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Outline

Instruction set

• Instruction format

• ISA extensions

Pipelining

Out-of-order execution

Memory access

• Address translation

• TLB

• Measurements on current multicore

 

processors, complex cache hierarchy

• Remote memory access
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Multicore Processors

Multilevel Caches

• L1/L2 per core
– Accesses to other cores caches can 

have high overhead

• Shared L3
– Competitively shared
– Interference due to replacements 

caused by other cores and bandwidth 
limitations of concurrent accesses

Shared memory controller and system 
interface

• Cores compete for bandwidth

• One core can not always utilize available 
memory bandwidth
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Instruction set
x86 instructions 

• Integer instructions
– originally 16 Bit, later extended to 32 (IA-32) and 64 Bit (AMD64)

FPU

• Floating point instructions

• 32, 64 and 80 Bit

SIMD extensions

• Single instruction multiple data
– Reduces code size if applicable

• MMX: 64 Bit Register, 8x 8 Bit/ 4x 16 Bit/ 2x 32 Bit integer ops/cycle

• SSE: 128 Bit Register
– 4x 32 Bit/ 2x 64 Bit  floating point ops/cycle
– 16x 8 Bit/ 8x 16 Bit/4x 32 Bit/ 2x 64 Bit integer ops/cycle

• Coming soon: AVX: 256 Bit Register
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Instruction format

CISC (Complex Instruction Set Computing)
• Many instruction formats
• Variable instruction length
• Multiple addressing modes

RISC (Reduced Instruction Set Computing) execution
• Complex x86 instructions are decoded into RISC-like instructions, so called 

microops
• Load/Store architecture

– Special instructions for data movement between registers and memory
– Execution units (ALU,FPU) only work on registers
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Architectural Registers

Original x86 had very few registers
• Frequent memory accesses requiered

extensions added more and wider registers
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Streaming SIMD Extensions on Intel and AMD processors

Intel

• SSE (*1999 Pentium III)
– Single precision floating point instructions on XMM registers
– Additional integer instructions on MMX registers

• SSE2 
– Double precision floating point instructions on XMM registers
– Integer instructions on XMM registers

• SSE3: additional floating point instructions

• SSSE3 (Supplemental SSE3): additional integer instructions

• SSE4.1: scalar product, blending, min, max

• SSE4.2: string operations, CRC32

AMD

• 3D-Now!  (*1998 AMD K6-2) 

• SSE, SSE2, SSE3 compatible with Intel definition

• SSE4A: insert and extract instructions, not compatible with Intel’s SSE4
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Basic Operation:

Data Types: 

• Aligned and unaligned load/store instructions to transfer 128 Bit of data 
between registers and memory

– Aligned instructions are faster, but require double quadwords

 

to be 128 Bit 
aligned

– Standard function malloc() allocates unaligned memory
– Compilers fall back to unaligned instructions if alignment is unknown

Using SIMD inst ruct i ons
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Using SIMD inst ruct i ons

Available via intrinsics, assembly or auto-generated by the compiler

icc

• -msse2 (default), -msse3, -mssse3, -msse4.1
– -msse2, -msse3: generated code compatible with AMD processors

• -x and -ax
– Optimized code for Intel processors
– -x requires specified extension, -ax includes fallback implementation 

according to -m/-x
- E.g. -msse2 -axSSE4.2,SSE4.1,SSSE3,SSE3: runs on all processors 

with SSE2
-xSSE4.2: only runs on Intel Core i7 and Nehalem based Xeons

gcc

• -msse, -msse2, -msse3, -mssse3
– -msse, -msse2 enabled by default on 64 Bit systems
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MA

MA

MA

Basic pipelining

Instruction fetch: retrieves the instruction from the cache

Instruction decode: decodes the instruction and looks for operands (register or 
immediate values

Execure: performs the instruction (ADD, SUB,…)

