
FD4 Manual
User Documentation of the Four-Dimensional Distributed Dynamic Data structures.

Version fd4-2011-04-20

Developed at ZIH, TU Dresden, Germany
http://www.tu-dresden.de/zih/clouds
This work was funded by the German Research Foundation (DFG).

Matthias Lieber (matthias.lieber@tu-dresden.de)

http://www.tu-dresden.de/zih/clouds

Contents

1 Introduction 3

2 Basic Data Structure 4
2.1 Variable Table . 4
2.2 Block . 5
2.3 Domain and Iterator . 5
2.4 Cell-centered and Face-centered Variables . 5
2.5 Accessing Variable Arrays . 5
2.6 Accessing Variable Arrays with Ghosts . 6
2.7 Adaptive Block Mode . 7
2.8 Boundary Conditions . 7

3 Parallelization and Coupling 8
3.1 Ghost Communication . 8
3.2 Dynamic Load Balancing . 8
3.3 Coupling . 9

4 Building the FD4 Library 11
4.1 Prerequisites . 11
4.2 Configuration . 11
4.3 Compiling FD4 . 11

5 User Interface Tutorial 13
5.1 Basics . 13
5.2 Variable Table Definition . 13
5.3 Domain Creation . 14
5.4 Block Iteration . 15
5.5 Ghost Cells . 16
5.6 Ghost Data Exchange . 17
5.7 Vis5D Output . 19
5.8 NetCDF Output . 19
5.9 Boundary Conditions . 20
5.10 Adaptive Block Allocation . 21
5.11 Dynamic Load Balancing . 21
5.12 Coupling Interface . 21
5.13 Face Variable Utilities . 21
5.14 Data Utilities . 21

2

1 Introduction

The Four-Dimensional Distributed Dynamic Data structures (FD4) is a framework originally
developed for the parallelization of spectral bin cloud models and their coupling to atmospheric
models. Thus, the data structures are optimized for these kinds of model systems. To use FD4,
models must basically meet the following requirements:

• Based on a 3D regular cartesian grid without local refinement (i.e. AMR)
• PDE calculations with data dependencies to a limited number of adjacent cells (stencil

calculations)

Nevertheless, FD4 can be used for many other applications, especially if at least one of the
following points applies:

• Many variables per grid cell (>100)
• Varying workload per grid cell (varying in time as well as space) which demands dynamic

load balancing
• Multiphase model: Additional computations for a limited spatial subset of the grid (drops,

clouds, combustion processes, flame fronts, etc.)
• Model system: FD4-based Model coupled to other model(s)

The basic features of FD4 are:

• Written in Fortran 95
• MPI parallelization (requires MPI-2)
• Block-based decomposition of a regular rectangular numerical grid
• Exchange of ghost cells (i.e. block boundaries, helo zones)
• Optimized for large number of variables per grid cell
• Dynamic load balancing with Hilbert space-filling curves and ParMETIS
• Dynamic adaption of grid allocation status according to spatial structures (multiphase

models)
• Coupling interface
• Simple NetCDF and Vis5D output
• Scalability to 10 000s of cores

3

2 Basic Data Structure

FD4 consists of several Fortran 95 modules each providing different data structures and ser-
vices. The basic data structure is constituted by the Variable Table, the Block, and the Do-
main:

3D
 B

lo
ck

 G
rid

 w
ith

 N
ei

gh
bo

r P
oi

nt
er

s Block with Data Fields Variable Table

Tree & List Blocks

2

1 0

3

6

5 4

89

11 10

Block 7 is not
allocated

4D−Array

4D−Array

4D−Array

1

2

3

4

’QC’, 66 bins,
2 steps, ...

’T,’ 1 bin,
2 steps, ...

’U’, 1 bin,
1 step, ...

’V’, 1 bin,
1 step, ...

4D−Array

4D−Array

4D−Array

2

1

0

3

4

Domain Definition of
− Grid size + properties
− Block decomposition

Contains
Variable propertiesBlock data structure

2.1 Variable Table

The Variable Table is a user-provided table of all variables which should be managed by FD4.
It contains entries for several variable properties:

• The variable’s name (character string)
• The discretization type (cell-centered or face-centered to any of the spatial dimensions)
• The number of time steps to allocate for this variable
• The size of a 4th (non-spatial) dimension called bin (originates from the size-resolving bin

discretization for detailed cloud models)
• A default value (“null”)
• An optional threshold value, to indicate separated phases in multiphase models and allow

adaptive block allocation

The index of the variable in the table is called Variable Index and is used as indentifier. All
variables are floating point variables of the same kind (single or double precision). Integer or
other types are not provided.

4

Chapter 2. Basic Data Structure

2.2 Block

Based on the Variable Table, FD4 allocates the arrays holding the variables in each Block. The
Blocks provide a 3D decomposition of the grid. Blocks are allowed to be of different size. The
block decomposition is defined by one vector of block start indices for each dimension, or, for
convenience, by specifying a number of blocks for each dimension.

