
FD4 Manual
User Documentation of the Four-Dimensional Distributed Dynamic Data structures.

Version fd4-2010-07-01

Developed at ZIH, TU Dresden, Germany
http://www.tu-dresden.de/zih/clouds
This work was funded by the German Research Foundation (DFG).

Matthias Lieber (matthias.lieber@tu-dresden.de)

http://www.tu-dresden.de/zih/clouds

Contents

1 Introduction 3

2 Basic Data Structure 4
2.1 Variable Table . 4
2.2 Block . 5
2.3 Domain and Iterator . 5
2.4 Cell-centered and Face-centered Variables . 5
2.5 Accessing Variable Arrays . 5
2.6 Accessing Variable Arrays with Ghosts . 6
2.7 Adaptive Block Mode . 7
2.8 Boundary Conditions . 7

3 Parallelization and Coupling 8
3.1 Ghost Communication . 8
3.2 Dynamic Load Balancing . 8
3.3 Coupling . 9

4 Building the FD4 Library 10
4.1 Prerequisites . 10
4.2 Configuration . 10

5 User Interface 11
5.1 Basics . 11
5.2 Variable Table Definition . 12
5.3 Domain Creation . 12
5.4 Block Iteration . 12
5.5 Block Data Access . 12
5.6 Ghost Data Exchange . 12
5.7 Boundary Conditions . 12
5.8 Adaptive Block Allocation . 12
5.9 Dynamic Load Balancing . 12
5.10 Coupling Interface . 12
5.11 Data Utilities . 12
5.12 Vis5D Output . 12
5.13 NetCDF Output . 12

2

1 Introduction

The Four-Dimensional Distributed Dynamic Data structures (FD4) is a framework originally
developed for the parallelization of spectral bin cloud models and their coupling to atmospheric
models. Thus, the data structures are optimized for these kinds of model systems. To use FD4,
models must basically meet the following requirements:

• Based on a 3D regular cartesian grid without local refinement (i.e. AMR)
• PDE calculations with data dependencies to a limited number of adjacent cells (stencil

calculations)

Nevertheless, FD4 can be used for many other applications, especially if at least one of the
following points applies:

• Many variables per grid cell (>100)
• Varying workload per grid cell (varying in time as well as space) which demands dynamic

load balancing
• Multiphase model: Additional computations for a limited spatial subset of the grid (drops,

clouds, combustion processes, flame fronts, etc.)
• Model system: FD4-based Model coupled to other model(s)

The basic features of FD4 are:

• Written in Fortran 95
• MPI parallelization (requires MPI-2)
• Block-based decomposition of a regular rectangular numerical grid
• Exchange of ghost cells (i.e. block boundaries, helo zones)
• Optimized for large number of variables per grid cell
• Dynamic load balancing with Hilbert space-filling curves and ParMETIS
• Dynamic adaption of grid allocation status according to spatial structures (multiphase

models)
• Coupling interface
• Simple NetCDF and Vis5D output
• Scalability to 10 000s of cores

3

2 Basic Data Structure

FD4 consists of several Fortran 95 modules each providing different data structures and ser-
vices. The basic data structure is constituted by the Variable Table, the Block, and the Do-
main:

3D
 B

lo
ck

 G
rid

 w
ith

 N
ei

gh
bo

r P
oi

nt
er

s Block with Data Fields Variable Table

Tree & List Blocks

2

1 0

3

6

5 4

89

11 10

Block 7 is not
allocated

4D−Array

4D−Array

4D−Array

1

2

3

4

’QC’, 66 bins,
2 steps, ...

’T,’ 1 bin,
2 steps, ...

’U’, 1 bin,
1 step, ...

’V’, 1 bin,
1 step, ...

4D−Array

4D−Array

4D−Array

2

1

0

3

4

Domain Definition of
− Grid size + properties
− Block decomposition

Contains
Variable propertiesBlock data structure

2.1 Variable Table

The Variable Table is a user-provided table of all variables which should be managed by FD4.
It contains entries for several variable properties:

• The variable’s name (character string)
• The discretization type (cell-centered or face-centered to any of the spatial dimensions)
• The number of time steps to allocate for this variable
• The size of a 4th (non-spatial) dimension called bin (originates from the size-resolving bin

discretization for detailed cloud models)
• A default value (“null”)
• An optional threshold value, to indicate separated phases in multiphase models and allow

adaptive block allocation

The index of the variable in the table is called Variable Index and is used as indentifier. All
variables are floating point variables of the same kind (single or double precision). Integer or
other types are not provided.