Memory access: accesses the memory, and writes data or retrieves

 

data from it

Write back (retire): records the calculated value in a register

IF ID DF IE WB

Time –

 

sequential

 

processing

IF ID DF IE WB IF ID

IF ID DF IE WB

Time –

 

pipelined

 

processing

IF ID DF IE WB

IF ID DF IE WB

A = B+C

E = D*D

G = F*F

MA MA
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Pipelining

Each pipeline-stage can work on a different instruction

Superscalar pipelines can process multiple instructions in each stage

Ideally n instruction finish each cycle in an n-way superscalar architecture
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Longer Pipelines

Phases can be split further

• Decode
– Pre-Decode (e.g. determine instruction length if not constant [x86: 1 Byte – 

18 Byte])
– Decode: Analyse Opcode

• Execution

– E.g. Floating Point Addition
- Align exponents
- Add significants
- Normalize result

– E.g. Floating Point Multiplication
- Add exponents
- Multiply significants
- Normalize result

Hyper-pipeline / super-pipeline on modern micro-processors with appr. 20 stages
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Out -of - or der execut i on

Reordering of instructions

• Microops

 

do not have to be executed in program order
– Slow operations (e.g. division) do not stall execution
– Scheduler can sent subsequent instructions to 

execution units if they do not have unsatisfied 
dependencies

• In-order completion
– Execution units work on internal registers
– Reorder Buffer commits (write back/retirement) 

results to architectural registers in program order
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AMD dual - core Opteron (K8 microarchi t ectur e)

Decodes up to 3 instructions per 
cycle

128 Bit SSE instructions are split 
into two 64 Bit ops

72 Makroops

 

“in-flight”

3 Integer Units

2 (+store) FP pipelines

two 64 Bit Load/Store 
operations per cycle

L1/L2 per core

System interface shared 
between both cores
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Intel dual-core Xeon (CoreTM microarchitecture)

Decodes up to 4 instructions per 
cycle (5 with Makroop-Fusion)

128 Bit wide SIMD units 

96 Microops

 

“in-flight”

3 Integer Units

2 FP pipelines

One 128 Bit load and one 128 Bit 
store per cycle

L1 per core, shared L2

System interface shared between 
both cores
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Virtual Memory

Each application has its own unique address space

• Isolation between processes

• No restrictions which address regions can be used

• Shared memory possible if required

• Multiple page sizes: 4 KiB, 2 MiB, 1 GiB (AMD 64)
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Fast Translation: Translation Lookaside Buffer (TLB)

Stores translations from virtual page addresses (frame numbers) into physical page 
addresses

Very low latency required to provide physical addresses for accessing caches

• Multilevel TLBs

 

are common, fast L1 TLB, larger L2 TLB

• Limited number of entries
– Usually hardly enough 4 KiB

 

entries to cover today’s cache sizes
-

 

E.g. Core i7: 8 MiB

 

L3 cache, 512 4 KiB

 

entries (covers 2 MiB)
-

 

Usage of 2 MiB

 

pages (hugetlbfs) can reduce TLB misses significantly 
(e.g. Core i7: 32 entries cover 64 MiB)

Transparent for applications

• Not programmable, entries are generated on demand

• Operating system can invalidate TLBs

 

(e.g

 

on context switches or after freeing 
memory)

• TLB miss results in complex and slow address translation
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Slow Translation: Page Table Wal k (af ter TLB miss)

Multiple stages of translation tables

• Individual base address (from CR3 register) per process points to first table
• Parts of virtual address used as index into tables
• First 3 tables contain pointers to other tables, 4th table stores required physical 

address

Page Tables written by operating system, translation in hardware

• 4 additional memory accesses to resolve physical address
• After Translation result is stored in TLB for future use
• Larger pages supported as well (2 MiB pages, 21 Bit offset, 3 translation stages)

19

− only required tables are allocated
− requires less space than one big table
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Example: Copy Bandwidth
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Opteron

 

2384 (Shanghai)

−

 

Dual ported L1 cache; 2x 128 Bit load/cycle or 2x 64 Bit store/cycle

−

 

64 KiB

 

L1-I, 64 KiB

 

