalis, which calls ReadsToTranscripts via the system()

function, has a negative impact on performance. This is
probably due to how thread placement is handled for child
processes and requires further investigation. When running
ReadsToTranscripts stand-alone, we observed no noticeable
impact of different thread placement strategies.

Figure 2 (b) shows the runtime and I/O throughput of
the individual components of Trinity with the general opti-
mizations. Inchworm benefits from using the Intel compiler
with the proper thread placement. Its runtime is cut in half
compared to Figure 2 (a). ReadsToTranscripts benefits from
running on /dev/shm. The I/O pattern looks smoother and
the average throughput increases.

We checked the correctness of the results by comparing the
output of the optimized version of Trinity with the output of
the default version. We observed only very minor differences
in the final result due to different compiler optimizations
that do not affect the overall correctness of the assembly.

3. OPTIMIZING COMPONENTS
Based on Figure 2 (a), we analyzed and optimized the

performance of the four most time-consuming components.
From here on, we refer to the GCC compiled version of Trin-
ity 2012-03-17 as the original version.

3.1 Inchworm
Inchworm works in four phases. First it reads a FastA file

and produces a hashmap data structure representing each k-
mer and its occurrence count. Second it prunes the hashmap
to remove likely error-containing k-mers. Third it sorts the
map and fourth it assembles and writes the contigs. The
first phase is parallelized using OpenMP. Every OpenMP
thread reads a part of the input data, extracts a k-mer and
then inserts this k-mer into the hashmap. Figure 3 shows
the runtime behavior of the 2012-03-17 version of Inchworm
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Figure 3: Scalability of original and optimized ver-
sions of Inchworm with the 1G dataset.

with the 1G dataset. Using the GCC default configuration,
Inchworm runtime drops only slightly when increasing the
number of threads from one to two, and increasing the num-
ber of threads further actually increase the runtime. At 32
threads, the runtime of inchworm has roughly doubled rela-
tive to the single-threaded case.

Inchworm scalability benefits greatly from the Intel com-
piler, especially when coupled with proper placement and
pinning of the OpenMP threads. With the OpenMP run-
time library of the Intel compiler, the execution time remains
stable with increasing thread count. The best performance,
when using KMP_AFFINITY and numactl to force a compact
placement of threads, is achieved with four threads. The
default thread placement policy on Linux is to maximize
memory throughput and evenly spread threads. With four
threads running on a four socket node, each thread is run-
ning on a separate socket. A side effect of this placement
is that memory is also distributed across the system. For
memory access that is not performed by the thread that has
allocated the memory, this causes a ‘remote memory access’.
Since only the first phase of Inchworm is parallel, it is ben-
eficial to force a memory placement that will stack threads
on a socket until it is full before moving to the next socket.
On our test system, this means that running with 8 or less
threads, memory is optimally placed, both during the first
phase as well as during the subsequent three phases. We
found that a lot of time in the first phase of Inchworm is
spent in OpenMP critical sections. Since the FastA file is
read by all threads, each file access needs to be protected by
a critical section. We changed the code slightly to fuse two
critical sections, eliminating half of the critical sections in
this phase. This allowed Inchworm to scale up to 8 threads.
Table 1 shows runtime of just the parsing phase. With 8
Threads, the version with the critical section fix performs
roughly 20% better than the general optimized version.

3.2 GraphFromFasta of Chrysalis
GraphFromFasta, the first subcomponent of Chrysalis,

groups minimally overlapping contigs generated by Inch-
worm into bundles. The bundled contigs represent those
that share subsequences as part of alternatively spliced vari-
ants or resulting from gene duplications. In relation to run-
time, only very small parts of the code are parallelized with
OpenMP. The longest serial task is counting the number of
reads spanning the junction across two Inchworm contigs.

Threads
Version 1 2 4 8
GCC default 259 214 236 406
Intel -fast 282 198 210 224
General optimizations 280 171 106 118
Critical section fix 286 176 105 94

Table 1: Scalability of Inchworm parsing phase, run-
time in seconds.

