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Abstract

In this diploma thesis, the physics of Andreev bound states in quantum dots coupled to
superconducting leads is analyzed. At first, we formulate a general perturbative frame-
work based on a superconducting atomic limit for the description of Andreev bound states
(ABS) in interacting quantum dots. An effective local Hamiltonian for dressed ABS, in-
cluding both the atomic or molecular levels and the induced proximity effect on the dot
is argued to be a natural starting point. Self-consistent expansions in single-particle
tunneling events are shown to provide accurate results in regimes where the supercon-
ducting gap is larger than the Kondo temperature, as demonstrated by the comparison
to recent Numerical Renomalization Group calculations. These analytical results may
have bearings for interpreting Andreev spectroscopic measurements with STM on carbon
nanotubes coupled to superconducting electrodes.

In the second part, the results of this effective local approach are compared to a
perturbation theory around the non-interacting limit, and good agreement is found in an
intermediate regime. Furthermore, we point out that this second perturbative calculation
is complementary to the effective local Hamlitonian approach, because it describes the
low gap regime.

The last section is devoted to the Luttinger-Ward functional of this system. The latter
is explicitly given up to second order in the Coulomb interaction and the Luttinger-Ward
equation is generalized to superconducting leads.
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Zusammenfassung

In den letzten Jahren und Jahrzehnten haben sich Quantenpunkte zu einem beliebten
Modellsystem der Festkörperphysik entwickelt. Quantenpunkte sind mikroskopisch bis
nanoskopische kleine, oftmals halbmetallische Strukturen. Es können jedoch auch Molekü-
le, zum Beispiel Kohlenstoff-Nanoröhrchen, verwendet werden [1–4].

In solchen Strukturen ist die Beweglichkeit der Leitungselektronen in allen drei Raum-
richtungen eingeschränkt, so dass die Energiespektra denen von Atomen ähneln. Aller-
dings können ihre Eigenschaften (Elektronendichte, Energieniveaus etc.) in situ durch
Elektroden verändert werden.

Wird ein Quantenpunkt an supraleitende Elektroden gekoppelt, ändert sich sein Ener-
giespektrum drastisch. Auf Grund des Proximityeffekts induzierter Supraleitung bildet
sich um das Fermi-Niveau eine Lücke in der Zustandsdichte aus. Diese Lücke ist mit
jener in den Elektroden identisch. Innerhalb der Lücke kommt es zur Bildung diskreter,
gebundener Zuständen die Andreev-Zustände genannt werden [5, 6].

Diese Andreev-Zustände tragen im Allgemeinen einen großen Teil des Josephson-
Stroms und können auch ein hohes spektrales Gewicht aufweisen [7, 8]. Daher ist es
wichtig, die Physik dieser Zustände zu analysieren, um das Verhalten eines Quanten-
punktes, der an supraleitende Elektroden gekoppelt ist, zu verstehen. Dies gilt insbe-
sondere im Hinblick auf mögliche Anwendungen, zum Beispiel im Quantencomputing [9].
Darüber hinaus gibt es aktuell sowohl von experimenteller als auch theoretischer Seite Be-
mühungen, die Andreev-Zustände in Kohlenstoff-Nanoröhrchen durch spektroskopische
Messungen direkt nachzuweisen [10, 11]; außerdem gibt es Vorschläge, das Rauschen für
die Messung der Andreev-Zustände auszunutzen [12]. Eine schon realisierte Anwendung
von Quantenpunkten mit supraleitenden Elektroden stellen nano-SQUIDs dar [13].

In dieser Diplomarbeit soll die Physik solcher Systeme mit Hilfe eines allgemeinen
Modells (einfacher Quantenpunkt mit nur einem Energieniveau) untersucht werden. Im
ersten Kapitel werden grundlegende Phänomene, wie der Josephsoneffekt, der Proximi-
tyeffet oder der 0 − π Übergang, näher vorgestellt. Dabei wird nochmals die physikali-
sche Wichtigkeit der Andreev-Zustände begründet. Dies wird der Einfachheit halber in
verschiedenen Grenzfällen geschehen, wobei jedoch die Resultate, zumindest qualitativ,
allgemein gültig sind.

Das darauf folgende Kapitel handelt von der selbstkonsistenten Beschreibung der
Andreev-Zustände in Quantenpunkten mit supraleitenden Elektroden. Dabei ist zu be-
achten, dass eine exakte theoretische Beschreibung dieses Systems leider nur möglich
ist, wenn die Coulomb-Wechselwirkung vernachlässigt wird. Wechselwirkende Quanten-
punkte wurden statt dessen bisher entweder durch Molekularfeldnäherungen [14–16],
Stöhrungstheorien in der Coulomb-Wechselwirkung [17] oder der Tunnelkopplung [18]
oder die Non-Crossing Approximation [19, 20] beschrieben. Darüber hinaus wurden auch
numerische Techniken, wie zum Beispiel die funktionelle Renormierungsgruppe (FRG)
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und numerische Renormierungsgruppe (NRG) [8, 21–25] oder Quantum Monte Carlo
Simulationen [26, 27] verwendet.