L1-D, 512KiB L2, 6MiB L3

Xeon X5570 (Nehalem)

−

 

Dual ported L1 cache; 1x 128 Bit load/cycle and 1x 128 Bit store/cycle

−

 

32 KiB

 

L1-I, 32 KiB

 

L1-D, 256 KiB

 

L2, 8 MiB

 

L3
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Example: Opteron 2384 multithreaded memory bandwidth

21

All cache levels scale well for reading and writing

−

 

Cores do not compete for cache bandwidth (but for L3 size)

2 Threads required to fully utilize memory bandwidth
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Example: Xeon X5570 mul t i threaded memory bandwidth
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L1/L2 scale well

L3 read bandwidth scales well up to 3 Threads, L3 write bandwidth does not scale well

−

 

Cores compete for L3 size and bandwidth

3 Threads required to fully utilize memory bandwidth
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Cur r ent 2 socket systems
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Comparable system architecture

NUMA architecture

−

 

Each processor has its own memory 
controller

−

 

2x DDR2-667: 10,6 GB/s je

 

Socket

−

 

3x DDR3-1333: 32 GB/s je

 

Socket

−

 

Point-to-Point connections between 
processors

−

 

Low latency to local memory

−

 

Higher latency to remote RAM

−

 

Limited interconnect bandwidth

−

 

HT 1.1: 8 GB/s

−

 

HT 3.0: 17,6 GB/s

−

 

QPI: 25,6 GB/s

AMD Opteron 2384

Intel Xeon X5570
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Example: Opteron 2384 memory latency
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Faster access to modified cache lines in other cores then to exclusive cache lines

L3 cache much faster than accesses to other cores local caches

Remote caches slower than local memory

Remote memory access adds about 40 ns
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Example: Xeon X5570 memory latency
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Inclusive L3 cache handles requests for unmodified data in other

 

cores

Fast access to modified data in other cores on the same die

Accesses to modified cache lines of the second processor causes write back to main 
memory

Remote memory access adds about 40 ns
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Example: Opteron 2384 memory bandwidth
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Bandwidth to other cores on the same die as low as main memory bandwidth

Accesses to the other processor limited by HyperTransport
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Example: Xeon X5570 memory bandwidth
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High bandwidth for on-die accesses to unmodified data

Low bandwidth for cache-to-cache transfer of modified data

Accesses to the other processor limited by Quickpath

 

Interconnect
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Optimizations – SIMD

icc

 

automatically vectorizes

 

loops if –O3 is specified

• Replaces 4(single) or 2(double) loop iterations with one using SIMD
– Significantly improves performance
– Use simple loop constructs (e.g. for(i=0;i<n;i++){…})

-

 

no for(;;){…}
-

 

Check compiler output if performance critical loops were vectorized

• #pragma

 

vector aligned
– Hint for the compiler to use aligned load and store instructions

• #pragma

 

vector non temporal
– Hint for the compiler that written data is not accessed again
– Writes data directly into main memory, avoids cache pollution
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Opt i mi zat i ons – Huget l bf s

Needs kernel support (enabled by default 
in most current distributions)

• /proc/meminfo

 

shows available 
number of hugepages

Has to be mounted as virtual file system
• echo #pages > 

/proc/sys/vm/nr_hugepages
• mount –t hugetlbfs

 

nodev

 

/mnt/huge
• chown

 

root:users

 

/mnt/huge
• chmod

 

777 /mnt/huge

Create file in hugetlbfs

 

and use mmap() to allocate memory
• fd

 

= open(filename,O_CREATE|O_RDWR,0666);
• buf

 

= mmap(0,size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
Can significantly reduce TLB misses
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Further Information

Intel 64 and IA-32 Architectures Optimization Reference Manual

• http://www.intel.com/products/processor/manuals/

Software Optimization Guide for AMD Family 10h Processors

• http://support.amd.com/de/Pages/techdocs.aspx

AMD Software Optimization Videos

• http://developer.amd.com/documentation/videos/pages/SoftwareOptimizationVid

 eoSeries.aspx
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