The Blocks are contained in two data structures:

• Block Tree: A self-balancing binary tree (red-black tree) which provides logarithmic com-
plexity for access to arbitrary Blocks. For fast iteration, this tree is combined with a linked
list. The index of a Block in the Block Tree is derived from its position in the global grid by
fast bit shifting operations.

• Neighbor Pointers: To access Neighbor Blocks, which is required for any kind of stencil
computations, each Block contains pointers to its 6 Neighbor Blocks.

Note that not all Blocks may be present at a time: In a parallel run (which is the intended use of
FD4!), the Blocks are distributed to the processes. For more details about parallelization refer
to Section 3. Additionally, when running in Adaptive Block Mode, only a specific subset of
the Blocks are present globally, refer to Section 2.7. Thus, a Neighbor Block may be: locally
present, on a remote process, or not present on any process.

2.3 Domain and Iterator

The Domain is the central object in FD4. It contains all data to describe the numerical grid
and the data structure of the allocated Blocks. The Iterator object allows to iterate through the
local list of Blocks associated with the Domain and offers subroutines to access ghost cells,
see Section 2.6.

2.4 Cell-centered and Face-centered Variables

Cell-centered variables are located in the center of a 3D grid cell, whereas face-centered vari-
ables are centered on the grid cell’s surfaces which correspond a specified spatial dimension.
Thus, three types of face-centered variables are possible. Note, that the grid for face variables
is extended by one in the face dimension - for the global domain as well as for each Block:

face−centered
cell−centered

4 x 4 sized 2D block

x face−centeredcell−centered y face−centered

As a consequence, two adjacent Blocks share copies of the same face variable at their bound-
ary. This has consequences regarding consistency, see Section 5.13. The actual data arrays
are allocated starting at index 1 for each dimension (block-local indexes).

One feature of FD4 is that the data arrays are allocated without ghost cells (helo zones), which
saves memory when small Blocks are used.

2.5 Accessing Variable Arrays

The variables are allocated in the Blocks as one 4D array per discretization type (cell-centered,
x-face, y-face, z-face). The variables, their time steps, and their bins are mapped on the first

5

Chapter 2. Basic Data Structure

dimension, the three other dimensions are used for the spatial indexes.

A specific variable item of one Block is accessed as block%sdata(f)%l(b,x,y,z) with

• the face variable indicator f (0 for cell-centered, 1–3 for face-centered in x, y, z respec-
tively)

• the variable, time steps, and bins encoded to b

• the block-local spatial indexes x, y, z

Since this not straightforward, an array of pointers for variables and their time steps pointing
to the corresponding sections in the actual data arrays is provided. The access is then via
block%fields(idx,st)%l(b,x,y,z) with

• the variable index idx as defined by the Variable Table
• the time step index st (starting at 1)
• the bin b (1 for non-4D variables)
• the block-local spatial indexes x, y, z

This figure illustrates an example for the data structures:

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

block%sdata(0:3)

4 4D arrays for storing cell−centered, x−face,
y−face, and z−face variables

block%fields(5,2)

For each (variable, step): Pointers to
sections of the 4D data arrays

Using the block%fields array, only grid cells of the local block can be accessed, but not grid
cells of Neighbor Blocks (ghost cells).

2.6 Accessing Variable Arrays with Ghosts

The Iterator object contains the subroutine fd4 iter get ghost to access variables of the
current Block including the boundaries of the 6 Neighbor Blocks (ghost cells). The variables are
copied to a buffer array, which can than be used for stencil computations. The number of ghost
cell rows is defined for each dimension when creating the domain. It is the same for all cell-
centered variables. Access to face-centered variables of Neighbor Blocks is not implemented.

This figure shows an example in 2D:

Copy current
block and
neighbor
boundaries to
a contiguous
array for
computation

Note, that only data of the 6 direct Neighbor Blocks (in 3D) are copied, not the data of the
diagonal Neighbor Blocks. The resulting values in the area of the ghost cells depend on the
state of each Neighbor Block:

• Neighbor is locally present: Data are copied directly from the Neighbor Block to the buffer
array.

6

Chapter 2. Basic Data Structure

• Neighbor is present on a remote process: Data are copied from the Ghost Block - a copy
of the remote Block’s boundary - to the buffer array. See Section 3.1.

• Neighbor is not present on any process: The corresponding section of the buffer array is
filled with the default value of the variable(s).

2.7 Adaptive Block Mode

FD4 allows the dynamic adaption of the block allocation to spatial structures. It is useful for
special multiphase applications when neither computations nor data are required for certain
regions of the spatial grid. In this case, memory can be saved by not allocating the unused
(empty) blocks. This mode, the so-called Adaptive Block Mode, is only enabled if any of the
variables in the Variable Table are threshold-variables, i.e. these variables have a threshold
value. A Block is considered empty if in all its grid cells the values of all threshold-variables are
less or equal than their corresponding threshold value. Based on this definition, FD4 decides
which blocks to deallocate from the global block structure. Additionally, FD4 ensures that ap-
propriate data are provided for the numerical stencil around non-empty cells. This mechanism
also triggers the allocation of new blocks:

Modified buffer array after
computations

FD4 block structure

Program gives
values back to FD4

FD4 allocates new blockvalues < threshold

values > threshold

The actual block adaption (allocation of new Blocks, deallocation of unused Blocks) is carried
out in the dynamic load balancing routine, see Section 3.2.

