
Identification of
Performance Problems

Center for Information Services and High Performance Computing

Ulf Markwardt Ulf.Markwardt@tu-dresden.de

Special thanks to:

Heike Jagode jagode@eecs.utk.edu
Dan Terpstra terpstra@eecs.utk.edu

Identification of Performance Problems

Markwardt

Contents

Overview over PAPI

• PAPI command line tools

• PAPI functions

Typical performance problems

• Small examples with code optimizations

Identification of Performance Problems

Markwardt

What is PAPI ?

Performance Application Programming Interface for hardware performance
counters

http://icl.cs.utk.edu/projects/papi

Started as a Parallel Tools Consortium project in 1998

Goal was to produce a specification for a portable interface to the hardware
performance counters

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension
PAPI Machine
Dependent SubstrateMachine

Specific
Layer

Portable
Layer

Identification of Performance Problems

Markwardt

PAPI tools – papi_cost

mark@n13:~> papi_cost -b 5 -d
Cost of execution for PAPI start/stop and PAPI read.
This test takes a while. Please be patient...
Performing start/stop test...

Total cost for PAPI_start/stop(2 counters) over 1000000 iterations
min cycles : 6389
max cycles : 48555741
mean cycles : 6910.000000
std deviation: 50860.901567

Cost distribution profile

6389:**************************** 999998 counts ****************************
9716259:**
19426129:
29135999:
38845869:

Performing read test...

Total cost for PAPI_read(2 counters) over 1000000 iterations
min cycles : 112
max cycles : 21150
mean cycles : 117.000000
std deviation: 36.541767

Cost distribution profile

112:**************************** 999995 counts ****************************
4319:**
8526:**
12733:**
16940:

Identification of Performance Problems

Markwardt

PAPI tools – papi_mem_info

mark@n13:~> papi_mem_info
Test case: Memory Information.
--
L1 Instruction TLB: Number of Entries: 512; Associativity: 4

L1 Data TLB: Number of Entries: 512; Associativity: 4

L1 Instruction Cache:
Total size: 64KB
Line size: 64B
Number of Lines: 1024
Associativity: 2

Total size: 64KB
Line size: 64B
Number of Lines: 1024
Associativity: 2

Total size: 1024KB
Line size: 64B
Number of Lines: 16384
Associativity: 16

Identification of Performance Problems

Markwardt

PAPI tools – papi_avail

mark@n13:~> papi_avail -h
This is the PAPI avail program.
It provides availability and detail information
for PAPI preset and native events. Usage:

avail [options] [event name]
avail TESTS_QUIET

Options:

-a display only available PAPI preset events
-d display PAPI preset event info in detailed format
-e EVENTNAME display full detail for named preset or native event
-h print this help message
-t display PAPI preset event info in tabular format (default)

Identification of Performance Problems

Markwardt

PAPI tools – papi_avail

mark@n13:~> papi_avail –a
Test case avail.c: Available events and hardware information.

Vendor string and code : AuthenticAMD (2)
Model string and code : AMD K8 Revision C (15)
CPU Revision : 10.000000
CPU Megahertz : 2205.074951
CPU's in this Node : 2
Nodes in this System : 1
Total CPU's : 2
Number Hardware Counters : 4
Max Multiplex Counters : 32

Name Derived Description (Mgr. Note)
PAPI_L1_DCM Yes Level 1 data cache misses ()
PAPI_L1_ICM Yes Level 1 instruction cache misses ()
PAPI_L2_DCM No Level 2 data cache misses ()
PAPI_L2_ICM No Level 2 instruction cache misses ()
PAPI_L1_TCM Yes Level 1 cache misses ()
PAPI_L2_TCM Yes Level 2 cache misses ()
PAPI_FPU_IDL No Cycles floating point units are idle ()
PAPI_TLB_DM No Data translation lookaside buffer misses ()
[…]

TODO papi_avail:

• Check performance counters
available on the system

• Get acquainted with preset
counters

Identification of Performance Problems

Markwardt

PAPI tools – papi_native_avail

mark@n13:~> papi_native_avail
[…]
The following correspond to fields in the PAPI_event_info_t structure.
Symbol Event Code Count
|Short Description|
|Long Description|
|Derived|
|PostFix|