4

Chapter 2. Basic Data Structure

2.2 Block

Based on the Variable Table, FD4 allocates the arrays holding the variables in each Block. The
Blocks provide a 3D decomposition of the grid. Blocks are allowed to be of different size. The
block decomposition is defined by one vector of block start indices for each dimension, or, for
convenience, by specifying a number of blocks for each dimension.

The Blocks are contained in two data structures:

• Block Tree: A self-balancing binary tree (red-black tree) which provides logarithmic com-
plexity for access to arbitrary Blocks. For fast iteration, this tree is combined with a linked
list. The index of a Block in the Block Tree is derived from its position in the global grid by
fast bit shifting operations.

• Neighbor Pointers: To access Neighbor Blocks, which is required for any kind of stencil
computations, each Block contains pointers to its 6 Neighbor Blocks.

Note that not all Blocks may be present at a time: In a parallel run (which is the intended use of
FD4!), the Blocks are distributed to the processes. For more details about parallelization refer
to Section 3. Additionally, when running in Adaptive Block Mode, only a specific subset of
the Blocks are present globally, refer to Section 2.7. Thus, a Neighbor Block may be: locally
present, on a remote process, or not present on any process.

2.3 Domain and Iterator

The Domain is the central object in FD4. It contains all data to describe the numerical grid
and the data structure of the allocated Blocks. The Iterator object allows to iterate through
the local list of Blocks associated with the Domain and offers subroutines to access ghost cells
(see Section 2.6).

2.4 Cell-centered and Face-centered Variables

Cell-centered variables are located in the center of a 3D grid cell, whereas face-centered vari-
ables are centered on the grid cell’s surfaces which correspond a specified spatial dimension.
Thus, three types of face-centered variables are possible. Note, that the grid for face variables
is extended by one in the face dimension - for the global domain as well as for each Block:

face−centered
cell−centered

4 x 4 sized 2D block

x face−centeredcell−centered y face−centered

As a consequence, two adjacent Blocks share copies of the same face variable at their bound-
ary. This has consequences regarding consistency, see Section 5.6. The actual data arrays
are allocated starting at index 1 for each dimension (block-local indexes).

One feature of FD4 is, that the data arrays are allocated without ghost cells (helo zones), which
saves memory when small Blocks are used.

2.5 Accessing Variable Arrays

The variables are allocated in the Blocks as one 4D array per discretization type (cell-centered,
x-face, y-face, z-face). The variables, their time steps, and their bins are mapped on the first

5

Chapter 2. Basic Data Structure

dimension, the three other dimensions are used for the spatial indexes.

A specific variable item of one Block is accessed as block%sdata(f)%l(b,x,y,z) with

• the face variable indicator f (0 for cell-centered, 1–3 for face-centered in x, y, z respec-
tively)

• the variable, time steps, and bins encoded to b

• the block-local spatial indexes x, y, z

Since this not straightforward, an array of pointers for variables and their time steps pointing
to the corresponding sections in the actual data arrays is provided. The access is then via
block%fields(idx,st)%l(b,x,y,z) with

• the variable index idx as defined by the Variable Table
• the time step index st (starting at 1)
• the bin b (1 for non-4D variables)
• the block-local spatial indexes x, y, z

This figure illustrates an example for the data structures:

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

T1

T2

QC1

QC2

U1

U2

V1

V2

W1

W2

block%sdata(0:3)

4 4D arrays for storing cell−centered, x−face,
y−face, and z−face variables

block%fields(5,2)

For each (variable, step): Pointers to
sections of the 4D data arrays

Using the block%fields array, only grid cells of the local block can be accessed, but not grid
cells of Neighbor Blocks (ghost cells).

2.6 Accessing Variable Arrays with Ghosts

The Iterator object contains the subroutine fd4 iter get ghost to access variables of the
current Block including the boundaries of the 6 Neighbor Blocks (ghost cells). The variables are
copied to a buffer array, which can than be used for stencil computations. The number of ghost
cell rows is defined for each dimension when creating the domain. It is the same for all cell-
centered variables. Access to face-centered variables of Neighbor Blocks is not implemented.

This figure shows an example in 2D:

Copy current
block and
neighbor
boundaries to
a contiguous
array for
computation

Note, that only data of the 6 direct Neighbor Blocks (in 3D) are copied, not the data of the
diagonal Neighbor Blocks. The resulting values in the area of the ghost cells depend on the
state of each Neighbor Block:

• Neighbor is locally present: Data are copied directly from the Neighbor Block to the buffer
array.