Keine der analytischen Methoden kann die Physik eines Quantenpunktes mit supralei-
tendenen Elektroden zur Gänze beschreiben. Stöhrungstheorien in der Tunnel-Kopplung
werden zum Beispiel den Proximityeffekt, also die induzierte Supraleitung, zumindest in
den niedrigen Ordnungen der Stöhrungstheorie nicht korrekt wiedergeben. Molekularfeld-
näherungen wiederum können den Kondoeffekt nicht beschreiben. NRG Simulationen zu
guter Letzt sind numerisch sehr anspruchsvoll und können daher nicht direkt auf komple-
xere Systeme ausgeweitet werden. Zusätzlich fehlt ihnen ein intrinsisches physikalisches
Bild, durch welches die Ergebnisse interpretiert werden können.

Das Ziel dieser Arbeit ist es daher, eine neue, analytische und möglichst einfache
Beschreibung der Andreev-Zustände zu finden, die die Physik in einem großen Para-
meterbereich korrekt wiedergibt. Wir erreichen dies durch eine Stöhrungstheorie um
den Grenzfall einer großen supraleitenden Bandlücke, die den Proximityeffekt und die
Coulomb-Wechselwirkung exakt beschreibt. Für diesen Grenzfall werden analytische Lö-
sungen hergeleitet; dies ist möglich da sich der Hamilton-Operator dann zu einem effektiv
lokalen Operator für den Quantenpunkt vereinfacht. Wir verdeutlichen weiterhin wie un-
ser Formalismus die Andreev-Zustände beschreibt. Danach erweitern wir den Gültigkeits-
bereich unserer Näherung durch das Implementieren einer Selbtskonsistenzbedingung. So
können auch Bandlücken, die sogar deutlich kleiner als die anderen charakteristischen
Energieskalen sind, beschrieben werden. Die so gefundenen, renormalisierten Energien
stimmen über große Parameterbereiche mit numerische Daten überein. Allerdings wird
das Kondoregime auf Grund fehlender Vertex-Korrekturen nur qualitativ beschrieben.

Aufbauend auf den Energiekorrekturen können dann noch weitere Observablen, wie
zum Beispiel supraleitende Korrelationen, berechnet werden. Bezüglich des Josephson-
stroms kann der Formalismus jedoch nur eine grobe Abschätzung leisten, da dieser auch
einen Beitrag des Zustandskontinuums oberhalb der Bandlücke enthält, zu dem wir keinen
Zugang haben.

Unser Formalismus sollte auf Grund seiner Einfachkeit auf komplexere Systeme, wie
zum Beispiel Doppelquantenpunkte oder Moleküle mit komplexer Orbitalstruktur, über-
tragbar sein (siehe zum Beispiel [28–31]). Dies stellt, zusammen mit der physikalischen
Interpretation supraleitender atomarer Zustände, einen großen Vorteil im Vergleich zu
numerischen Rechnungen dar.

Um die Ergebnisse im Grenzfall kleiner supraleitender Bandlücken zu verbessern, be-
trachten wir im folgenden Kapitel eine Stöhrungstheorie in der Coulomb-Wechselwirkung.
Diese wird bis zur zweiten Ordnung ausgeführt, da die Coulomb-Wechselwirkung experi-
mentell oft eine der größten Energien des Quantenpunkts ist. Eine weitere Verbesserung
der Ergebnisse wird durch die Verwendung einer so genannten Skelett-Entwicklung er-
reicht, die an Stelle der einfachen Propagatoren die vollen Greenschen Funktionen, d.h.
inklusive der Selbstenergien, verwendet.

Die Ergebnisse dieser Methode stimmen über weite Parameterbereiche mit denen der
selbstkonsistenten Beschreibung (die im vorherigen Kapitel entwickelt wurde) überein.
Sie verbessern diese aber für kleine Bandlücken deutlich. Dies wird durch Vergleiche der
renormalisierten Energien, aber auch der supraleitenden Korrelationen, gezeigt. Darüber
hinaus können nun auch Zustandsdichten für den wechselwirkenden Quantenpunkt be-
rechnet werden. Allerdings kann die Stöhrungstheorie in der Coulomb-Wechselwirkung
nur in einer der beiden Phasen des Quantenpunktes verwendet werden, wohingegen die
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renormierte effektive lokale Rechnung beide Phasen beschreibt.
Das letzte Kapitel ist allgemeineren Betrachtungen über die Invarianzen des zur Stö-

rungstheorie in der Coulomb-Wechselwirkung gehörige Luttinger-Ward Funktionals ge-
widmet. Dieses hat verschiedene Symmetrien, welche ausgenutzt werden, um zum ersten
Mal überhaupt die Verallgemeinerung der Friedel Summenregel auf Quantenpunkte mit
supraleitenden Elektroden zu analysieren. Dabei finden wir zwei Quantisierungsbedin-
gungen, die im Falle normalleitender Elektroden der Quantisierung der Überschußladung
entsprechen. Diese beiden Gleichungen werden für einige einfache Grenzfälle analytisch
überprüft.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Quantum dots and superconductivity

