
Overvi ew over the
x86 Processor Architecture

Daniel Molka

Daniel.Molka@tu-dresden.de

Ulf Markwardt ulf.markwardt@tu-dresden.de

Center for

Information Services and High Performance Computing

(ZIH)‏

Overview over the x86 Processor Architecture

Molka, Markwardt

Outline

Instruction set

• Instruction format

• ISA extensions

Pipelining

Out-of-order execution

Memory access

• Address translation

• TLB

• Measurements on current multicore

processors, complex cache hierarchy

• Remote memory access

2

Overview over the x86 Processor Architecture

Molka, Markwardt

Multicore Processors

Multilevel Caches

• L1/L2 per core
– Accesses to other cores caches can

have high overhead

• Shared L3
– Competitively shared
– Interference due to replacements

caused by other cores and bandwidth
limitations of concurrent accesses

Shared memory controller and system
interface

• Cores compete for bandwidth

• One core can not always utilize available
memory bandwidth

3

Overview over the x86 Processor Architecture

Molka, Markwardt

Instruction set
x86 instructions

• Integer instructions
– originally 16 Bit, later extended to 32 (IA-32) and 64 Bit (AMD64)

FPU

• Floating point instructions

• 32, 64 and 80 Bit

SIMD extensions

• Single instruction multiple data
– Reduces code size if applicable

• MMX: 64 Bit Register, 8x 8 Bit/ 4x 16 Bit/ 2x 32 Bit integer ops/cycle

• SSE: 128 Bit Register
– 4x 32 Bit/ 2x 64 Bit floating point ops/cycle
– 16x 8 Bit/ 8x 16 Bit/4x 32 Bit/ 2x 64 Bit integer ops/cycle

• Coming soon: AVX: 256 Bit Register

4

Overview over the x86 Processor Architecture

Molka, Markwardt

Instruction format

CISC (Complex Instruction Set Computing)
• Many instruction formats
• Variable instruction length
• Multiple addressing modes

RISC (Reduced Instruction Set Computing) execution
• Complex x86 instructions are decoded into RISC-like instructions, so called

microops
• Load/Store architecture

– Special instructions for data movement between registers and memory
– Execution units (ALU,FPU) only work on registers

5

Overview over the x86 Processor Architecture

Molka, Markwardt

Architectural Registers

Original x86 had very few registers
• Frequent memory accesses requiered

extensions added more and wider registers

6

Overview over the x86 Processor Architecture

Molka, Markwardt

Streaming SIMD Extensions on Intel and AMD processors

Intel

• SSE (*1999 Pentium III)
– Single precision floating point instructions on XMM registers
– Additional integer instructions on MMX registers

• SSE2
– Double precision floating point instructions on XMM registers
– Integer instructions on XMM registers

• SSE3: additional floating point instructions

• SSSE3 (Supplemental SSE3): additional integer instructions

• SSE4.1: scalar product, blending, min, max

• SSE4.2: string operations, CRC32

AMD

• 3D-Now! (*1998 AMD K6-2)

• SSE, SSE2, SSE3 compatible with Intel definition

• SSE4A: insert and extract instructions, not compatible with Intel’s SSE4

7

Overview over the x86 Processor Architecture

Molka, Markwardt

Basic Operation:

Data Types:

• Aligned and unaligned load/store instructions to transfer 128 Bit of data
between registers and memory

– Aligned instructions are faster, but require double quadwords

to be 128 Bit
aligned

– Standard function malloc() allocates unaligned memory
– Compilers fall back to unaligned instructions if alignment is unknown

Using SIMD inst ruct i ons

8

Overview over the x86 Processor Architecture

Molka, Markwardt

Using SIMD inst ruct i ons

Available via intrinsics, assembly or auto-generated by the compiler

icc

• -msse2 (default), -msse3, -mssse3, -msse4.1
– -msse2, -msse3: generated code compatible with AMD processors

• -x and -ax
– Optimized code for Intel processors
– -x requires specified extension, -ax includes fallback implementation

according to -m/-x
- E.g. -msse2 -axSSE4.2,SSE4.1,SSSE3,SSE3: runs on all processors

with SSE2
-xSSE4.2: only runs on Intel Core i7 and Nehalem based Xeons

gcc

• -msse, -msse2, -msse3, -mssse3
– -msse, -msse2 enabled by default on 64 Bit systems

9

Overview over the x86 Processor Architecture

Molka, Markwardt

MA

MA

MA

Basic pipelining

Instruction fetch: retrieves the instruction from the cache

Instruction decode: decodes the instruction and looks for operands (register or
immediate values

Execure: performs the instruction (ADD, SUB,…)