2.8 Boundary Conditions

Periodic boundary conditions are implemented straightforward in FD4 by periodic Neighbor
Pointers. For non-periodic boundary conditions, Boundary Ghost Blocks are added for Blocks
at the domain boundary. The Boundary Ghost Blocks have to be filled by the user, except
for zero gradient boundary conditions, which are implemented in FD4. This figure shows the
concept for periodic (left) and non-periodic (right) boundary conditions for an exemplary 2D
domain (in Adaptive Block Mode):

Periodic Boundary Non−Periodic Boundary

7

3 Parallelization and Coupling

Parallelization of the FD4 grid is achieved by distributing the Blocks to the processes. Conse-
quently, the total number of Blocks should be greater or equal than the number of processes.

3.1 Ghost Communication

Before performing stencil computations in parallel runs (which require the boundary of Neigh-
bor Blocks, see Section 2.6), the boundaries have to be transferred between the processes.
So-called Communication Ghost Blocks are allocated at process borders in the block de-
composition to store the boundary of remote Neighbor Blocks. The Ghost Communicator
object handles the update of the Communication Ghost Blocks. The Ghost Communicator is
created for a specified set of variables and respective time steps and can be executed whenever
neccesary. Optionally, it is possible to restrict the spatial dimensions of the ghost exchange to
one or two specified dimensions. The number of ghost cells which are exchanged is fixed for
the domain. The ghost communication is only possible for cell-centered variables and not for
face-centered variables.

This figure shows an exemplary block decomposition for two processes and the Communication
Ghost Blocks:

Rank 0 Rank 1

3.2 Dynamic Load Balancing

The dynamic load balancing in FD4 performs 3 major steps:

1. Determine if load balancing is necessary.
2. Calculate a new partitioning, i.e. mapping of Blocks to processes.
3. Migration and (De)allocation of Blocks.

Basically there are two situations for which load balancing is necessary: Firstly, when running in
Adaptive Block Mode, Blocks may be added or removed from the global domain, which requires
a new mapping of Blocks to processes. Secondly, if the workload of the Blocks changes non-
uniformly, the load balance of the processes declines and more time is lost at synchronization
points of the program. Of course, both reasons may also appear at the same time.

The workload of the Blocks is described by the Block Weight. The default value is the number
of grid cells of the Block. If the workload does not exclusively depend on the number of grid
cells, the Block Weight should be set to the actual computation time for each Block. If no
Blocks were added or removed from the global domain, the decision whether load balancing

8

Chapter 3. Parallelization and Coupling

is necessary or not depends on the load balance of the last time step (based on the Block
Weight) and a specified load balance tolerance. Thus, it is possible to control how sensitive
FD4 should react on emerging load imbalances. Instead of specifying a fixed tolerance, FD4
can also automatically decide whether load balancing is beneficial or not. FD4 weighs the time
lost due to imbalance against the time required for load balancing. This Auto Mode requires
that the Block Weight are set to the computation time in microseconds since the last call to the
load balancing subroutine.

Two different methods for the calculation of the new partitioning are implemented in FD4: A
graph-based approach using the ParMETIS library and a geometric approach using the Hilbert
space-filling curve (SFC). Both methods are incremental, which means that the difference of
successive partitionings is low to reduce migration costs. SFC partitioning is preferred since
it executes much faster compared to ParMETIS. This figure shows a 2D Hilbert SFC and an
exemplary partitioning derived from the curve:

3.3 Coupling

FD4 allows to couple models based on FD4 to external models, i.e. transfer variables between
these models. The coupling interface has the following assumptions:

• Sequential coupling: Both models (FD4-based and external) work on the same set of
processes and all processes perform computations for these models alternately.

• Same grid structure: Both models have the same grid structure, or at least the external
model provides its coupling data matching the grid used in FD4.

• Block-based partitioning: The partitioning of the external model is based on rectangular
blocks, but may be different than the partitioning in FD4.

The Couple Context is the description of the Couple Arrays, the data fields of the external
model. Among other specifications, the position of each Couple Array in the global grid, the
process owning this array, and the matching FD4 variable must be provided. Based on this
description, FD4 computes the overlaps of each provided Couple Array with the Blocks and
transmits the variables directly between the processes. FD4 is able to communicate coupling
data in both directions: The Put operation sends variables from the external model to FD4
whereas Get sends variables from FD4 to the external model. This figure shows a Put operation
from one single partition of an external model to the matching FD4 blocks:

Partition of external Model FD4 Partitioning

9

Chapter 3. Parallelization and Coupling

In this example, two messages are sent, if none of the two receiving FD4 partitions belongs to
the sender process of the external model. If the sender owns a receiving partition in FD4, the
corresponding data is copied locally without sending a message.