Generalities on quantum dots

Quantum dots are small, man-made structures. Typical sizes range from some nanome-
ters to several micrometers. Due to these small sizes, the electrons’ movement in quantum
dots is restricted in all three spatial dimensions and parallels to atoms arise; in particular,
the energy levels are often discrete. A striking advantage of quantum dots, compared to
atoms, is that today’s microfabrication techniques allow to control their form, size and
electron density. In addition, their properties may be tuned in situ via gates voltages.
This high degree of controllability has made of quantum dots a widely studied model
system. For a more detailed introduction to the rich physics of quantum dots, the reader
may be referred to reviews (see for example [1–3] and references therein). Whereas the
above described structures are mostly semiconductors, molecules (for example carbon
nanotubes [4]) can also be used as quantum dots because they show similar properties.

Superconducting quantum dots

Superconductivity is one of the most studied phenomena in condensed matter physics.
Pioneer work has been done by Bardeen, Cooper and Schrieffer who proposed a very
successful microscopic theory (often referred to as the BCS-theory) [32]. A major ingre-
dient to that theory is that electrons form so-called Cooper pairs, leading to a gap in the
density of states.

Connecting a quantum dot to superconducting electrodes instead of normal ones dras-
tically modifies the dot’s electronic structure. Due to the tunnel coupling Cooper pairs
“leak” into the dot. This phenomenon is known as the proximity effect [5]. It leads to the
formation of a gap in the dot’s density of states. Furthermore, discrete sub-gap states
arise [6]. These states are commonly referred to as Andreev bound states.

Experimentally, superconducting quantum dots can be realized with carbon nanotube
junctions. It has been shown that e.g. nanotubes and InAs quantum dots connected to
superconducting electrodes can be tuned from a Coulomb blockade regime, to a Kondo
regime [33–35], to a weakly interacting Fabry-Perot regime by changing local gate volt-
ages [36]. The Josephson current at zero bias and multiple Andreev reflections at finite

1



2 CHAPTER 1. INTRODUCTION

bias voltage have been measured in such devices [5, 36–38]. The transition from a 0-
junction to a π-junction, namely a reversal in the sign of the Josephson current [18],
has also been been observed when a magnetic moment forms on the dot [13, 39–41].
As a possible application of superconducting junctions, nano-SQUID devices have been
fabricated [13]. Furthermore, superconducting quantum dots are possible components of
spintronics devices.

1.1.2 Andreev bound states

The Andreev bound states (ABS) play certainly an important role for the physics of a
quantum dot connected to superconducting electrodes as they may contribute a large
part of the spectral weight [8] and carry most of the Josephson current [7]. Whereas
the ABS have been observed in metal-superconductor hybrid structures [42], no direct
spectroscopy has so far been achieved in quantum dot systems. Andreev bound states
come in pairs, one state above and one below the Fermi level, forming a two level system.
Consequently, recent interest in the spectroscopy of the bound states [10, 43] has also
been stimulated by proposals to use the latter as a qubit [9].

This work endeavors to contribute to the understanding of the physics of the An-
dreev bound states by developing a new perturbative approach based on an effective
local Hamiltonian for dressed ABS, that extends the limit of large superconducting gap
proposed previously [8, 44–46]. Our approach will illuminate the nature of the ABS in
interacting quantum dots, as well as provide a simple and accurate analytical framework
in most relevant case, that may be useful for interpreting future spectroscopic experi-
ments. In addition, the formalism developed in this thesis should easily be extended to
describe more complex systems, as for instance superconducting double quantum dots or
molecules with more complicated orbital structure (see e.g. [28–31]).

1.2 Some remarks on the relevant physical phenomena
Josephson effect

In 1962, Josephson predicted that at zero voltage bias, a constant current

J = Jc sin(ϕ) (1.1)

would flow between two superconductors coupled by a tunnel barrier [47]. The driving
force should be the phase difference ϕ = ϕL − ϕR of the two superconductors’ wave
functions |Ψi〉 =

∏
~k

(
|u~k|+ |v~k|e

iϕic†~k,↑,ic
†
−~k,↓,i

)
|0〉 (i = L,R). The amplitude Jc is called

the critical current.
Josephson predicted furthermore that if a finite voltage bias V was applied across the
junction, the phase difference would evolve with time t as

ϕ(t) = 2eV · t . (1.2)

Therefore, the current across the voltage biased junction would be an alternating one.
The free energy stored in the junction is then given by the electrical work

F =

∫
J · V dt =

∫
J
dϕ

2e
= −Jc

2e
cos(ϕ) + const. . (1.3)
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These predictions, today referred to as the AC and DC Josephson effect, respectively,
have been fully confirmed in many experiments.

