

Center for Information Services and High Performance Computing (ZIH)

HPC Methods for Coupling Spectral Cloud Microphysics with the COSMO Model

Max Planck Institute for Meteorology 17 March 2011

<u>Matthias Lieber</u>^a, Verena Grützun ^b, Ralf Wolke ^c, Matthias S. Müller ^a, Wolfgang E. Nagel ^a

matthias.lieber@tu-dresden.de

^a Center for Information Services and High Performance Computing (ZIH), TU Dresden, Germany

^b Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany

^c Leibniz Institute for Tropospheric Research (IfT), Leipzig, Germany

LEIBNIZ INSTITUTE FOR TROPOSPHERIC RESEARCH

Max-Planck-Institut für Meteorologie

Outline

- Introduction
- Performance Problems of COSMO-SPECS
- New Coupling Scheme
 - Basic Idea
 - Framework FD4
 - COSMO-SPECS+FD4
- Performance Results
- Conclusion & Outlook

- Clouds play a major role for climate and weather
 - Influence on the radiation budget of the planet
 - Part of the hydrological cycle
 - Interaction with aerosol particles and pollution
- Clouds represent one of the major uncertainties in climate and weather models [IPCC07, CCSP09]
- Unsatisfying improvements in precipitation forecast during the last decades

Introduction: Bulk Parameterization Schemes

- Cloud droplets are described by their bulk mass only
- Actual size distribution is neglected
- Computationally fast
- Used in most weather models

Introduction: Spectral Bin Microphysics Schemes

- Bin discretization of size distribution
- Allows more detailed modeling of interaction between aerosol particles, clouds, and precipitation
- Computationally very expensive (runtime & memory)
- Only used for process studies up to now (MM5, WRF, COSMO)

COSMO-SPECS: COSMO with SPECtral bin microphysicS

- COSMO Model: non-hydrostatic limited-area atmospheric model, formerly known as "Lokal-Modell" of DWD
 - http://www.cosmo-model.org

- COSMO-SPECS: Cloud parameterization scheme of COSMO replaced by the spectral bin microphysics model SPECS [Simmel06, Grützun08]
 - 11 new variables to describe 3 types of hydrometeors (water droplets, frozen particles, insoluble particles)
 - Discretized into a predefined number of size bins,
 e.g. 66 bins x 11 variables = 726 values!
 - Very high computational costs

COSMO-SPECS: SPECS Workload Measurement

- SPECS computing time varies strongly depending on the range of the particle size distribution and presence of frozen particles
- Time splitting scheme makes SPECS even more costly, in this case: $\Delta t_{COSMO}=10s$, $\Delta t_{SPECS}=0.5s$

COSMO-SPECS: Parallel Implementation

- COSMO parallelization
 - 2D (horizontal) decomposition into MxN static partitions
 - Message Passing Interface
- Load imbalance due to SPECS computing time variations

Basic Idea of Load-Balanced Coupling

- Present approaches:
 - Cloud model is implemented as a submodule within the weather model
 - No dynamic load balancing
- Our idea:
 - Separate cloud model data from static weather model data structures
 - Independent domain decompositions
 - Dynamic load balancing for cloud model
 - (Re)couple weather and cloud model
- Implement these features in a new framework called FD4
- FD⁴ = Four-Dimensional Distributed Dynamic Data structures

Framework FD4: Dynamic Load Balancing

Based on 3D block decomposition of grid (#blocks > #processes)

- Task: Assign blocks to processes in a balanced way which also minimizes ghost communication costs. And do this quickly.
- Hilbert space-filling curve (SFC) partitioning [Sagan94, Teresco06]
 - SFC reduces 3D partitioning problem to 1D [Pinar04]
 - Locality properties of SFC lead to moderate ghost comm. costs
 - Very fast algorithm

Framework FD4: Model Coupling

- Data exchange between FD4 based model and an external model
 - E.g. weather or CFD model
- Direct data transfer between overlapping parts of of the partitions
- Transfer in both directions
- No grid transformation / interpolation
 - External model must provide data matching the grid used in FD4

Framework FD4: 4th Dimension

- Extra dimension of grid variables
- E.g. size resolving models, array of gas phase tracers
- FD4 is optimized for a large 4th dimension
- COSMO-SPECS requires
 2 x 11 x 66 ~ 1500 values

Framework FD4: Implementation

- Implemented in Fortran 95
- MPI-based parallelization
- Open Source Software
- www.tu-dresden.de/zih/clouds

```
! MPI initialization
call MPI_Init(err)
call MPI Comm rank(MPI COMM WORLD, rank, err)
call MPI Comm size(MPI COMM WORLD, nproc, err)
! create the domain and allocate memory
call fd4 domain create(domain, nb, size,
                                              &
     vartab, ng, peri, MPI COMM WORLD, err)
call fd4 util allocate all blocks(domain, err)
! initialize ghost communication
call fd4 ghostcomm create(ghostcomm, domain, &
     4, vars, steps, err)
! loop over time steps
do timestep=1,nsteps
  ! exchange ghosts
  call fd4 ghostcomm exch(ghostcomm, err)
  ! loop over local blocks
  call fd4_iter_init(domain, iter)
  do while(associated(iter%cur))
    ! do some computations
    call compute_block(iter)
    call fd4 iter next(iter)
  end do
  ! dynamic load balancing
  call fd4_balance_readjust(domain, err)
end do
```


COSMO-SPECS+FD4: Coupling Scheme

COSMO-SPECS+FD4 = COSMO-SPECS using FD4 for coupling

COSMO

Computes dynamics

Static MxN partitioning

FD4

Send data to FD4 data structures:

u, v, w, T, p, **ρ**, q_v SPECS

Computes

Microphysics

Data dynamically

balanced by FD4

FD4

Receive data from FD4 data structures:

 $\Delta T,\;q_{\rm V},\;q_{\rm c},\;q_{\rm i}$

COSMO-SPECS+FD4: Visualization of Load Balancing

- Small 2D case, 32 x 48 grid, 16 x 16 FD4 blocks
- Colors: 8 partitions for SPECS balanced by FD4
- Contours: liquid and frozen particle concentration (g/kg)

COSMO-SPECS vs. COSMO-SPECS+FD4 Benchmark

- Artificial Scenario:
 - Heat bubble results in growth of idealized cumulus cloud
- 80 x 80 horizontal grid with 1 km resolution
- 48 nonuniform height levels (up to 18 km)
- 19200 FD4 blocks (2x2x4 = 16 grid cells)
- 30 min forecast time

Performance Comparison on HLRB-II (SGI Altix 4700)

High Scalability Benchmark on Jaguar (Cray XT5)

Conclusion & Outlook

- FD4 provides an efficient and scalable way of coupling spectral cloud microphysics with atmospheric models
- COSMO-SPECS performance increased significantly by FD4
- Large-scale studies with spectral cloud microphysics feasible
- FD4 not limited to spectral cloud microphysics
- FD4 is freely available at http://www.tu-dresden.de/zih/clouds
- Outlook:
 - Investigate adaptive time stepping in COSMO-SPECS+FD4
 - Parallel I/O in FD4
 - Simulate a real-case scenario with COSMO-SPECS+FD4

COSMO Model: German Weather Service (DWD)

Access to Jugene: Jülich Supercomputing Centre (JSC)

Access to HLRB-II: Leibniz Supercomputing Centre Munich (LRZ)

Access to Jaguar: Oak Ridge National Lab (ORNL)

Funding: German Research Foundation (DFG) **DFG**

ÜLICH

Thank you for your attention!

Refences

- [Grützun08] V. Grützun, O. Knoth, and M. Simmel. *Simulation of the influence of aerosol particle characteristics on clouds and precipitation with LM–SPECS: Model description and first results.* Atmos. Res., 90:233–242, 2008.
- [CCSP09] *Atmospheric Aerosol Properties and Climate Impacts*, U.S. Climate Change Science Program and the Subcommittee on Global Change Research, 2009.
- [IPCC07] S. Solomon et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), 2007.
- [Lieber10] M. Lieber, V. Grützun, R. Wolke, M.S. Müller, and W.E. Nagel. *FD4: A Framework for Highly Scalable Load Balancing and Coupling of Multiphase Models*, AIP Conference Proceedings 1281(1), 1639-1642, 2010
- [Pinar04] A. Pinar and C. Aykanat. *Fast optimal load balancing algorithms for 1D partitioning.* J. Parallel Distrib. Comput., 64(8):974-996, 2004.
- [Sagan94] H. Sagan. Space-filling curves, Springer, 1994
- [Simmel06] M. Simmel and S. Wurzler. *Condensation and activation in sectional cloud microphysical models*, Atmos. Res., 80:218-236, 2006.
- [Teresco06] J.D. Teresco, K.D. Devine, and J.E. Flaherty. *Partitioning and Dynamic Load Balancing for the Numerical Solution of Partial Differential Equations,* in Numerical Solution of Partial Differential Equations on Parallel Computers, pages 55-88, Springer, 2006.

Backup slides

Framework FD4: Basic Data Structure

- 3D Regular grid is decomposed into blocks
- FD4 allocates data fields in the blocks based on variable table
 - Variable name
 - Length of 4th dimension
 - Number of time steps
 - Discretization, i.e. cell-centered or face-centered

Framework FD4: Variable Discretization Types

- Cell-centered variables
- Face-centered variables

Framework FD4: Dynamic Load Balancing

- When blocks are added or removed (adaptive block mode)
- When load balance decreases below a certain limit
- User can assign each block a weight, e.g. computation time of the block
- Two partitioning methods:
 - Hilbert space-filling curve (SFC) partitioning [Sagan94]
 - Graph partitioning using ParMETIS
- SFC preferred because graph partitioning has much higher overhead

Framework FD4: SFC Partitioning Algorithm

- Space-filling curve reduces 3D partitioning problem to 1D
- Partitioning of an 1D array of block weights
- Goal: Reduce the maximum load (*bottleneck value*)
- Determination of minimal *bottleneck value* is not trivial
 - Only lower and upper bound are known a priori [Pinar04]
- Fast parallel heuristic implemented in FD4:
 - All processes exchange their block weights
 - Each process checks for a different *bottleneck value* within the known interval if a partitioning exists for it
 - Minimal value determined with MPI_Allreduce
 - Each process determines its own partition based on the minimal *bottleneck value* found

Framework FD4: Model Coupling

Sequential coupling: all processes perform computations for both models alternately [Lieber08]

- Save memory in case data and computations are required for a spatial subset only
- Suitable for multiphase problems like drops, clouds, flame fronts

Framework FD4: Adaptive Block Mode

- Grid allocation adapts to spatial structure of simulated problem
- Empty blocks are not allocated
 - Defined by a threshold value for specified variables
 - I.e. block does not contain any quantities of a certain phase
- FD4 ensures existence of all blocks required for correct stencil operations

Framework FD4: Dynamic Load Balancing Movie

Overhead test of adaptive block mode and load balancing [Lieber10]

- FD4 adapts to cloud formation in COSMO weather model
- Real-life scenario, 249 x 174 x 50 grid, 256 processes

COSMO-SPECS(+FD4) Benchmarks Overview

48.75%

4 1

•

_ 🗆 🗙

0.00 MiB