The Couple Context concept allows to couple multiple external models to multiple FD4-based
models. However, the direct coupling between two models based on FD4 is not implemented.

10

4 Building the FD4 Library

4.1 Prerequisites

Compiling and running FD4 requires:

• Unix or Linux system
• GNU make
• C and Fortran 95 compilers
• An MPI-2 implementation (for example Open MPI or MPICH2)

FD4 has been tested with the following compilers: GCC/GNU Fortran, GCC/G95, Intel, IBM,
PathScale, PGI, Solaris Studio, GCC/NAG.

Optional features of FD4 require additional external packages:

• The NetCDF library is required for NetCDF output. Parallel output is available with NetCDF4
only (if compiled with parallel HDF5). Serial output is possible with both NetCDF3 and
NetCDF4.
Website: http://www.unidata.ucar.edu/software/netcdf/

• Compiled sources of Vis5D+ are required to write output to Vis5D files.
Website: http://vis5d.sourceforge.net

• ParMETIS is required for graph-based dynamic load balancing. The built-in SFC load
balancing has proven to be much more scalable, so there is acutally no need to build FD4
with ParMETIS support.
Website: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

4.2 Configuration

• Create a configuration file for your system in the directory config/.
• You can use conf.default as a starting point or the other config files specific to some

compilers.
• Name the config file conf.<NAME> or just overwrite conf.default.
• Optionally edit config/fd4flags.in to set some configuration flags for FD4, most

notably FD4 VERBOSE LEVEL (level 3 enables expensive runtime checks and has perfor-
mance impact!).

4.3 Compiling FD4

• Type make conf=<NAME>.

– You need GNU make; this may require calling gmake instead of make on certain
systems.

– If you name your config file conf.default, you can just type make.

• You can use parallel make to speed up the build process by calling, e.g.,
make -j 4 conf=<NAME>.

• This should build the library libfd4.a.

11

http://www.open-mpi.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.unidata.ucar.edu/software/netcdf/
http://vis5d.sourceforge.net
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

Chapter 4. Building the FD4 Library

• To create multiple builds of FD4, use ./mkbuilddir.sh <DIR> to create a new build
directory (with its own configuration) and call make from there.

12

5 User Interface Tutorial

This chapter shows the user interface subroutines of FD4 by means of small examples. The
example programs are contained in the FD4 package in the directory tutorial. They are
numbered in the same order as the following sections. The complete FD4 API documentation
of the user routines can be found in the FD4 package in doc/index.html.

5.1 Basics: 01 basics.F90

Include the module fd4 mod to your Fortran 95 source to make the FD4 interface available.
FD4 defines kind type parameters for integer and real variables in util/kinds.F90:

Name Data type Remarks
i4k 4 byte integer
i8k 8 byte integer
i k 4 byte integer default integer type in FD4
r4k 4 byte real
r8k 8 byte real
r k 8 byte real type for grid variables, can be changed to r4k

One of the basic utility functions is gettime, which returns the microseconds since 1970 as
an 8 byte integer. It can be used to clock parts of the program.

program fd4_demo_basics

use fd4_mod
implicit none

integer(i8k) :: time_now_us
real(r8k) :: time_now_s

! gettime is part of the FD4 utilities, calls C system function gettimeofday
call gettime(time_now_us)
time_now_s = real(time_now_us,r8k) / 1.e6_r8k

write(*,’(A,F16.4)’) ’seconds since 1970: ’, time_now_s

end program fd4_demo_basics

5.2 Variable Table Definition: 02 vartab.F90

Each variable which should be managed by FD4 is defined by an entry in the Variable Table,
an array of type fd4 vartab. See Section 2.1 for a description.

program fd4_demo_vartab

use fd4_mod
implicit none

! these paramters are the indexes of the variables in the variable table
integer, parameter :: varTmp = 1, varRho = 2, varQC = 3, varU = 4, varV = 5
integer, parameter :: number_of_variables = 5

13

Chapter 5. User Interface Tutorial

! this is the variable table
type(fd4_vartab) :: vartab(number_of_variables)

! fill the variable table for varTemp
vartab(varTmp)%name = ’Temperature’ ! name of the variable, at most 64 characters
vartab(varTmp)%nbins = 1 ! number of bins = size of the 4th dimension
vartab(varTmp)%nsteps = 2 ! number of time steps to allocate
vartab(varTmp)%dynamic = .false. ! currently unused
vartab(varTmp)%vnull = 0.0_r8k ! initial/default value
vartab(varTmp)%vthres = FD4_NOTHRES ! threshold value or FD4_NOTHRES
vartab(varTmp)%facevar = FD4_CELLC ! discretization type

! since the type fd4_vartab has default values for all components but the name,
! you can left out some definitions
vartab(varRho)%name = ’Densitiy’
vartab(varRho)%nsteps = 2