Ambegaokar and Baratoff have shown [48] that the product of the critical current
Jc and the resistance in the normal state Rn depends only on the temperature T and
superconductors’ gap ∆:

JcRn =
π∆(T )

2e
tanh

(
∆(T )

2kT

)
. (1.4)

Probably the most famous application of the Josephson effect are so-called SQUIDs
(Superconducting QU antum Interference Devices), used for ultra-sensitive magnetic flux
measurements. More information on the Josephson effect in general and its applications
can be found in textbooks [49].

Coulomb blockade and Kondo effect

The number of electrons on a quantum dot can experimentally be controlled by a gate
electrode. The latter, being capacitively coupled to the dot, determines its electrical
potential and is therefore used to shift the energy levels relative to the Fermi energy. If
the gate voltage is adjusted such that one of the dot’s levels is in resonance, electrons
will easily tunnel from the electrodes into the dot. Nevertheless, due to the small size
of the dot, Coulomb repulsion opposes the addition of electrons. Therefore, if a finite
bias voltage between source and drain contact is applied, the Coulomb interaction leads
to a suppression of the conductance for low temperatures (i.e. not thermally activated
regime), apart from points of charge degeneracy. This phenomenon is called Coulomb
blockade. At the degeneracy points, the gate voltage is such that two states with n
and n + 1 electrons have the same energy. Then, electrons can hop on and off the dot
without having to overcome a barrier. This gives rise to a periodic peak pattern in the
conduction, known as Coulombs diamonds. The Coulomb blockade for a quantum dot
connected to superconducting electrodes is illustrated in figure 1.1 (experimental data by
Jørgensen and collaborators [50]). It shows the differential conductance as a function of a
bias voltage Vsd across the junction and a gate voltage Vgate. The latter simply shifts the
energy level of the dot. The characteristic diamond-shaped conduction pattern is clearly
observed. Furthermore, the superconducting gap ∆ in the electrodes results in a gap in
the conduction (visible as a white line for low bias voltages Vsd).

Due to Coulomb blockade, the occupation of the dot can easily be manipulated. If it is
tuned to an even integer, the dot’s total spin is S = 0, whereas it is S = 1

2
for odd integer

occupation. A quantum dot therefore constitutes a fully controllable localized magnetic
moment. It has been known since the 1960’s that a magnetic impurity, whilst surrounded
by a Fermi sea, can be screened by the latter (i.e. formation of a spin S = 0 state) [51].
This so-called Kondo effect occurs if the dot is strongly coupled to the electrodes, which
then hybridize with the dot’s level. The hybridization results in an increased conductance
[52]. In contrast, the Kondo effect decreases the conductance in the case of a magnetic
impurity in a bulk metal because the impurity constitutes a scattering center for the
otherwise freely moving electrons.
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Figure 1.1: Typical differential conduction of a quantum dot connected to superconduct-
ing electrodes (experimental data by Jørgensen et al. [50]). The dot’s occupancy is given
on top.

Superconductivity and Kondo effect

Both superconductivity and the Kondo effect are characterized by the formation of spin
singlets. In a superconductor, Cooper pairs consisting of electrons with opposite spin
and momentum are formed. In the Kondo effect, the dot’s magnetic moment is screened
due to the hybridization with electrons in the conduction band. The interplay of these
two effects is physically interesting. It has been shown that the zero-bias conduction of
single quantum dots universally scales with ∆/(kBTK) (where ∆ is the superconducting
gap and TK is the Kondo temperature) [34]. It has further been demonstrated that the
Kondo effect is not destroyed by the superconducting gap as long as kBTK � ∆ [35].

1.3 Outline
This thesis is a joint Master 2 recherche and diploma thesis for the Université Joseph
Fourier Grenoble, the Ecole Nationale Supérieure de Physique de Grenoble and the Uni-
versität Karlsruhe (TH). It endeavors to contribute to the understanding of the physics
of a quantum dot coupled to superconducting electrodes, thereby mainly focusing on the
Andreev bound states inside the gap.

Although throughout the text only quantum dots will be dealt with, similar consid-
erations may apply to organic molecules, e.g. carbon nanotubes. Thus, this thesis may
have an impact on experiments envisioning a direct STM spectroscopy of the Andreev
bound states.

In a first introductive chapter, some important physical phenomena in a quantum
dot coupled to superconducting electrodes are rederived. Thereby, the importance of
the Andreev bound states will be underlined by analyzing the dot’s density of states
(which is strongly modified by the proximity effect of induced superconductivity) and by
calculating the Josephson current in some simple limiting cases. The mechanism of the
0− π transition in such a quantum dot device is explained.

Chapter 3 is devoted to the derivation of a new, simple and analytic description of
the Andreev bound states in Josephson quantum dots. This approach is based on a
perturbation expansion around an effective local limit Hamiltonian. The latter describes
the system in the limiting case of a large superconducting gap. By comparing our results
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to numerical data, this approach is proven to be as simple as reliable. As a drawback,
some difficulties arise in the Kondo regime.