6

Chapter 2. Basic Data Structure

• Neighbor is present on a remote process: Data are copied from the Ghost Block - a copy
of the remote Block’s boundary - to the buffer array. See Section 3.1.

• Neighbor is not present on any process: The corresponding section of the buffer array is
filled with the default value of the variable(s).

2.7 Adaptive Block Mode

FD4 allows the dynamic adaption of the block allocation to spatial structures. It is useful for
special multiphase applications when neither computations nor data are required for certain
regions of the spatial grid. In this case, memory can be saved by not allocating the unused
(empty) blocks. This mode, the so-called Adaptive Block Mode, is only enabled if any of the
variables in the Variable Table are threshold-variables, i.e. these variables have a threshold
value. A Block is considered empty if in all its grid cells the values of all threshold-variables are
less or equal than their corresponding threshold value. Based on this definition, FD4 decides
which blocks to deallocate from the global block structure. Additionally, FD4 ensures that ap-
propriate data are provided for the numerical stencil around non-empty cells. This mechanism
also triggers the allocation of new blocks, as shown in these figures:

put_ghost

domain block structure

buffer array

put_ghost

domain block structure

buffer array

values < threshold

values > threshold

non−allocated
blocks

2 "empty"
cells distance
(=nghosts) < 2 "empty"

cells distance

need to allocate
new block here

allocated blocks values < threshold

values > threshold

The actual block adaption (allocation of new Blocks, deallocation of unused Blocks) is carried
out in the dynamic load balancing routine, see Section 3.2.

2.8 Boundary Conditions

Periodic boundary conditions are implemented straightforward in FD4 by periodic Neighbor
Pointers. For non-periodic boundary conditions, Boundary Ghost Blocks are added for Blocks
at the domain boundary. The Boundary Ghost Blocks have to be filled by the user, except
for zero gradient boundary conditions, which are implemented in FD4. This figure shows the
concept for periodic (left) and non-periodic (right) boundary conditions for an exemplary 2D
domain (in Adaptive Block Mode):

Periodic Boundary Non−Periodic Boundary

7

3 Parallelization and Coupling

Parallelization of the FD4 grid is achieved by distributing the Blocks to the processes. Conse-
quently, the total number of Blocks should be greater or equal than the number of processes.

3.1 Ghost Communication

Before performing stencil computations in parallel runs (which require the boundary of Neigh-
bor Blocks, see Section 2.6), the boundaries have to be transferred between the processes.
So-called Communication Ghost Blocks are allocated at process borders in the block de-
composition to store the boundary of remote Neighbor Blocks. The Ghost Communicator
object handles the update of the Communication Ghost Blocks. The Ghost Communicator is
created for a specified set of variables and can be executed whenever neccesary.

This figure shows an exemplary block decomposition for two processes and the Communication
Ghost Blocks:

Rank 0 Rank 1

3.2 Dynamic Load Balancing

The dynamic load balancing in FD4 performs 3 major steps:

1. Determine if load balancing is necessary.
2. Calculate a new partitioning, i.e. mapping of Blocks to processes.
3. Migration and (De)allocation of Blocks.

Basically there are two situations for which load balancing is necessary: Firstly, when running in
Adaptive Block Mode, Blocks may be added or removed from the global domain, which requires
a new mapping of Blocks to processes. Secondly, if the workload of the Blocks changes non-
uniformly, the load balance of the processes declines and more time is lost at synchronization
points of the program. Of course, both reasons may also appear at the same time.

The workload of the Blocks is described by the Block Weight. The default value is the number
of grid cells of the Block. If the workload does not exclusively depend on the number of grid
cells, the Block Weight should be set to the actual computation time for each Block. If no
Blocks were added or removed from the global domain, the decision whether load balancing
is necessary or not depends on the load balance of the last time step (based on the Block
Weight) and a specified load balance tolerance. Thus, it is possible to control how sensitive
FD4 should react on emerging load imbalances. Instead of specifying a fixed tolerance, FD4
can also automatically decide whether load balancing is beneficial or not. This Auto Mode

8

Chapter 3. Parallelization and Coupling

requires that the Block Weight are set to the computation time. FD4 weighs the time lost due
to imbalance against the time required for load balancing.