The count field indicates whether it is a) available (count >= 1) and b) derived
(count > 1)
FP_ADD_PIPE 0x40000000
|Dispatched FPU ops - Revision B and later revisions - Speculative add pipe ops

excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x100 @?|

FP_MULT_PIPE 0x40000001
|Dispatched FPU ops - Revision B and later revisions - Speculative multiply pipe

ops excluding junk ops|
|Register Value[0]: 0xf P3 Ctr Mask|
|Register Value[1]: 0x200 @?|

[…]

TODO papi_native_avail:

• Difference between native and
PAPI counters

Identification of Performance Problems

Markwardt

PAPI tools – papi_event_chooser

mark@n13:~> papi_native_avail PRESET FP_ADD_PIPE PAPI_FP_INS FR_X86_INS
Test case eventChooser: Available events which can be added with given events.
[…]
Name Derived Description (Mgr. Note)
PAPI_L2_DCM No Level 2 data cache misses ()
PAPI_L2_ICM No Level 2 instruction cache misses ()
PAPI_FPU_IDL No Cycles floating point units are idle ()
PAPI_TLB_DM No Data translation lookaside buffer misses ()
PAPI_TLB_IM No Instruction translation lookaside buffer misses ()
PAPI_L1_LDM No Level 1 load misses ()
PAPI_L1_STM No Level 1 store misses ()
PAPI_L2_LDM No Level 2 load misses ()
PAPI_L2_STM No Level 2 store misses ()
PAPI_STL_ICY No Cycles with no instruction issue ()
PAPI_HW_INT No Hardware interrupts ()
PAPI_BR_TKN No Conditional branch instructions taken ()
PAPI_BR_MSP No Conditional branch instructions mispredicted ()
PAPI_TOT_INS No Instructions completed ()
PAPI_BR_INS No Branch instructions ()
PAPI_VEC_INS No Vector/SIMD instructions ()
PAPI_RES_STL No Cycles stalled on any resource ()
PAPI_TOT_CYC No Total cycles ()
PAPI_L2_DCH No Level 2 data cache hits ()

Identification of Performance Problems

Markwardt

PAPI tools – papi_command_line

mark@n13:~> papi_command_line FP_ADD_PIPE PAPI_FP_INS FR_X86_INS PAPI_TOT_CYC
[…]
This utility lets you add events from the command line interface to see if they
work.
command_line.c PASSED
mark@n13:~> papi_command_line FP_ADD_PIPE PAPI_FP_INS FR_X86_INS PAPI_VEC_INS
PAPI_TOT_CYC
Successfully added: FP_ADD_PIPE
Successfully added: PAPI_FP_INS
Successfully added: FR_X86_INS
Successfully added: PAPI_VEC_INS
Failed adding: PAPI_TOT_CYC
because: PAPI_ECNFLCT

FP_ADD_PIPE : 20001228
PAPI_FP_INS : 40002472
FR_X86_INS : 220164398
PAPI_VEC_INS : 0
PAPI_TOT_CYC : ---------

Verification: None.
This utility lets you add events from the command line interface to see if they

work.

TODO papi_event_chooser,
papi_command_line

• Which events can be counted
simutaneously?

• Sure?

Identification of Performance Problems

Markwardt

PAPI tools

Check PAPI utilities at Phobos, get a feeling what can be analyzed!

~> module load papi

Memory hierachy
papi_mem_info

Costs of PAPI calls
papi_cost

Available native/derived/preset counters
papi_avail , papi_native_avail

Combinable counters
papi_event_chooser

Check out to dampen you anticipation
papi_command_line

Identification of Performance Problems

Markwardt

PAPI access from C or Fortran

Countable events are defined in two ways:

Platform-neutral preset events (e.g., PAPI_TOT_INS)

Platform-dependent native events (e.g., L3_CACHE_MISS)

Additionally, multiplex measurements can be defined – for a mere statistical
analysis.

Levels of access

High level API calls makes access to preset counters easier

Low level API calls can access all available counters for a few lines more
(or wrapper functions)

Identification of Performance Problems

Markwardt

PAPI high level functions

PAPI_num_counters - get the number of hardware counters available on the
system

PAPI_flips - simplified call to get Mflips/s (floating point instruction rate), real
and processor time

PAPI_flops - simplified call to get Mflops/s (floating point operation rate), real
and processor time

PAPI_ipc - gets instructions per cycle, real and processor time

PAPI_accum_counters - add current counts to array and reset counters

PAPI_read_counters - copy current counts to array and reset counters

PAPI_start_counters - start counting hardware events

PAPI_stop_counters - stop counters and return current counts

Easy to use functions - but works only for a limited number (42 - sic!) pre-defined
events.