The 4th chapter deals with a perturbation theory around the non-interacting limit.
As the Coulomb interaction may be one of the biggest energy scales in a molecular
quantum dot, the perturbation series needs to be expanded to the second order. Further
improvement of the results is achieved by the use of a skeleton expansion. In the spin
singlet phase, this second perturbative approach describes the quantum dot very well, as
is shown by comparison to both numerical data and the results of the previous chapter.
Nevertheless, and in contrast to the effective local Hamiltonian, it is not valid in the spin
doublet phase.

In the last chapter, we derive the Luttinger-Ward functional associated with the
perturbation expansion around the non-interacting limit. For the first time, the Friedel
sum rule is generalized to a quantum dot coupled to superconducting electrodes. The
resulting Luttinger equations are finally checked in some simple limiting cases.
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Chapter 2

Superconducting quantum dot:
generalities

2.1 Single dot model

Although quantum dots are relatively small and therefore fairly simple objects (com-
pared to complex macroscopic structures), they bear a wealth of interesting physics. An
experimental quantum dot has in general several electronic levels. The latter may be
coupled, for instance by spin-spin interactions, or inter-level transitions. Coulomb in-
teraction between the different levels and also between electrons on the same level is
generally important. Last but not least, these electronic levels may be coupled to one or
several electrodes. These coupling will in general be asymmetric and dependent on the
level in question.

An exact theoretical modeling of a quantum dot coupled to superconducting elec-
trodes is therefore impossible. Fortunately, especially molecular junction devices often
exhibit a relatively large single electron level spacing. In this sense, and especially for
low temperatures, a realistic simplification is to analyze a quantum dot with only one
electronic level.

In the following chapter, some important properties of a single level quantum dot
system shall be reviewed. Although this reduces the general multilevel dot model drasti-
cally, many physically important phenomena will persist, thus giving helpful indications
of a more complex system’s behavior. The results we will encounter in this section are
well-known. Yet, it is worth spending some time on them, not only in order to gain
insight into the basic physics of quantum dot systems coupled to superconducting elec-
trodes, but also because the considerations below will serve as a starting point for the
subsequent calculations.

2.1.1 Hamiltonian

A simple Hamiltonian able to describe such a quantum dot coupled to superconducting
leads (as depicted in figure 2.1) is given by the superconducting Anderson model,

H =
∑
i=L,R

Hi +HD +
∑
i=L,R

HTi
+ U n↑n↓ (2.1)

7
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Figure 2.1: Single quantum dot with an energy level εd and Coulomb interaction U ,
coupled to superconducting leads (SC) via a tunneling amplitude t.

with

Hi =
∑
~k,σ

ε~k,i c
†
~k,σ,i

c~k,σ,i −
∑
~k

(
∆i c

†
~k,↑,i

c†
−~k,↓,i

+ h.c.
)
,

HD =
∑
σ

εd d
†
σdσ , (2.2)

HTi
=

∑
~k,σ

(t d†σc~k,σ,i + t∗ c†~k,σ,idσ) .

In the above equations, dσ is the annihilation operator of an electron with spin σ on the
dot, c~k,σ,i that of an electron with spin σ and wave vector ~k in the lead i = L,R, and
nσ = d†σdσ.

The dot consists of a single electronic level of energy εd and can thus be occupied by
up to two electrons. The Coulomb repulsion U between electrons on the dot is taken
into account. This precludes an exact solution to the problem. The leads are assumed
to be described by standard s-wave BCS Hamiltonians Hi with superconducting gaps
∆i = ∆ eiϕi . The phase difference of the latter will be noted ϕ = ϕL−ϕR. Furthermore,
the leads are assumed to have flat and symmetric conduction bands, i.e. the kinetic
energy ε~k,i measured from the Fermi level ranges in [−D,D] and the density of states is

ρ0 = 1/(2D). We assume ~k-independent and symmetric tunneling amplitudes t between
the dot and both superconducting leads. Experimentally, the crucial characteristic energy
scales, namely Coulomb interaction U , total hybridization Γ = 2πt2ρ0 and gap ∆, are
typically all of the same order of magnitude [13, 50], providing a challenge for analytical
methods. Note that the level energy εd and the tunneling amplitude t can be controlled
via gate electrodes.

2.1.2 Gauge transformation

In equation (2.1), the superconducting gap is a complex number ∆i = ∆eiϕi (ϕi denotes
the macroscopic phase in the electrode i and the absolute value of the gap is taken to be
∆ in both electrodes). It turns out to be useful to perform a gauge transformation that
absorbs this phase into the tunnel matrix elements t. This is a commonly used procedure,
described in detail in textbooks [53]. The correct transformation is

c~k,σ,i → c~k,σ,i e
i 1
2
ϕi . (2.3)

By applying this transformation, the gap ∆ becomes a real number, ∆i = ∆eiϕi → ∆,
and the tunnel matrix elements are transformed according to t → t ei

1
2
ϕi .
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2.2 The non-interacting limit
At first, the non-interacting single dot is analyzed, which reduces the Hamiltonian (2.1)
to

H0 =
∑
i=L,R

Hi +HD +
∑
i=L,R

HTi
. (2.4)

This approximation is valid for strong coupling to the electrodes (i.e. Γ � U). The
density of states as well as the effect of resonant tunneling on the Josephson current will
be analyzed. In contrast to the interacting case, the non-interacting limit can be solved
analytically [6, 7, 14].

