
Zellescher Weg 12

Willers-Bau A106

Tel. +49 351 - 463 - 31945

Ulf Markwardt (ulf.markwardt@tu-dresden.de)

Matthias Lieber (matthias.lieber@tu-dresden.de)

Compiler Options

Linux/x86 Performance Practical, 17.06.2009

Center for Information Services and High Performance Computing (ZIH)



Compiler Options 2

General Optimization

General flags imply many optimizations with a simple flag

-O0 –
 

no optimization at all, fastest compilation, GNU default

-O1 –
 

minimize code size with small speed optimizations

-O2 –
 

maximize program speed, Intel default

-O3 –
 

more aggressive optimizations than -O2, but not always better

Specific meaning of the flags in not the same between different 
compilers

– e.g. Intel -O2 includes function inlining, while GNU does not

– Read compilers manual/manpage

All optimization levels except -O0 may affect debugging (-g)

– e.g. optimizing functions/variables away, reordering of statements

But debugging does (practically) not affect optimization



Compiler Options 3

Specific Optimization Flags

Compilers offer tons of specific optimization flags

Not compatible across compilers

Address specific optimization strategies

– May or may not increase execution speed

– May sometimes even slow your program down

Include straightforward, harmless optimizations but also aggressive 
strategies



Compiler Options 4

Inlining

Inlining replaces the call to a function by the function’s code

Reduces function call overhead for small, often called functions

Compiler knows context of the specific function call, which allows further 
optimizations, e.g. propagation of constants

Good for object-oriented code (lots of small functions)

Only works within a single source file

Enable function inlining: -finline-functions

– Intel: -O2, -O3 imply inlining

– Intel: -ip implies inlining and additional interprocedural

 
optimizations

– GNU: -O3 implies inlining

Control the max. size of functions that can be inlined:

– Intel:

 
-inline-factor

– GNU:

 
-finline-limit



Compiler Options 5

Aliasing

Aliasing means, that a memory address can be accessed by different 
symbolic names (variables, pointers)

Aliasing prohibits optimizations, e.g.:

– Compiler could propagate x = 1 to last line

– But wait, p could be a pointer to x!

You should tell the compiler to what aliasing rules your code 
conforms

If code does not conform to the rules: unexpected results

x = 1;

*p = 42;

y = 2 * pi * x;



Compiler Options 6

Aliasing in C

ISO C defines rule for “strict aliasing”

– Pointers of different type must not alias each other

Compilers may rely on this rule at higher optimization levels

– GNU: -O2 enables -fstrict-aliasing

– Intel: even -O3 does not enable strict aliasing, do this with
 -ansi-alias or -fstrict-aliasing

You can define even more strict aliasing rules

– Function arguments do not alias each other, even if same type:
 -fargument-noalias

– Additionally, arguments do not alias global storage:
 -fargument-noalias-global

– Assume no aliasing at all (Intel only):
 

-fno-alias,
 

-fno-fnalias

This allows more compiler optimizations but programmer must assure 
conformance to the rules!



Compiler Options 7

Aliasing in C: restrict Keyword

Keyword restrict is defined in C99

A pointer declared as restrict must not be used to access other 
objects

– Programmer is responsible to adhere to this rule

– More compiler optimizations possible

Requires the -std=c99 compiler flag

e.g. memcpy
 

without overlapping memory areas:

void* memcpy(void restrict *dest, void restrict *src, size_t n)



Compiler Options 8

Aliasing in Fortran

Less problematic than in C

Subroutine arguments must not alias each other!

More strict aliasing rules can be specified:

– Assume no aliasing at all (Intel only):
 

-fno-alias

– Assume no aliasing within functions (Intel only):
 

-fno-fnalias

call func(x,x)

Illegal



Compiler Options 9

Loop Unrolling

Compiler can perform loop unrolling for you:

– Intel: -unroll, enabled at -O2

– GNU: -funroll-loops

Only loops with known trip counts are unrolled (at compile time or 
upon entry to the loop)

– Unroll all loops, may degrade performance: -funroll-all-loops

More aggressive:

– Intel: -unroll-aggressive



Compiler Options 10

Floating Point Arithmetic

Compiler optimizations

– May affect accuracy of floating point arithmetic

– May violate strict IEEE rules

You can balance speed vs. accuracy using compiler flags

Enable non-IEEE optimizations:

– GNU: -ffast-math

– Intel: -fp-model fast=1 (default) or -fp-model fast=2

Disable optimzations:

– GNU: -fno-fast-math (default)

– Intel: -fp-model precise -fp-model-source or
 -fp-model strict

More options: read manual



Compiler Options 11

Floating Point Arithmetic - Intel-only Flags

All these flags violate IEEE semantics!

Slightly less accurate but faster divisions: -no-prec-div

Slightly less accurate but faster square roots: -no-prec-sqrt

Slightly less accurate but faster sin, exp, ... -fast-transcendentals

Flush SSE denormalized
 

numbers (NaN, Inf) to zero: -ftz



Compiler Options 12

Processor-specific Optimizations

Tune code for Phobos
 

CPUs (Opteron with SSE2)

– GNU: -march=k8

– Intel: -xW

– This code will not run on a CPU without SSE2!

Tune code for Deimos
 

CPUs (Opteron with SSE3)

– GNU: -march=k8 -msse3

– Intel 11: -msse3 / Intel <11:
 

-xO

– This code will not run on a CPU without SSE3!

Tune code for CPU of compilation host

– GNU: -march=native (only newer GNU compilers)

– Intel 11: -xhost



Compiler Options 13

Prefetching

Prefetching
 

= loading data from memory to CPU cache before the 
program actually needs it

Goal: reduce processor stalls due to waiting for (slow) memory

Useful when traversing large arrays

Prefetching
 

does not always improve performance

Intel: -opt-prefetch

GNU: -fprefetch-loop-arrays



Compiler Options 14

Interprocedural Optimizations (IPO)

Inlining, constant propagation, etc. across multiple files

GNU: -combine (GCC 4.1 or higher)

– Compiles all source files given in the command line at once, builds one 
combined object file

– When building the whole program at once, use additionally

 -fwhole-program to allow further optimizations

Intel: -ipo

– Object files are compiled to intermediate representation

– Avoid building libraries (or use Intel’s xiar)

gcc -O3 -combine -fwhole-program main.c utils.c -o myprog

icc -c -O3 -ipo main.c

icc -c -O3 -ipo utils.c

icc -O3 -ipo main.o utils.o -o myprog

Actual compilation 
happens here



Compiler Options 15

Profile-Guided Optimization (PGO)

Based on an execution profile better optimizations are possible

– 1: compile with profile generation

– 2: run program with (small) representative data set

– 3: compile again, use generated profiles

Works best in combination with IPO

GNU (GCC 3.4.6 or higher):

– -fprofile-generate, -fprofile-use

Intel:

– -prof-gen, -prof-use

– -prof-dir -
 

specify directory where profiles are generated / read


	Compiler Options
	General Optimization
	Specific Optimization Flags
	Inlining
	Aliasing
	Aliasing in C
	Aliasing in C: restrict Keyword
	Aliasing in Fortran
	Loop Unrolling
	Floating Point Arithmetic
	Floating Point Arithmetic - Intel-only Flags
	Processor-specific Optimizations
	Prefetching
	Interprocedural Optimizations (IPO)
	Profile-Guided Optimization (PGO)