Figure 4: Vampir compare view of original Graph-
FromFasta (top white), an intermediate version
(middle blue), and the final optimized version (bot-
tom green) with the 1G dataset on 16 threads.

This counting phase is basically a while-loop over all in-
put reads, which we parallelized by adding the #pragma omp

parallel statement and protecting the actual file input with
a critical section. The impact on performance is shown in
Figure 4 by means of a compare view of the Vampir perfor-
mance analysis tool [9]. The display comprises a timeline for
all 16 threads on the left and a profile of serial application
vs. OpenMP runtime on the right. The parallelization of
the counting phase (second/blue chart) leads to a consider-
able speed-up over the original version (first/white chart),
however, the critical section is clearly the bottleneck and
strongly limits scalability. To increase speed-up, the time
spent in the critical section had to be reduced. Therefore,
we implemented a lightweight FastA file reader which stores
the reads in a vector of std::string without the additional
parsing performed in the original implementation. As shown
in Figure 4 (third/green chart), the time spent in the active
part of the critical section decreases approximately 9-fold,
which leads to greatly reduced waiting times for the critical
section and, thus, to a much more efficient parallelization of
the whole phase.

GraphFromFasta was further optimized by the automatic
proper selection of the chunk size for the dynamic sched-
ule of both existing OpenMP loops, which eliminated the
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Figure 5: Scalability of original and optimized
GraphFromFasta with the 1G dataset.

load imbalance, and improvements in adding entries to the
dynamically growing vector of identified junctions between
Inchworm contigs.

The final scalability comparison of GraphFromFasta with
the 1G dataset is shown in Figure 5. Both versions have
been compiled with the Intel compiler and -O3 -xHost op-
timization flags. While the original version only scales a
little, the optimized parallel version shows a speed-up of 11
when increasing the core count from 1 to 32. Note, that
speed-up is likely to increase with larger datasets, since the
runtime per read within the counting phase increases with a
larger number of junctions and, consequently, the scalability
bottleneck of the file input is more and more hidden. The
improved scalability leads to a 10-fold speed-up of the opti-
mized version compared to the original for the 1G dataset.

3.3 ReadsToTranscripts of Chrysalis
ReadsToTranscripts is a subcomponent of Chrysalis which

assigns individual reads to the bundles created by Graph-
FromFasta. It first builds a k-mer index of all bundles.
Then it assigns each read to the bundle with the most k-
mer hits and appends the reads to individual FastA files for
each bundle. This procedure is carried out in several iter-
ations, each processing 1 M successive reads from the input
FastA file. The assignment as well as the output are paral-
lelized using OpenMP parallel loops over the reads and the
bundles, respectively. As shown in Figure 6, the serial input
of the reads is apparently the main scalability bottleneck of
ReadsToTranscripts. We applied the same optimizations as
for GraphFromFasta by using a lightweight FastA file reader,
resulting in an 8 times speed-up of the reading phase.

A second performance problem indicated in Figure 6 is
the abnormally high runtime of file open and close calls be-
ginning with the second output stage. This is probably due
to an interference of I/O buffering within the C library and
OpenMP threads. We reimplemented the output using the
basic systems calls open, write, and close, which do not
buffer I/O. To achieve high throughput, we buffered the
output explicitly to call write only once per bundle and
iteration. This optimization led to an approximate 30 times
speed-up of the output phase, which is now hardly noticeable
in the Vampir Timeline of the optimized version in Figure 6.

Figure 7 shows the final performance comparison of the
original and optimized version of ReadsToTranscripts with
the 1G dataset running on the memory filesystem. Both ver-

Figure 6: Vampir compare view of orignal ReadsTo-
Transcripts and the optimized version with the 1G
dataset on 32 threads for the first three iterations.
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sions were compiled with the Intel compiler and the -fast

optimization flag. While the optimizations have little impact
at serial execution, the scalability of ReadsToTranscripts has
improved clearly, resulting in less than 50 % runtime com-
pared to the original version with 32 threads. The speed-up
from 1 to 32 threads improved from 8.7 to 16.2.