2.2.1 Exact Green’s functions

The properties of a quantum mechanical system are described by expectation values.
These expectation values can (mostly) be inferred from the calculation of Green’s func-
tions. Therefore, the knowledge of the Green’s functions of a system is sufficient for the
description of its properties. In the context of many-body physics, a generic Green’s
function has the form of a correlation function −〈Ψ̂(t)Ψ̂†(t′)〉 and can be interpreted as a
propagator. It basically indicates the temporal evolution (between t and t′) of a particle
put into the system in a certain state |Ψ〉.

In the case of a single dot coupled to (any type of) electrodes, it is mainly the physics
of the dot that is interesting. Therefore, the most important Green’s functions are
〈d†σ(t)dσ(t′)〉-types (which only involve the dot’s operators). Furthermore, if the leads
are superconducting, some kind of superconducting correlation should be induced on the
dot, i.e. there should be non-zero expectation values of two creation or annihilation op-
erators. Because of this correlation, it turns out to be greatly simplifying to use Nambu
notation [53]. The idea is that, as the BCS wave function has a non-defined particle
(Cooper pair) number, annihilation and creation operators are very similar objects in a
superconductor. Therefore, spinors are introduced to describe both types of operators on
equal footing,

Ψ~k,i
:=

(
c~k,↑,i
c†
−~k,↓,i

)
and ΨD :=

(
d↑
d†↓

)
. (2.5)

These spinors are now used to calculate the different Green’s functions. Entities in Nambu
notation will be pointed out by hats. The Hamiltonian in Nambu notation reads

H0 =
∑

~k,i=L,R

Ψ†~k,iĤ~k,i
Ψ~k,i

+ Ψ†DĤDΨD

+
∑

~k,i=L,R

(Ψ†DĤTi
Ψ~k,i

+ Ψ†~k,iĤ
†
Ti

ΨD) (2.6)

with

Ĥ~k,i
=

(
ε~k,i −∆~k,i

−∆∗~k,i −ε−~k,i

)
, ĤD =

(
εd 0
0 −εd

)
, ĤTi

=

(
tei

1
2
ϕi 0

0 −te−i 1
2
ϕi

)
.

(2.7)
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In order to simplify the following calculations as much as possible, the Matsubara imaginary-
time formalism is used. In this method, the Green’s functions (defined for real times) are
“extended” into the complex plane. The “normal” time is then given by the real axis. This
analytic continuation does not have a physical meaning, it is just a clever mathematical
trick and comparable to the use of the residue theorem for the evaluation of real integrals.
Some remarks on the Matsubara imaginary-time formalism can be found in appendices
A and B.

In the non-interacting limit, the dot’s Green’s function in Nambu notation and with
Matsubara imaginary-time (noted by τ) is defined as

Ĝ0
d,d(τ) = −〈TτΨD(τ)Ψ†D(0)〉 (2.8)

=

(
−〈Tτd↑(τ)d†↑(0)〉 −〈Tτd↑(τ)d↓(0)〉
−〈Tτd†↓(τ)d†↑(0)〉 −〈Tτd†↓(τ)d↓(0)〉

)
.

It is evaluated with the equation of motion technique. Thereby, the Green’s function
is derived with respect to τ . The resulting differential equation is simplified using the
Schrödinger equation. It is solved via Fourier transformation, yielding the frequency
dependent Green’s function.

In order to obtain the final expression of the Green’s function, sums over wave vectors
~k in the leads are transformed into integrals, i.e.∑

~k

→
∫

band
dε ρ(ε) .

The density of states in the leads ρ(ε) is thereby assumed to be ρ0 = const., i.e. the
conduction band is taken to be flat. Furthermore, the band shall for now be assumed to
be infinite, i.e. the integration ranges from −∞ to +∞. This simplification is motivated
by the fact that the Fermi energy of the leads is normally much bigger than any other
energy scale of the system, but the generalization to finite bandwidth is straightforward,
as will be shown in chapter 3.

For the sake of clarity, only the final expression of Ĝ0
d,d(iωn) shall be stated here. A

more complete derivation can be found in appendix C. In Matsubara frequency space
and Nambu notation, the Green’s function of the dot is

Ĝ0
d,d(iωn) =

1

Det(iωn)

(
iωn + εd −

∑
i t

2G0
i,22 −

∑
i t

2eiϕiG0
i,12

−
∑

i t
2e−iϕiG0

i,21 iωn − εd −
∑

i t
2G0

i,11

)
, (2.9)

where G0
i,αβ denotes the matrix element Ĝ0

i |α,β of the bare lead i Green’s function

Ĝ0
i =

πρ0√
∆2 − (iωn)2

(
−iωn ∆

∆ −iωn

)
. (2.10)