Memory access: accesses the memory, and writes data or retrieves

data from it

Write back (retire): records the calculated value in a register

IF ID DF IE WB

Time –

sequential

processing

IF ID DF IE WB IF ID

IF ID DF IE WB

Time –

pipelined

processing

IF ID DF IE WB

IF ID DF IE WB

A = B+C

E = D*D

G = F*F

MA MA

Overview over the x86 Processor Architecture

Molka, Markwardt

Pipelining

Each pipeline-stage can work on a different instruction

Superscalar pipelines can process multiple instructions in each stage

Ideally n instruction finish each cycle in an n-way superscalar architecture

11

2-way superscalar pipeline

Overview over the x86 Processor Architecture

Molka, Markwardt

Longer Pipelines

Phases can be split further

• Decode
– Pre-Decode (e.g. determine instruction length if not constant [x86: 1 Byte –

18 Byte])
– Decode: Analyse Opcode

• Execution

– E.g. Floating Point Addition
- Align exponents
- Add significants
- Normalize result

– E.g. Floating Point Multiplication
- Add exponents
- Multiply significants
- Normalize result

Hyper-pipeline / super-pipeline on modern micro-processors with appr. 20 stages

12

Overview over the x86 Processor Architecture

Molka, Markwardt

Out -of - or der execut i on

Reordering of instructions

• Microops

do not have to be executed in program order
– Slow operations (e.g. division) do not stall execution
– Scheduler can sent subsequent instructions to

execution units if they do not have unsatisfied
dependencies

• In-order completion
– Execution units work on internal registers
– Reorder Buffer commits (write back/retirement)

results to architectural registers in program order

13

Overview over the x86 Processor Architecture

Molka, Markwardt

AMD dual - core Opteron (K8 microarchi t ectur e)

Decodes up to 3 instructions per
cycle

128 Bit SSE instructions are split
into two 64 Bit ops

72 Makroops

“in-flight”

3 Integer Units

2 (+store) FP pipelines

two 64 Bit Load/Store
operations per cycle

L1/L2 per core

System interface shared
between both cores

15

Overview over the x86 Processor Architecture

Molka, Markwardt

Intel dual-core Xeon (CoreTM microarchitecture)

Decodes up to 4 instructions per
cycle (5 with Makroop-Fusion)

128 Bit wide SIMD units

96 Microops

“in-flight”

3 Integer Units

2 FP pipelines

One 128 Bit load and one 128 Bit
store per cycle

L1 per core, shared L2

System interface shared between
both cores

16

Overview over the x86 Processor Architecture

Molka, Markwardt

Virtual Memory

Each application has its own unique address space

• Isolation between processes

• No restrictions which address regions can be used

• Shared memory possible if required

• Multiple page sizes: 4 KiB, 2 MiB, 1 GiB (AMD 64)

17

Overview over the x86 Processor Architecture

Molka, Markwardt

Fast Translation: Translation Lookaside Buffer (TLB)

Stores translations from virtual page addresses (frame numbers) into physical page
addresses

Very low latency required to provide physical addresses for accessing caches

• Multilevel TLBs

are common, fast L1 TLB, larger L2 TLB

• Limited number of entries
– Usually hardly enough 4 KiB

entries to cover today’s cache sizes
-

E.g. Core i7: 8 MiB

L3 cache, 512 4 KiB

entries (covers 2 MiB)
-

Usage of 2 MiB

pages (hugetlbfs) can reduce TLB misses significantly
(e.g. Core i7: 32 entries cover 64 MiB)

Transparent for applications

• Not programmable, entries are generated on demand

• Operating system can invalidate TLBs

(e.g

on context switches or after freeing
memory)

• TLB miss results in complex and slow address translation

18

Overview over the x86 Processor Architecture

Molka, Markwardt

Slow Translation: Page Table Wal k (af ter TLB miss)

Multiple stages of translation tables

• Individual base address (from CR3 register) per process points to first table
• Parts of virtual address used as index into tables
• First 3 tables contain pointers to other tables, 4th table stores required physical

address

Page Tables written by operating system, translation in hardware

• 4 additional memory accesses to resolve physical address
• After Translation result is stored in TLB for future use
• Larger pages supported as well (2 MiB pages, 21 Bit offset, 3 translation stages)

19

− only required tables are allocated
− requires less space than one big table

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Copy Bandwidth

20

Opteron

2384 (Shanghai)

−

Dual ported L1 cache; 2x 128 Bit load/cycle or 2x 64 Bit store/cycle

−

64 KiB

L1-I, 64 KiB

L1-D, 512KiB L2, 6MiB L3

Xeon X5570 (Nehalem)

−

Dual ported L1 cache; 1x 128 Bit load/cycle and 1x 128 Bit store/cycle

−

32 KiB

L1-I, 32 KiB

L1-D, 256 KiB

L2, 8 MiB

L3

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Opteron 2384 multithreaded memory bandwidth