Get preset events with: papi_avail -a

Identification of Performance Problems

Markwardt

PAPI low level functions

PAPI_accum (3) - accumulate and reset hardware events from an event set
PAPI_add_event (3) - add single PAPI preset or native hardware event to an event set
PAPI_add_events (3) - add array of PAPI preset or native hardware events to an event set
PAPI_attach (3) - attach specified event set to a specific process or thread id
PAPI_cleanup_eventset (3) - remove all PAPI events from an event set
PAPI_create_eventset (3) - create a new empty PAPI event set
PAPI_destroy_eventset (3) - deallocates memory associated with an empty PAPI event set
[…]

Total of 74 functions covering the whole functionality of the PAPI library.
See e.g. http://icl.cs.utk.edu/projects/papi/files/html_man3/papi.html for
reference.

For this practical, wrappers (see “papi” directory) for low level functions are
provided:

initPAPI(char* sList[]) – init PAPI, add events from event list, start counters

stopPAPI() – stop hardware counters

readPAPIcounters(long long values[]) – read counters.
User has to define array!

Identification of Performance Problems

Markwardt

Performance measurement categories

Efficiency

Retired instructions per cycle (PAPI_TOT_INS / PAPI_TOT_CYC)

Caches

Data cache misses and miss ratio

Cache misses and miss ratio

Translation lookaside buffers (TLB)

Data TLB misses and miss ratio

Instruction TLB misses and miss ratio

Floating point operations (# integer ops)

Retired, stalled, speculative

exceptions

Control structures

Branch mispredictions

Identification of Performance Problems

Markwardt

Typical performance problems

Code has superfluous sections? Re-design it!

All computations are necessary! - Decrease the time in between. Avoid
stalled pipelines.

1 Memory wall: growing disparity of
speed between CPU and memory
outside the CPU chip.

• Even streaming memory bandwidth is too slow for super-pipelined
arithmetic units.

• Latency for first reference.

• TLB misses make things worse.

L1 - L2 - L3 - MEM - remote...

latency

bandwidth

Identification of Performance Problems

Markwardt

2 Data Dependencies: Too near data dependencies can stall pipes

17

IF ID DF IE WB

Time – sequential processing

IF ID DF IE WB IF ID DF

IF ID DF IE WB

Time – pipelined processing

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

Time – pipeline stalls from data dependencies

IF ID DF IE WB

IF ID DF IE WB

A = B+C

D = A*A

F = D*B

A = B+C

E = D*D

G = F*F

Typical performance problems

Identification of Performance Problems

Markwardt

3 Branch mispredictions: Invalidate pipeline

4 Data alignemt: SSE expects alinged data

In general: Help the compiler to optimize the code

18

IF ID DF IE WB

Time

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

IF ID DF IE WB

if (A>0)
{…}

else {…}

Typical performance problems

Identification of Performance Problems

Markwardt

Memory wall – data cache access

Cache miss: a failed attempt to read or write a piece of data in the cache

Results in main memory access with much longer latency

Important to keep data as close as possible to CPU

Classes of data cache misses

Compulsory misses: first reference to a data item

• Prefetching can help

Capacity misses: working set exceeds the cache capacity

• Spatial locality: use all the data that is loaded into the cache

• Smaller working set (blocking/tiling algorithms)

Conflict misses: data item is referenced after its cache line was evicted earlier.

• Temporal locality: reuse data as long as possible

• Data layout; memory access patterns

Identification of Performance Problems

Markwardt

Code optimization – data structure

Focus on spatial and temporal data locality!