! but the most clearly method is to use the derived type constructors and
! arrange them as table with one variable per row
! name, nb, st, unused, ini, vthres, discret.
vartab(varQC) = fd4_vartab(’Droplets’, 12, 2, .false., 0.0, 0.0, FD4_CELLC)
vartab(varU) = fd4_vartab(’u Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEY)

write(*,’(5(A24,I4,I4,L3,E11.3,E11.3,I3,/))’) vartab

end program fd4_demo_vartab

5.3 Domain Creation: 03 domain.F90

The Domain is described by the derived type fd4 domain. Note, that the type fd4 domain
must be declared with the target attribute, though compilers will also accept code without
the attribute. A Domain is created by calling fd4 domain create, which needs the following
inputs:

• Number of Blocks in x, y, z
• Lower and upper bounds of the grid in x, y, z
• Variable Table
• Number of ghost cells in x, y, z
• Periodic boundary conditions in x, y, z
• MPI communicator

Creating a Domain does not allocate any Blocks. Use fd4 util allocate all blocks to
allocate all Blocks balanced over all processes. The subroutine fd4 domain delete removes
all Blocks and frees all memory associated with the Domain.

program fd4_demo_domain

use fd4_mod
implicit none
include ’mpif.h’

! FD4 variable table
integer, parameter :: varTmp = 1, varRho = 2, varQC = 3, varU = 4, varV = 5
integer, parameter :: number_of_variables = 5
type(fd4_vartab) :: vartab(number_of_variables)
! FD4 domain
integer :: dsize(3,2), bnum(3), nghosts(3)
logical :: periodic(3)
type(fd4_domain), target :: domain
! misc
integer :: rank, err

!! Create the variable table
! name, nb, st, unused, ini, vthres, discret.
vartab(varTmp) = fd4_vartab(’Temperature’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)

14

Chapter 5. User Interface Tutorial

vartab(varRho) = fd4_vartab(’Densitiy’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)
vartab(varQC) = fd4_vartab(’Droplets’, 12, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)
vartab(varU) = fd4_vartab(’u Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEX)
vartab(varV) = fd4_vartab(’v Wind’, 1, 1, .false., 0.0, FD4_NOTHRES, FD4_FACEY)

!! MPI Initialization
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank ,err)

!! Create the FD4 domain
dsize(1:3,1) = (/ 1, 1, 1/) ! grid start indices
dsize(1:3,2) = (/ 16, 16, 16/) ! grid end indices
bnum(1:3) = (/ 4, 4, 4/) ! number of blocks in each dimension
nghosts(1:3) = (/ 2, 2, 2/) ! number of ghost cells in each dimension
periodic(1:3) = .true. ! periodic boundaries
call fd4_domain_create(domain, bnum, dsize, vartab, nghosts, periodic, MPI_COMM_WORLD, err)
if(err/=0) then

write(*,*) ’fd4_domain_create failed’
call MPI_Abort(MPI_COMM_WORLD, 1, err)

end if

if(rank==0) write(*,’(A,I5)’) ’number of allocated blocks: ’, domain%blockcount

!! Allocate the blocks
call fd4_util_allocate_all_blocks(domain, err)

if(rank==0) write(*,’(A,I5)’) ’number of allocated blocks: ’, domain%blockcount

!! Delete the domain and finalize MPI
call fd4_domain_delete(domain)
call MPI_Finalize(err)

end program fd4_demo_domain

If you have compiled FD4 with FD4 VERBOSE LEVEL 2 or higher, FD4 should print something
like this:

[FD4:0000] created new fd4_domain:
[FD4:0000] dim start end blocks blksz ghosts per.bd
[FD4:0000] x 1 16 4 4.00 2 T
[FD4:0000] y 1 16 4 4.00 2 T
[FD4:0000] z 1 16 4 4.00 2 T
[FD4:0000] max. number of blocks: 64
[FD4:0000] Hilbert SFC level: 3
[FD4:0000] number of MPI processes: 2
[FD4:0000] block pool stacks: 4
[FD4:0000] block pool total size: 184
[FD4:0000] adaptive block mode: F
[FD4:0000] variable table:
[FD4:0000] id nbins nsteps dyn vnull threshld face name
[FD4:0000] 1 1 2 F 0.0E+00 - - Temperature
[FD4:0000] 2 1 2 F 0.0E+00 - - Densitiy
[FD4:0000] 3 12 2 F 0.0E+00 - - Droplets
[FD4:0000] 4 1 1 F 0.0E+00 - x u Wind
[FD4:0000] 5 1 1 F 0.0E+00 - y v Wind
number of allocated blocks: 0
number of allocated blocks: 64

5.4 Block Iteration: 04 iterator.F90

To access the Blocks a process owns, FD4 provides an Iterator which iterates over all Blocks
of the Domain in unspecified order. To read or write the data fields of a Block, use the
block%fields(idx,st)%l(b,x,y,z) approach as described in Section 2.5. Note that
you cannot access the ghost cells in this way, see Section 5.5. A Block iteration loop looks as
follows:

!! Loop over all blocks of the domain and intialize the temperature

15

Chapter 5. User Interface Tutorial

call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

write(*,’(A,I4,A,3(I3))’) ’rank ’,rank,’ iterates to block at (x, y, z) ’,iter%cur%pos
! get offset from domain indexes to block-local indexes
call fd4_iter_offset(iter, offset)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! get z coordinate of this grid cell in global coordinates
gz = offset(3) + z
! set temperature depending on global z coordinate
iter%cur%fields(varTmp,1)%l(1,x,y,z) = 295.0 + f * REAL(gz)

end do
end do

end do
! go to next block
call fd4_iter_next(iter)

end do

5.5 Ghost Cells: 05 ghosts.F90

To get variables from a Block with ghost cells from the six Neighbor Blocks, use the subroutine
fd4 iter get ghost. It copies the current Block’s data and the boundary of Neighbor Blocks
to a 4D buffer array. See Section 2.6 for more details about accessing ghost cells. The buffer
array must be large enough to hold the spatial bounds of the Block and the 4th dimension of the
variables. Note that the 4th dimension is in fact the 0th dimension: it comes first. To geht the
bounds of the largest Block in the Domain, use the subroutine fd4 domain max bext. This
example shows how to allocate a buffer array for a variable with a 4th dimension and how to
read the ghost cells:

!! Allocate the buffer array for a single block with ghost cells
! get the max block extent (bext) including ghost cells
call fd4_domain_max_bext(domain, bext(1:3), .true.)
bext(0) = vartab(varQC)%nbins ! 4th dimension
! allocate the buffer array with interior grid cells starting at 1
allocate(buffer(bext(0),-1:bext(1)-2,-1:bext(2)-2,-1:bext(3)-2))
buffer = 0.0_r_k

!! Intialize time step indicators
now = 1
new = 2

!! Loop over all blocks of the domain and do some sort of computations
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

! get droplets with ghost cells from current block at time step ’now’
call fd4_iter_get_ghost(iter, varQC, now, bext, buffer)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! do some stencil computations, update ’new’ values
iter%cur%fields(varQC,new)%l(:,x,y,z) = buffer(:,x,y,z) + &

(f(-2) * buffer(:,x-2,y,z) + f(-1) * buffer(:,x-1,y,z) + f(0) * buffer(:,x,y,z) &
+ f(1) * buffer(:,x+1,y,z) + f(2) * buffer(:,x+1,y,z)) * dt

! ...
end do

end do
end do
call fd4_iter_next(iter)

end do

16

Chapter 5. User Interface Tutorial

5.6 Ghost Data Exchange: 06 heat.F90

Three functions are required to perform ghost communication: fd4 ghostcomm create,
fd4 ghostcomm exch, and fd4 ghostcomm delete.

Here is a complete demo application, it solves the heat conduction eqution in 3D.

program fd4_demo_heat

use fd4_mod
implicit none
include ’mpif.h’

!! Setup parameters
real, parameter :: radius = 0.5 ! rel. radius of initial heat pertubation
integer, parameter :: grid(3) = 32 ! number of grid cells for x, y, z
real(r_k), parameter :: ds(3) = 1.0 ! grid cell size for x, y, z
real(r_k), parameter :: dt = 0.1 ! time step size
integer, parameter :: nsteps = 1000 ! number of time steps to compute

! FD4 variable table
type(fd4_vartab) :: vartab(1)
integer, parameter :: THETA = 1
! FD4 domain
type(fd4_domain), target :: domain
integer :: dsize(3,2), bnum(3), nghosts(3)
logical :: periodic(3)
! FD4 iterator
type(fd4_iter) :: iter
! FD4 ghost communication
type(fd4_ghostcomm) :: ghostcomm(2)
! misc
integer :: rank, err, bext(0:3)
integer :: offset(3), x, y, z, now, new, step
real(r_k), allocatable :: buf(:,:,:,:)
real(r_k) :: dtheta
real :: global_pos(3), cr

!! MPI Initialization
call MPI_Init(err)
call MPI_Comm_rank(MPI_COMM_WORLD,rank ,err)

!! Create the FD4 variable table
!! (only one cell-centered variable ’theta’ with 2 time steps)
! name, nb, st, unused, ini, vthres, discret.
vartab(THETA) = fd4_vartab(’theta’, 1, 2, .false., 0.0, FD4_NOTHRES, FD4_CELLC)

!! Create the FD4 domain
dsize(1:3,1) = (/1, 1, 1/) ! grid start indices
dsize(1:3,2) = grid(1:3) ! grid end indices
bnum(1:3) = grid(1:3) / 4 ! number of blocks in each dimension
nghosts(1:3) = (/1, 1, 1/) ! number of ghost cells in each dimension
periodic(1:3) = .true. ! periodic boundaries
call fd4_domain_create(domain, bnum, dsize, vartab, nghosts, periodic, MPI_COMM_WORLD, err)
if(err/=0) then

write(*,*) rank, ’: fd4_domain_create failed’
call MPI_Abort(MPI_COMM_WORLD, 1, err)

end if

!! Allocate the blocks of the domain
call fd4_util_allocate_all_blocks(domain, err)