Two different methods for the calculation of the new partitioning are implemented in FD4: A
graph-based approach using the ParMETIS library and a geometric approach using the Hilbert
space-filling curve (SFC). Both methods are incremental, which means that the difference of
successive partitionings is low to reduce migration costs. SFC partitioning is preferred since
it executes much faster compared to ParMETIS. This figure shows a 2D Hilbert SFC and an
exemplary partitioning derived from the curve:

3.3 Coupling

FD4 allows to couple models based on FD4 to external models, i.e. transfer variables between
these models. The coupling interface has the following assumptions:

• Sequential coupling: Both models (FD4-based and external) work on the same set of
processes and all processes perform computations for these models alternately.

• Same grid structure: Both models have the same grid structure, or at least the external
model provides its coupling data matching the grid used in FD4.

• Block-based partitioning: The partitioning of the external model is based on rectangular
blocks, but may be different than the partitioning in FD4.

The Couple Context is the description of the Couple Arrays, the data fields of the external
model. Among other specifications, the position of each Couple Array in the global grid, the
process owning this array, and the matching FD4 variable must be provided. Based on this
description, FD4 computes the overlaps of each provided Couple Array with the Blocks and
transmits the variables directly between the processes. FD4 is able to communicate coupling
data in both directions: The Put operation sends variables from the external model to FD4
whereas Get sends variables from FD4 to the external model. This figure shows a Put operation
from one single partition of an external model to the matching FD4 blocks:

Partition of external Model FD4 Partitioning

In this example, two messages are sent, if none of the two receiving FD4 partitions belongs to
the sender process of the external model. If the sender owns a receiving partition in FD4, the
corresponding data is copied locally without sending a message.

The Couple Context concept allows to couple multiple external models to multiple FD4-based
models. However, the direct coupling between two models based on FD4 is not implemented.

9

4 Building the FD4 Library

4.1 Prerequisites

Compiling and running FD4 requires:

• GNU make
• C and Fortran 95 compilers
• An MPI-2 implementation (for example Open MPI or MPICH2)

Optional features of FD4 require additional external packages:

• The NetCDF library is required for NetCDF output. Parallel output is available with NetCDF4
only (if compiled with parallel HDF5). Serial output is possible with both NetCDF3 and
NetCDF4. Note, that NetCDF output is currently not optimzed in FD4.
Website: http://www.unidata.ucar.edu/software/netcdf/

• Compiled sources of Vis5D+ are required to write output to Vis5D files.
Website: http://vis5d.sourceforge.net

• ParMETIS is required for graph-based dynamic load balancing.
Website: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

4.2 Configuration

Refer to the file README provided with the FD4 package.

10

http://www.open-mpi.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.unidata.ucar.edu/software/netcdf/
http://vis5d.sourceforge.net
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/

5 User Interface

This chapter shows the user interface subroutines of FD4 by means of small examples. The
example programs are contained in the FD4 package in the directory tutorial. They are
numbered in the same order as the following sections. The complete documentation of the
routines can be found in doc/index.html.

5.1 Basics

Include the module fd4 mod to your Fortran 95 source to make the FD4 interface available.
FD4 defines kind type parameters for integer and real variables in kinds.F90:

Name Data type Remarks
i4k 4 byte integer
i8k 8 byte integer
i k 4 byte integer default integer type in FD4
r4k 4 byte real
r8k 8 byte real
r k 8 real real type for grid variables, can be changed to r4k

One of the basic utility functions is gettime, which returns the microseconds since 1970 as
an 8 byte integer. It can be used to clock parts of the program.

11

Chapter 5. User Interface

5.2 Variable Table Definition

5.3 Domain Creation

5.4 Block Iteration

5.5 Block Data Access

5.6 Ghost Data Exchange

5.7 Boundary Conditions

5.8 Adaptive Block Allocation

5.9 Dynamic Load Balancing

5.10 Coupling Interface

5.11 Data Utilities

5.12 Vis5D Output

5.13 NetCDF Output

12

	Introduction
	Basic Data Structure
	Variable Table
	Block
	Domain and Iterator
	Cell-centered and Face-centered Variables
	Accessing Variable Arrays
	Accessing Variable Arrays with Ghosts
	Adaptive Block Mode
	Boundary Conditions

	Parallelization and Coupling
	Ghost Communication
	Dynamic Load Balancing
	Coupling

	Building the FD4 Library
	Prerequisites
	Configuration

	User Interface
	Basics
	Variable Table Definition
	Domain Creation
	Block Iteration
	Block Data Access
	Ghost Data Exchange
	Boundary Conditions
	Adaptive Block Allocation
	Dynamic Load Balancing
	Coupling Interface
	Data Utilities
	Vis5D Output
	NetCDF Output

