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Content

Introduction

Main Features of the GNU Debugger

– Run a program

– Breakpoints

– Examine the stack

– Examine variables

– Attach to a running program

– Working with core dumps

Exercise
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The GNU Debugger (GDB)

Free debugger

Available for many operating systems and architectures

De-facto standard in Linux

No graphical user interface, but used as backend in many GUI 
debuggers

Supports many programming languages including C, C++, and Fortran

Supports multi-threaded programs using pthreads
 

and OpenMP

http://www.gnu.org/software/gdb/
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GDB User Interface

GDB command 
prompt (like a Unix 

shell)
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GDB Help

Type help
 

at the GDB command prompt

Type help <command>
 

to get help on a specific command
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Running Programs under GDB

Compile with –g
 

compiler flag to add symbol names to the program

Run GDB with the executable name as command-line parameter

Enter the GDB command run or just
 

r
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Control Program Execution under GDB

Stop the program

– Program crashes -
 

GDB stops program just before termination

– You hit
 

CTRL+C
 

to interrupt the program

– Program reaches breakpoint or watchpoint

Continue program execution

– c, continue
 

–
 

continue
 

running the program

– s, step
 

–
 

execute next line of code, step into function calls

– n, next
 

–
 

execute next line of code, but step over function calls

– finish
 

–
 

run until program leaves current function

Terminate the program

– kill –
 

terminate the program

– quit –
 

leave GDB
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Program Crash under GDB
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Breakpoints with GDB

b, break
 

–
 

set a breakpoint

– break [<file>]:<line>

– break [<file>]:<function>

info break
 

–
 

view breakpoints

disable /
 

enable
 

–
 

turn a breakpoint off/on

delete
 

–
 

remove a breakpoint

break <...>  if <expression>
 

–
 

set a conditional breakpoint, e.g.:

– break example.c:123 if variable>65

– break example.F90:456 if variable==1/x



GNU Debugger 10

Breakpoints with GDB
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Examine the Stack with GDB

bt, backtrace, where

Stack frame 
number
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Examine Variables with GDB

Stop the program

Debugger can show

– Local variables visible in the current stack frame

– Global variables

Select a stack frame

– up / down –
 

walk up / down the stack

– frame [<number>] –
 

select or show stack frame

Print variables

– p, print <variable>
 

-
 

print variable value

– Also works for expressions, e.g.: print mygrid.theta[i+1][j]

– ptype
 

<variable>
 

-
 

print type of variable
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Examine Variables with GDB
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Attach to a Running Program with GDB

Useful if program runs long time and you want to check if it is doing 
something wrong

On a HPC cluster: login to the node where your program is running

Find out the process ID (PID) of your program with ps
 

or top

Attach GDB to the running process

– gdb
 

–pid
 

24840

– Stops process 

Process ID of 
exampleC
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Attach to a Running Program with GDB

Stopped 
program at this 
source code line
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Detach a Program from GDB

You can detach from a program which

– was attached to GDB

– was started under GDB –
 

puts the process in the background

GDB command: detach started under GDB 
and interrupted 
with CTRL+C

Program still 
running in 

background
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Working with Core Dumps

Core dumps are memory and register state of a crashed program 
written to disk

Check current core dump limit (reports kB):
 

ulimit
 

–c

If necessary, set the limit for core dumps:

ulimit
 

–c 100000
 

(set limit to 100MB)

Intel Fortran requires this environment variable to be set before 
running the program:

export decfort_dump_flag=yes   (Intel Fortran only)

Start the program without debugger: ./exampleC

When the program crashes, core dump(s) [HOSTNAME].[PID].core
 will be created

Analyze the core dump with GDB: gdb
 

<executable> <corefile>
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Working with Core Dumps
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Exercise 1: Segmentation Fault

Login on mars

cd
 

debuggingC/serial/

Open firstC.c

Login on mars

cd
 

debuggingF/serial/

Open firstF.F90
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Exercise 1: Segmentation Fault

Compile:

icc

 
–g –O0 firstC.c

 
–o first.exe

Run:

./first.exe

Debug:

gdb

 
./first.exe

Try also core file debugging

More to try out:

Compile without -g

Compile with –O2

 
instead of –O0

Compile with gcc

 
instead of icc

Compile:

ifort

 
–g –O0 firstF.F90 –o first.exe

Run:

./first.exe

Debug:

gdb

 
./first.exe

Try also core file debugging

More to try out:

Compile without -g

Compile with –O2

 
instead of –O0

Compile with gfortran

 
instead of ifort

GDB commands to use: break, run, step, 
continue, ptype, print, info break, kill, quit
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Exercise 2: Playing with the Heat Equation Program

Compile exampleC.c

Run under GDB

Compile exampleF.F90

Run under GDB

Hint: use DDT’s GDB, which 
has a better support for F90

– module load  ddt

Set a breakpoint at the first line of the main program

– Play with the commands step, next, finish, backtrace

– Find out the exact value of
 

engeryInitial
 

using GDB

Use a conditional breakpoint to find out the value of dthetamax
 

after 
step

 
100 has been computed

Find out in which iteration step
 

the grid value at theta(15,10)
 becomes larger than 0
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Exercise 3: Attach to a Running Program

Compile exampleC-05.c Compile exampleF-05.F90

Run without GDB

– Program hangs

– Kill with CTRL+C

Open an xterm
 

and start the program in the new terminal window

– xterm
 

&

Attach GDB to the program

– Run ps
 

ux
 

or top
 

to find out the PID

– gdb
 

–pid
 

<PID>

What is the problem with this program? Print the iteration step and 
compare with the number of steps the correct program takes.

GDB commands to use: continue, CTRL+C, 
backtrace, up/down, print, etc.
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