Thereby, “bare leads” means decoupled from the quantum dot and

Det(iωn) =
∣∣∣Ĝ0

d,d(iωn)−1
∣∣∣ (2.11)

= − (ωn(1 + α(iωn)))2 − εd2 −
(
α(iωn)∆ cos(

ϕ

2
)
)2

.
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In the above equation, ϕ = ϕL − ϕR is the phase difference of the two superconducting
electrodes and

α(iωn) =
2πρ0t

2√
∆2 − (iωn)2

=
Γ√

∆2 − (iωn)2
. (2.12)

2.2.2 Density of states

Before trying to analyze more subtle phenomena like the Josephson effect it is necessary
to understand how the coupling to the electrodes changes the electronic structure on
the dot. For this purpose, the electrons’ density of states on the dot is calculated. In
general, the latter is defined as the imaginary part of the retarded Green’s function
ρ0
↑(ω) = − 1

π
Im{G0,R

d↑,d↑(ω)} (here only considering spin up; the total density of states is
the sum of ρ0

↑(ω) and ρ0
↓(ω), which are equal by symmetry). As explained in appendix A,

the retarded Green’s function can be found by the analytic continuation iωn → ω + iη
(with η → 0+) once the Matsubara Green’s function Ĝ0

d↑,d↑(iωn) has been obtained.
Nevertheless, as explained in appendix B, this analytic continuation is not trivial. Using
(2.9) and (B.11) yields

G0,R
d↑,d↑(ω) =

1

Det(ω + iη)
((ω + iη)(1 + α(ω)) + εd) (2.13)

with

Det(ω) = (ω(1 + α(ω)))2 − εd2 −
(
α(ω)∆ cos(

ϕ

2
)
)2

(2.14)

and

α(ω) =

{
Γ√

∆2−ω2 , |ω| < ∆
iΓ sgn(ω)√
ω2−∆2 , |ω| > ∆ .

(2.15)

For ω < ∆, G0,R
d↑,d↑(ω) is entirely real as long as Det(ω) 6= 0. In contrast, G0,R

d↑,d↑(ω) is
purely imaginary if Det(ω) = 0. This means that the density of states ρ0

↑(ω) vanishes for
ω < ∆ (“inside the gap”) except for certain values. These energetically discrete states
are called Andreev bound states (ABS). The formation of Andreev bound states inside
a gap is the signature of the so-called proximity effect: as a consequence of the tunnel
coupling to the superconducting leads, the dot hybridizes with the latter. This induces
a BCS-like correlation on the dot, causing the described BCS-like gap in the density of
states.

For ω > ∆, α(ω) is a purely imaginary number. Therefore, the density of states
becomes a continuum for energies outside the gap. ρ0

↑(ω) is thus given by

ρ0
↑(ω) =


W+δ(ω − ω0) +W−δ(ω + ω0) , |ω| < ∆ ,
0 , |ω| = ∆ ,

1
π

|ω|Γ√
ω2−∆2

(
(ω2+ε12)+ Γ2

ω2−∆2 (ω2−∆2 cos2(ϕ
2

))
)

(
ω2−ε12+ Γ2

ω2−∆2 (∆2 cos(ϕ
2

)−ω2)
)2

+ 4Γ2ω4

ω2−∆2

, |ω| > ∆ .
(2.16)

As implied by (2.16), it can be shown that Det(ω) has two roots of multiplicity 1 at ±ω0

with |ω0| < ∆ (i.e. there are two bound states at ±ω0). Obviously the exact values of
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Figure 2.2: Density of states of a single quantum dot connected to electrodes via tun-
nel coupling, leading to a hybridization Γ. The dot’s energy level is εd = 2 Γ (i.e. not
in resonance). The solid curve corresponds to tunnel coupling to superconducting elec-
trodes with ∆ = Γ (arrows indicate the Andreev states, their weight corresponds to their
height). The dashed curve indicates the density of states if the dot is connected to normal
electrodes.

ω0 and W± depend on the parameters Γ, ∆, εd and ϕ. As an example, the case Γ = ∆,
ϕ = 0 shall illustrate the density of states. For εd = 2Γ,

ω0 ≈ 0.915 and

{
W+ = 0.151

W− = 0.035 .

The corresponding density of states is shown in figure 2.2. Similar to a system with
normal electrodes (dashed curve in figure 2.2), the tunneling induces a level broadening
of the order of Γ around the initially discrete level (here supposed to be at εd = 2Γ).
Furthermore, the density of states strikingly reveals the induced superconductivity: ρ0

↑(ω)
is cut at ω = ±∆ and the discrete Andreev bound states arise inside the gap (marked
by arrows in figure 2.2). As a conclusion, the hybridization with superconducting leads
drastically changes the dot’s density of states due to the proximity effect of induced
superconductivity.