3.4 QuantifyGraph of Chrysalis
QuantifyGraph is the last step of Chrysalis and integrates

the original reads into the individual de Bruijn graphs of the
bundles. It is started for each bundle independently by the
ParaFly program, which uses system() within an OpenMP
parallel loop to execute QuantifyGraph in parallel. For the
13G dataset, 23 107 bundles were created, which offers a
large potential for parallelization. The runtime per instance
depends on the number of reads mapped to the bundle. We
obeserved runtimes between 160 ms (less than 10 reads) up
to 25 min (3 M reads). QuantifyGraph consumes most of its
time sorting the k-mers and then integrating the reads into
the graph. In both phases, the relational operator ‘<’ for
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Figure 8: Scalability of original and optimized ver-
sions of QuantifyGraph with the 1G dataset.

the k-mer data structure is called frequently. Optimization
of this operator led to a 2.8-fold speed-up of QuantifyGraph,
except for very small bundles with less than 100 reads. The
runtime for small bundles is dominated by parsing the reads
from the FastA file and creating files indicating the start
and successful completion of the QuantifyGraph instance.
We optimized both by reducing the buffer size for reading
a single sequence from the FastA file from 200 MB to 1 kB
and by replacing the file operations based on system() with
standard C library calls. With these optimizations, the run-
times of QuantifyGraph instances for the 13G dataset now
vary from 5 ms (less than 10 reads) up to 9 min (3 M reads).

The parallel execution of QuantifyGraph can be optimized
by switching off the shuffling of the individual instances.
This yields better load balance, since the largest bundles
are usually the first – a result of the greedy algorithm of
Inchworm. Additionally, we reduced the startup overhead
by creating smaller binaries. The size of the original static
binary, compiled with the Intel compiler and the -fast op-
timization flag, was 4.1 MiB. We removed the -openmp flag,
which is not required for QuantifyGraph, and linked the bi-
nary directly from the object files instead of linking them as
static library. This reduced the size to 1.7 MiB.

Figure 8 compares the scalability of the original version of
QuantifyGraph, the optimized version with only the source
code changes, and the version with the additional optimiza-
tions. All versions have been built with the Intel compiler
and the -fast optimization flag. QuantifyGraph shows a
good scalability on all 32 cores of the cluster node. At 32
cores, the optimized version runs 5.7 times faster than the
original. When only considering the source code modifica-
tions, the improvement factor is 4.4.

3.5 Other components
When Trinity is called with two FastQ input files for

paired reads, they are converted to FastA files prior to the
first phase. We modified Trinity.pl to perform this work
in parallel, rather than sequential. If the underlying filesys-
tem is capable of sustaining the required I/O bandwidth,
the conversion will be sped up by roughly a factor of two.

Trinity allows for specifying the parallelism it uses via the
command line parameter --CPU. However, internally it is
capped at 22 and requires changes to Trinity.pl to override
this. For all components except Inchworm, we have set the
new maximum parallelism to 128. For Inchworm, we have
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Figure 9: Trinity runtime comparison of original,
generally optimized and fully optimized version.

capped it at 6, since we found that to be the optimal.
When using Jellyfish for k-mer counting, which is the

fastest of all available choices, the parameter --max_memory

is required. We found out that a value of 20GB is optimal
for the 13G dataset, which gives a runtime benefit of about
2 min in comparison to our initial setting of 4GB.