Reuse data as much as possible (even at the price of more computations)

Always: Compromise between performance and readability:
preprocessor macros may help without performance degradation

Example: calculate ∑ ║(x,y,z)T║ for given data

• Compund structure
– typedef struct {

– char valid; /* just a tag */
– PRECISION x, y, z;
– } R3 ;

• Each dimension in a seperate vector:
PRECISION x[N], y[N], z[N];

TODO data_structure:

•Use different data types, structures

•Check L1/L2 cache misses, FLOPS

•Instructions per cycle

Identification of Performance Problems

Markwardt

Code optimization – data structure

PRECISION do_flops(PRECISION x[],PRECISION y[],PRECISION z[])
{
int i;
PRECISION s=0;
for (i=0; i< N; i++) {

s = s + x(i)*x(i) + y(i)*y(i) + z(i)*z(i);
}
return sqrt(s);
}

Data locality (in a struct) clearly wins this competition

• Access one data stream instead of three

Observe automatic padding of struct (with and without
__attribute__((packed)) and its influence on performance

• Data alignment is critical for SSE instructions

Identification of Performance Problems

Markwardt

Code optimization – data access

Example 2: Matrix multiplication

a=(PRECISION*)
(malloc(N *N* sizeof(PRECISION)));

b= ...

PRECISION do_flops(
PRECISION a[],
PRECISION b[],
PRECISION c[])

{
int i,j,k;double s;
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
for (k=0; k<N; k++) {

c[i*N+j]+=
a[i*N+k]*b[k*N+j];

}
}

}
return 0.0;

}

x =

k →i →

j →k →

j →i →

TODO example_1:

•Use different data types, structures

•Check L1/L2 cache misses, FLOPS

•Instructions per cycle

•Find better solution?

Identification of Performance Problems

Markwardt

Code optimization – data access

Example 2: Matrix multiplication

a=(PRECISION*)
(malloc(N *N* sizeof(PRECISION)));

b= ...

PRECISION do_flops(
PRECISION a[],
PRECISION b[],
PRECISION c[])

{
int i,j,k;double s;
for (i=0; i<N; i++) {

for (k=0; k<N; k++) {
for (j=0; j<N; j++) {

{
c[i*N+j]+=

a[i*N+k]*b[k*N+j];
}

}
}
return 0.0;

}

x =

k →i →

j →k →

j →i →

x =

k →i →

j →k →

j →i →

Loop rearranging leads to faster data
access along two cache lines

TODO example_1:

•Compare measurements

Identification of Performance Problems

Markwardt

Cheating allowed

High level programming languages are already a compromise between
usability and performance

For standard problems: always check for an appropriate library first

• Hardware optimized libraries (ACML, MKL)

• Community libraries (ATLAS, SCALAPACK, GSL)

• Commercial products (NAG, IMSL)
Attention: May be unusable without prior warning!

TODO example_2:

•Compare measurements with MKL and ACML

•Use single precision for floating point data,
check PAPI_VEC_INS

Identification of Performance Problems

Markwardt

Comparison of measurements

ijk ikj ACML MKL
Time (s) 14,49 4,60 0,55 0,65
PAPI_TOT_CYC 31449267176 9903957877 1155592270 1392980080
PAPI_TOT_INS 11007032168 11009023783 1630767579 1708966373
instr/cyc 0,350 1,112 1,411 1,227

PAPI_L1_DCH
PAPI_L1_DCM
L1 hit ratio

PAPI_L2_DCH
PAPI_L2_DCM
L2 hit ratio

Identification of Performance Problems

Markwardt

Code optimizations

Scope: Reduce stalls in the pipelines of the arithmetic units

Increase cache hits (low latency, higher bandwidth)

Avoid „random“ (i.e. non-linear) access to data

Avoid branch mispredictions

Complicated loops (compiler has no clue)

If-conditions in loops, premature loop exits

Function calls (without inlining)

Data alignment

Avoid immediate data dependencies

Always check effect of code modifications.

Sometimes compilers think they are smart.

	Identification of �Performance Problems
	Contents
	What is PAPI ?
	PAPI tools – papi_cost
	PAPI tools – papi_mem_info
	PAPI tools – papi_avail
	PAPI tools – papi_avail
	PAPI tools – papi_native_avail
	PAPI tools – papi_event_chooser
	PAPI tools – papi_command_line
	PAPI tools
	PAPI access from C or Fortran
	PAPI high level functions
	PAPI low level functions
	Performance measurement categories
	Typical performance problems
	Typical performance problems
	Typical performance problems
	Memory wall – data cache access
	Code optimization – data structure
	Code optimization – data structure
	Code optimization – data access
	Code optimization – data access
	Cheating allowed
	Comparison of measurements
	Code optimizations