21

All cache levels scale well for reading and writing

−

Cores do not compete for cache bandwidth (but for L3 size)

2 Threads required to fully utilize memory bandwidth

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Xeon X5570 mul t i threaded memory bandwidth

22

L1/L2 scale well

L3 read bandwidth scales well up to 3 Threads, L3 write bandwidth does not scale well

−

Cores compete for L3 size and bandwidth

3 Threads required to fully utilize memory bandwidth

Overview over the x86 Processor Architecture

Molka, Markwardt

Cur r ent 2 socket systems

23

Comparable system architecture

NUMA architecture

−

Each processor has its own memory
controller

−

2x DDR2-667: 10,6 GB/s je

Socket

−

3x DDR3-1333: 32 GB/s je

Socket

−

Point-to-Point connections between
processors

−

Low latency to local memory

−

Higher latency to remote RAM

−

Limited interconnect bandwidth

−

HT 1.1: 8 GB/s

−

HT 3.0: 17,6 GB/s

−

QPI: 25,6 GB/s

AMD Opteron 2384

Intel Xeon X5570

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Opteron 2384 memory latency

24

Faster access to modified cache lines in other cores then to exclusive cache lines

L3 cache much faster than accesses to other cores local caches

Remote caches slower than local memory

Remote memory access adds about 40 ns

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Xeon X5570 memory latency

25

Inclusive L3 cache handles requests for unmodified data in other

cores

Fast access to modified data in other cores on the same die

Accesses to modified cache lines of the second processor causes write back to main
memory

Remote memory access adds about 40 ns

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Opteron 2384 memory bandwidth

26

Bandwidth to other cores on the same die as low as main memory bandwidth

Accesses to the other processor limited by HyperTransport

Overview over the x86 Processor Architecture

Molka, Markwardt

Example: Xeon X5570 memory bandwidth

27

High bandwidth for on-die accesses to unmodified data

Low bandwidth for cache-to-cache transfer of modified data

Accesses to the other processor limited by Quickpath

Interconnect

Overview over the x86 Processor Architecture

Molka, Markwardt

Optimizations – SIMD

icc

automatically vectorizes

loops if –O3 is specified

• Replaces 4(single) or 2(double) loop iterations with one using SIMD
– Significantly improves performance
– Use simple loop constructs (e.g. for(i=0;i<n;i++){…})

-

no for(;;){…}
-

Check compiler output if performance critical loops were vectorized

• #pragma

vector aligned
– Hint for the compiler to use aligned load and store instructions

• #pragma

vector non temporal
– Hint for the compiler that written data is not accessed again
– Writes data directly into main memory, avoids cache pollution

28

Overview over the x86 Processor Architecture

Molka, Markwardt

Opt i mi zat i ons – Huget l bf s

Needs kernel support (enabled by default
in most current distributions)

• /proc/meminfo

shows available
number of hugepages

Has to be mounted as virtual file system
• echo #pages >

/proc/sys/vm/nr_hugepages
• mount –t hugetlbfs

nodev

/mnt/huge
• chown

root:users

/mnt/huge
• chmod

777 /mnt/huge

Create file in hugetlbfs

and use mmap() to allocate memory
• fd

= open(filename,O_CREATE|O_RDWR,0666);
• buf

= mmap(0,size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
Can significantly reduce TLB misses

29

Overview over the x86 Processor Architecture

Molka, Markwardt

Further Information

Intel 64 and IA-32 Architectures Optimization Reference Manual

• http://www.intel.com/products/processor/manuals/

Software Optimization Guide for AMD Family 10h Processors

• http://support.amd.com/de/Pages/techdocs.aspx

AMD Software Optimization Videos

• http://developer.amd.com/documentation/videos/pages/SoftwareOptimizationVid

 eoSeries.aspx

32

	Overview over the�x86 Processor Architecture
	Outline
	Multicore Processors
	Instruction set
	Instruction format
	Architectural Registers
	Streaming SIMD Extensions on Intel and AMD processors
	Using SIMD instructions
	Using SIMD instructions
	Basic pipelining
	Pipelining
	Longer Pipelines
	Out-of-order execution
	AMD dual-core Opteron (K8 microarchitecture)
	Intel dual-core Xeon (CoreTM microarchitecture)
	Virtual Memory
	Fast Translation: Translation Lookaside Buffer (TLB)
	Slow Translation: Page Table Walk (after TLB miss)
	Example: Copy Bandwidth
	Example: Opteron 2384 multithreaded memory bandwidth
	Example: Xeon X5570 multithreaded memory bandwidth
	Current 2 socket systems
	Example: Opteron 2384 memory latency
	Example: Xeon X5570 memory latency
	Example: Opteron 2384 memory bandwidth
	Example: Xeon X5570 memory bandwidth
	Optimizations – SIMD
	Optimizations – Hugetlbfs
	Further Information