!! Allocate the buffer array for a single block with ghost cells
call fd4_domain_max_bext(domain, bext(1:3), .true.)
bext(0) = 1 ! 4th dimension not used here
allocate(buf(bext(0),0:bext(1)-1,0:bext(2)-1,0:bext(3)-1))
buf = 0.0_r_k

!! Initialize time step indicators
now = 1
new = 2

!! Initialize theta with a spherical heat perturbation
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

17

Chapter 5. User Interface Tutorial

! offset from domain indexes to block-local indexes
call fd4_iter_offset(iter, offset)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! get global coordinates of this grid cell and scale to [0,1]
global_pos(1) = REAL(offset(1) + x - 1) / REAL(dsize(1,2) - 1)
global_pos(2) = REAL(offset(2) + y - 1) / REAL(dsize(2,2) - 1)
global_pos(3) = REAL(offset(3) + z - 1) / REAL(dsize(3,2) - 1)
! distance from domain center to current grid cell
cr = sqrt((global_pos(1)-0.5)**2+(global_pos(2)-0.5)**2+(global_pos(3)-0.5)**2)
if(cr < radius) then

iter%cur%fields(THETA,now)%l(1,x,y,z) = 2.0_r_k * cos(3.14159*cr/(2*radius))
end if

end do
end do

end do
call fd4_iter_next(iter)

end do

!! Create ghost communicator for variable THETA (one for each time level)
call fd4_ghostcomm_create(ghostcomm(1), domain, 1, (/THETA/), (/1/), err)
call fd4_ghostcomm_create(ghostcomm(2), domain, 1, (/THETA/), (/2/), err)

!! Time stepping loop
do step=1,nsteps

! exchange ghost cells for time level ’now’
call fd4_ghostcomm_exch(ghostcomm(now), err)

! iterate over all local blocks
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))
! get theta with ghost cells from current block
call fd4_iter_get_ghost(iter, THETA, now, bext, buf)
! loop over block’s grid cells
do z=1,iter%cur%ext(3)

do y=1,iter%cur%ext(2)
do x=1,iter%cur%ext(1)

! (d2T d2T d2T)
! theta_new = theta_now + (--- + --- + ---) * dt
! (dx2 dy2 dz2)
! calculate dtheta
dtheta = (buf(1,x-1,y,z) + buf(1,x+1,y,z) - 2*buf(1,x,y,z)) / (ds(1) * ds(1)) &

+ (buf(1,x,y-1,z) + buf(1,x,y+1,z) - 2*buf(1,x,y,z)) / (ds(2) * ds(2)) &
+ (buf(1,x,y,z-1) + buf(1,x,y,z+1) - 2*buf(1,x,y,z)) / (ds(3) * ds(3))

! set updated theta value
iter%cur%fields(THETA,new)%l(1,x,y,z) = buf(1,x,y,z) + dtheta * dt

end do
end do

end do
call fd4_iter_next(iter)

end do

if(rank==0 .and. mod(step,100)==0) write(*,’(A,I5)’) ’step ’,step

! swap time step indicators
now = 3 - now
new = 3 - new

end do

!! Delete the ghost communicator and the domain, finalize MPI
call fd4_ghostcomm_delete(ghostcomm(1))
call fd4_ghostcomm_delete(ghostcomm(2))
call fd4_domain_delete(domain)
call MPI_Finalize(err)

end program fd4_demo_heat

18

Chapter 5. User Interface Tutorial

5.7 Vis5D Output: 07 heat v5d.F90

Simple output of grid data to Vis5D files is supported in FD4. The work sequence is quiet
simple: open - write - write - ... - close where each write call writes data from a different time
step of the simulation. In comparison to FD4’s NetCDF output, there are two limitiations which
originate from Vis5D’s minimalistic interface: Only one of such work sequences can be active
at any time during the whole program run and when opening the Vis5D file you must already
know how many write calls you will issue.

To add Vis5D output to the demo application in 5.6, three code snippets need to be added to
the code. The first snippets defines the output file’s name, the number of write calls, and the
variables with their corresponding time steps. It must be called once before the time stepping
loop. fd4 vis5d open has additional optional parameters to define grid cell size and map
projection, see the API documention. After this, the first write call writes initial data to the file.

!! Initialize Vis5D output and write initial data
call fd4_vis5d_open(domain, ’out.v5d’, nsteps/100+1, 1, (/THETA/), (/now/), err)
call fd4_vis5d_write(err)

The following snippet writes data during time stepping to the Vis5D file (every 100th step only).
The optional parameter st opt is used to tell FD4 to write the data of the current step.