3.6 Final performance comparison
Figure 9 shows the runtime of three different configura-

tions of Trinity 2012-03-17 for all datasets. The dotted red
curve shows the runtime of the original version, compiled us-
ing the default settings and running from a Lustre filesystem,
as discussed in section 1.2. The dashed green curve shows
the runtime of a generally optimized version. This includes
all the optimizations discussed in section 2, such as run-
ning from a memory filesystem and building all components
using the Intel compiler with a more aggressive optimiza-
tion level. This basically covers all the optimization that
can be performed without touching the source code or mak-
ing in-depth modifications to Trinity.pl. The solid blue
curve shows the runtime of our fully optimized version which
builds on the generally optimized version and adds all the
modifications discussed in this section. While the general
optimizations show the highest impact with small datasets
(1.8 times speed-up with 0.5G vs. 1.3 with 13G), the code
optimizations greatly reduce the runtime especially for large
datasets. For the 13G dataset, the speed-up over the gen-
eral optimized and the default version is 3.0 and 3.9, respec-
tively. For comparison, we conducted measurements on the
XSEDE system Blacklight [1], an SGI UV 1000 shared mem-
ory system with 256 blades, each equipped with two eight
core Intel X7560 processors. The runtimes for the fully op-
timized version, shown with a dash-dotted black curve, are
1.2 to 1.9 times slower compared to Mason. The slowdown is
mostly due to the OpenMP parallel components of Trinity,
which leads us to the assumption, that the NUMA trans-
fer between the compute blades is probably the bottleneck.
However, this requires further analysis.

The performance data for the 13G dataset presented in
Figure 2 (c) reveals a noticable runtime improvement for all
optimized components. The improvement factors are 2.3 for
Inchworm, 21 for GraphFromFasta, 4.4 for ReadsToTran-
scripts, and 4.5 for QuantifyGraph. The great speed-up of
GraphFromFasta is due to the parallelization of the initially
mostly serial component.
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Figure 10: Scalablity of optimized Trinity with the
13G dataset.

Figure 10 shows the scalability of the optimized Trinity
version for the 13G dataset on Mason and Blacklight. On
Mason, Trinity scales well up to all 32 cores of a single cluster
node, even though the scalability of Inchworm is limited to
6 threads. Blacklight shows a good scalability to 16 cores, a
full compute blade. However, further scalability is probably
inhibited due to heavy NUMA transfer between the blades.

4. DISCUSSION
Beyond the changes that we have already implemented,

we see further potential for improving the performance of
Trinity. In Inchworm, only the parsing phase is parallelized
and the scalability is limited by the critical section protect-
ing the file I/O. This could be improved by rewriting the
FastaReader class to read and process larger chunks of in-
put data. The pruning phase is currently implemented using
an iterator of a hash map. If this could be changed to an iter-
ator that is allowed for workshare directives in the OpenMP
3 specification, this phase could easily be parallelized.

Parts of Chrysalis use a std::vector of characters as con-
tainer for DNA sequences. Replacing it with a std::string

or a character array would improve the performance, since
the number of conversions would be reduced.

For small contigs QuantifyGraph and Butterfly have very
short runtimes per instance. Especially for Butterfly, instan-
tiating a new JVM for an operation that only takes a few
milliseconds causes a lot of overhead. This could greatly be
reduced by parallelizing QuantifyGraph and Butterfly itself,
so that only one instance is started.

For a better scalability on large shared memory systems
like Blacklight, all OpenMP parallel components should be
optimized for local memory allocation to reduce remote mem-
ory accesses and cache coherency protocol overhead.

A properly optimized instance of Trinity running on a
large-RAM cluster is now a fast alternative for de novo se-
quence assembly of RNA-Seq data. In the past, Zhao et al.
had concluded that Trinity was the best single k-mer type
of assembler, but that it should be avoided when runtime
was a constraining factor. The opposite advice now stands;
Trinity should be selected when runtime is a constraining
factor - and it remains the best single k-mer assembler. We
have checked each optimization reported here to verify that
the same sequences are returned by Trinity. Except as noted
in section 2.2, all of our optimizations returned the identi-
cal sequences as the non-optimized version of Trinity 99.8 or

greater percent of the time.
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