
Zellescher Weg 12

Willers-Bau A106

Tel. +49 351 - 463 - 31945

Matthias Lieber (matthias.lieber@tu-dresden.de)

Tobias Hilbrich (tobias.hilbrich@zih.tu-dresden.de)

First Steps with the GNU Debugger

HRSK Practical on Debugging, 03.04.2009

Center for Information Services and High Performance Computing (ZIH)

GNU Debugger 2

Content

Introduction

Main Features of the GNU Debugger

– Run a program

– Breakpoints

– Examine the stack

– Examine variables

– Attach to a running program

– Working with core dumps

Exercise

GNU Debugger 3

The GNU Debugger (GDB)

Free debugger

Available for many operating systems and architectures

De-facto standard in Linux

No graphical user interface, but used as backend in many GUI
debuggers

Supports many programming languages including C, C++, and Fortran

Supports multi-threaded programs using pthreads

and OpenMP

http://www.gnu.org/software/gdb/

GNU Debugger 4

GDB User Interface

GDB command
prompt (like a Unix

shell)

GNU Debugger 5

GDB Help

Type help

at the GDB command prompt

Type help <command>

to get help on a specific command

GNU Debugger 6

Running Programs under GDB

Compile with –g

compiler flag to add symbol names to the program

Run GDB with the executable name as command-line parameter

Enter the GDB command run or just

r

GNU Debugger 7

Control Program Execution under GDB

Stop the program

– Program crashes -

GDB stops program just before termination

– You hit

CTRL+C

to interrupt the program

– Program reaches breakpoint or watchpoint

Continue program execution

– c, continue

–

continue

running the program

– s, step

–

execute next line of code, step into function calls

– n, next

–

execute next line of code, but step over function calls

– finish

–

run until program leaves current function

Terminate the program

– kill –

terminate the program

– quit –

leave GDB

GNU Debugger 8

Program Crash under GDB

GNU Debugger 9

Breakpoints with GDB

b, break

–

set a breakpoint

– break [<file>]:<line>

– break [<file>]:<function>

info break

–

view breakpoints

disable /

enable

–

turn a breakpoint off/on

delete

–

remove a breakpoint

break <...> if <expression>

–

set a conditional breakpoint, e.g.:

– break example.c:123 if variable>65

– break example.F90:456 if variable==1/x

GNU Debugger 10

Breakpoints with GDB

GNU Debugger 11

Examine the Stack with GDB

bt, backtrace, where

Stack frame
number

GNU Debugger 12

Examine Variables with GDB

Stop the program

Debugger can show

– Local variables visible in the current stack frame

– Global variables

Select a stack frame

– up / down –

walk up / down the stack

– frame [<number>] –

select or show stack frame

Print variables

– p, print <variable>

-

print variable value

– Also works for expressions, e.g.: print mygrid.theta[i+1][j]

– ptype

<variable>

-

print type of variable

GNU Debugger 13

Examine Variables with GDB

GNU Debugger 14

Attach to a Running Program with GDB

Useful if program runs long time and you want to check if it is doing
something wrong

On a HPC cluster: login to the node where your program is running

Find out the process ID (PID) of your program with ps

or top

Attach GDB to the running process

– gdb

–pid

24840

– Stops process

Process ID of
exampleC

GNU Debugger 15

Attach to a Running Program with GDB

Stopped
program at this
source code line

GNU Debugger 16

Detach a Program from GDB

You can detach from a program which

– was attached to GDB

– was started under GDB –

puts the process in the background

GDB command: detach started under GDB
and interrupted
with CTRL+C

Program still
running in

background

GNU Debugger 17

Working with Core Dumps

Core dumps are memory and register state of a crashed program
written to disk

Check current core dump limit (reports kB):

ulimit

–c

If necessary, set the limit for core dumps:

ulimit

–c 100000

(set limit to 100MB)

Intel Fortran requires this environment variable to be set before
running the program:

export decfort_dump_flag=yes (Intel Fortran only)

Start the program without debugger: ./exampleC

When the program crashes, core dump(s) [HOSTNAME].[PID].core
 will be created

Analyze the core dump with GDB: gdb

<executable> <corefile>

GNU Debugger 18

Working with Core Dumps

GNU Debugger 19

Exercise 1: Segmentation Fault

Login on mars

cd

debuggingC/serial/

Open firstC.c

Login on mars

cd

debuggingF/serial/

Open firstF.F90

GNU Debugger 20

Exercise 1: Segmentation Fault

Compile:

icc

–g –O0 firstC.c

–o first.exe

Run:

./first.exe

Debug:

gdb

./first.exe

Try also core file debugging

More to try out:

Compile without -g

Compile with –O2

instead of –O0

Compile with gcc

instead of icc

Compile:

ifort

–g –O0 firstF.F90 –o first.exe

Run:

./first.exe

Debug:

gdb

./first.exe

Try also core file debugging

More to try out:

Compile without -g

Compile with –O2

instead of –O0

Compile with gfortran

instead of ifort

GDB commands to use: break, run, step,
continue, ptype, print, info break, kill, quit

GNU Debugger 21

Exercise 2: Playing with the Heat Equation Program

Compile exampleC.c

Run under GDB

Compile exampleF.F90

Run under GDB

Hint: use DDT’s GDB, which
has a better support for F90

– module load ddt

Set a breakpoint at the first line of the main program

– Play with the commands step, next, finish, backtrace

– Find out the exact value of

engeryInitial

using GDB

Use a conditional breakpoint to find out the value of dthetamax

after
step

100 has been computed

Find out in which iteration step

the grid value at theta(15,10)
 becomes larger than 0

GNU Debugger 22

Exercise 3: Attach to a Running Program

Compile exampleC-05.c Compile exampleF-05.F90

Run without GDB

– Program hangs

– Kill with CTRL+C

Open an xterm

and start the program in the new terminal window

– xterm

&

Attach GDB to the program

– Run ps

ux

or top

to find out the PID

– gdb

–pid

<PID>

What is the problem with this program? Print the iteration step and
compare with the number of steps the correct program takes.

GDB commands to use: continue, CTRL+C,
backtrace, up/down, print, etc.

	First Steps with the GNU Debugger
	Content
	The GNU Debugger (GDB)
	GDB User Interface
	GDB Help
	Running Programs under GDB
	Control Program Execution under GDB
	Program Crash under GDB
	Breakpoints with GDB
	Breakpoints with GDB
	Examine the Stack with GDB
	Examine Variables with GDB
	Examine Variables with GDB
	Attach to a Running Program with GDB
	Attach to a Running Program with GDB
	Detach a Program from GDB
	Working with Core Dumps
	Working with Core Dumps
	Exercise 1: Segmentation Fault
	Exercise 1: Segmentation Fault
	Exercise 2: Playing with the Heat Equation Program
	Exercise 3: Attach to a Running Program