!! Write Vis5D output
if(mod(step,100)==0) then
if(rank==0) write(*,’(A,I5)’) ’step ’,step
call fd4_vis5d_write(err, st_opt=(/new/))

end if

And finally the Vis5D file needs to be closed before terminating the program:

!! Close Vis5D
call fd4_vis5d_close(err)

5.8 NetCDF Output: 08 heat netcdf.F90

NetCDF output is working quiet similar to Vis5D output. But here, multiple NetCDF communi-
cators can be defined to create independent output contexts. Thus, a new variable needs to
be defined:

! FD4 netcdf communicator
type(fd4_netcdf4_comm) :: nfcomm

When opening a NetCDF file, the NetCDF communicator is initialized. This handle is parameter
of all NetCDF output routines. Thus, opening the file and writing the initial data before the time
stepping loop looks like this:

!! Initialize NetCDF output and write initial data
call fd4_netcdf4_open(nfcomm, domain, ’out.nc’, 1, (/THETA/), (/now/), err)
call fd4_netcdf4_write(nfcomm,err)

Writing to NetCDF during the time stepping looks quiet similar to the Vis5D version. There is
also an optional parameter st opt to set change the time step to write for all variables.

!! Write NetCDF output
if(mod(step,100)==0) then
if(rank==0) write(*,’(A,I5)’) ’step ’,step
call fd4_netcdf4_write(nfcomm, err, st_opt=(/new/))

end if

And this is how an NetCDF file is closed. The NetCDF communicator can be re-used (by calling
fd4 netcdf4 open) after this call:

19

Chapter 5. User Interface Tutorial

!! Close NetCDF
call fd4_netcdf4_close(nfcomm, err)

Note, that there are two ways of integrating NetCDF in FD4:

• Serial NetCDF: This is the standard way. You can use NetCDF version 3 or 4 in this case.
The output is performed completely serial, that means rank 0 collects and writes all data.

• Parallel NetCDF4 based on HDF5: This requieres an installation of parallel HDF5 and
NetCDF4 based on HDF5. In this case, the data is written in parallel. The result-
ing file is actually a HDF5 file, but it can be read by all tools which are based on the
NetCDF4/HDF5 installation. However, if you experience problems in postprocessing or
visualizing the output file, you can convert it to real NetCDF format using the nccopy
utility of the NetCDF4/HDF5 installation:
nccopy -k2 <input NetCDF4 file> <output NetCDF file>

FD4 can only use exclusively one of these two ways. The method used is determined when
building the FD4 library, which is described in Chapter 4.

5.9 Boundary Conditions: 09 heat boundary.F90

! set (fixed) boundary conditions for lower z
call fd4_boundary_spec (domain, (/THETA,THETA/), (/now,new/), 3, 1, (/0.0_r_k/))
! iterate over all local blocks to add some position-dependent boundary conditions
call fd4_iter_init(domain, iter)
do while(associated(iter%cur))

! block is at lower boundary in z dimension
if(iter%cur%pos(3)==1) then
! get offset from block-local to global coordinates
call fd4_iter_offset(iter, offset)
! loop over grid cells in x and y
do y=1,iter%cur%ext(2)

do x=1,iter%cur%ext(1)
! set boundary conditions for specific grid cells
if(x+offset(1)>grid(1)/4 .and. x+offset(1)<3*grid(1)/4 .and. &

y+offset(2)>grid(1)/4 .and. y+offset(2)<3*grid(1)/4) then
iter%cur%neigh(3,1)%l%fields(THETA,now)%l(:,x,y,1) = 2.0_r_k
iter%cur%neigh(3,1)%l%fields(THETA,new)%l(:,x,y,1) = 2.0_r_k

end if
end do

end do
end if
call fd4_iter_next(iter)

end do

! set zero-gradient boundary conditions for x, y, and upper z for this block
call fd4_boundary_zerograd_block(domain, iter%cur, (/THETA/), (/now/), FD4_XY)
call fd4_boundary_zerograd_block(domain, iter%cur, (/THETA/), (/now/), FD4_Z, opt_dir=2)

20

Chapter 5. User Interface Tutorial

5.10 Adaptive Block Allocation

5.11 Dynamic Load Balancing

5.12 Coupling Interface

5.13 Face Variable Utilities

5.14 Data Utilities

21

	Introduction
	Basic Data Structure
	Variable Table
	Block
	Domain and Iterator
	Cell-centered and Face-centered Variables
	Accessing Variable Arrays
	Accessing Variable Arrays with Ghosts
	Adaptive Block Mode
	Boundary Conditions

	Parallelization and Coupling
	Ghost Communication
	Dynamic Load Balancing
	Coupling

	Building the FD4 Library
	Prerequisites
	Configuration
	Compiling FD4

	User Interface Tutorial
	Basics
	Variable Table Definition
	Domain Creation
	Block Iteration
	Ghost Cells
	Ghost Data Exchange
	Vis5D Output
	NetCDF Output
	Boundary Conditions
	Adaptive Block Allocation
	Dynamic Load Balancing
	Coupling Interface
	Face Variable Utilities
	Data Utilities