2.2.3 The Josephson current

Similar to the case of a simple tunnel junction between two superconductors (as described
in section 1.2), the two leads can exchange Cooper pairs by tunneling via the dot. This
exchange is driven by the phase difference ϕ = ϕL − ϕR of the wave functions in the
leads. The definition of the current is

J(t) = e〈 d
dt
NL(t)〉 = e

∑
~k,σ

〈 d
dt
n~k,σ,L(t)〉 = e

∑
~k,σ

〈 d
dt
c†~k,σ,L(t)c~k,σ,L(t)〉 . (2.17)

It might be useful at this point to insist on the fact that all time-dependent operators
in the above expression are given in the Heisenberg picture. As a system at equilibrium
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is investigated, the operators have no intrinsic time dependence (therefore being time-
independent in the Schrödinger picture). Equation (2.17) can thus be further evaluated
using the Heisenberg equation of motion, namely

d

dt
NL(t) = i[H0(t), NL(t)] .

It can be shown that the only non-zero contribution to d
dt
NL(t) is

[HTL(t), NL(t)] =
∑
~k,σ

(t ei
1
2
ϕL d†σc~k,σ,L − t e

−i 1
2
ϕL c†~k,σ,Ldσ) .

The system’s Josephson current is thus given by

J(t) = e i
∑
~k,σ

〈t ei
1
2
ϕL d†σc~k,σ,L − t e

−i 1
2
ϕL c†~k,σ,Ldσ〉 (2.18)

= 2e〈 ∂
∂ϕ

HTL〉 .

Note that, a priori, the phase derivation can not simply be pulled out of the expectation
value because the wave function depends on the phase difference.
It is often convenient to rewrite equation (2.19) as

J = 2e
1

Z
tr{e−βH ∂

∂ϕ
HTL}

= 2e
1

Z
tr{ ∂

∂ϕ
e−βH} 1

−β
= 2e

1

−β
1

Z

∂

∂ϕ
Z = 2e

−1

β

∂

∂ϕ
ln(Z) (2.19)

= 2e
∂

∂ϕ
F ,

with the partition function Z = tr{e−βH} and the free energy F = − 1
β

ln(Z). Indeed, the
above equations are nothing but a more general derivation of equation (1.3) and maybe
the most common definition of the Josephson current. Unlike above, the phase deriva-
tion could be pulled out of the trace because the latter is taken with the Hamiltonian’s
eigenstates. These are also eigenstates of e−βH , but not of HTL . Using the normalization
of the latter readily yields equation (2.19).

Equation (2.19) implies that correlations of the type 〈c~k,σ,Ld
†
σ〉 (i.e. the Green’s func-

tion of the leads coupled to the non-interacting dot, ĜU=0
~kσL,dσ

) need to be calculated. A

direct calculation of ĜU=0
~kσL,dσ

necessitates the calculation of the hybridized system’s eigen-
states, which is not trivial. This laborious task can be bypassed using a Dyson’s equation.
The latter expresses ĜU=0

~kσL,dσ
in terms of Ĝ0

d,d(iωn) and Ĝ0
~kL,~kL

(iωn), Ĝ0
~kL,~kL

(iωn) being the
bare leads’ Green’s functions (i.e. for leads decoupled from the dot):

ĜU=0
~kL,d

(iωn) = Ĝ0
~kL,~kL

(iωn)Ĥ†TLĜ
0
d,d(iωn) . (2.20)

Ĝ0
~kL,~kL

(iωn) can be derived similarly Ĝ0
d,d(iωn) (see section 2.2.1), which yields
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Figure 2.3: Dependence of the different contributions to the Josephson current of the
superconducting phase difference ϕ for ∆ = Γ, εd = 2Γ. The black solid curve corresponds
to the total Josephson current J , the blue dashed curve is the Andreev bound states
contribution and the red dash-dotted curve is the continuum contribution.

Ĝ0
~kL,~kL

(iωn) =
1

(iωn)2 − ε~k,L
2 −∆2

(
iωn + ε~k,L −∆

−∆ iωn − ε~k,L

)
. (2.21)

Plugging (2.20) into (2.19) yields the Josephson current [54]. The zero temperature limit
is

J = 2eΓ sin(ϕ)

(∫ −∆

−∞

dω

2π

∆√
ω2 −∆2

2 Re{G̃0,R
d,d;21(ω)}

+

∫ 0

−∆

dω

2π

∆√
∆2 − ω2

2 Im{G̃0,R
d,d;21(ω)}

)
(2.22)

(where G̃0,R
d,d;21(ω) is G0,R

d,d;21(ω) without e−iϕ, the latter having been pulled out into the
sin(ϕ) for clarity).

Equation (2.22) points out that both the continuum (first term) and the bound states
(second term) contribute to the total Josephson current, as shown in figure 2.3 for the case
∆ = Γ and εd = 2Γ. Quite surprisingly, the two contributions to J have different signs.
Also, the current carried by the Andreev bound states is significantly more important
than the one carried by the continuum.

The phase dependence is roughly sinusoidal, J being 0 for ϕ = 0 and π. According
to equation (2.19), the system’s energy is just the ϕ-primitive of J , therefore being
approximately proportional to − cos(ϕ). The ground state of such a system is ϕ = 0,
which is why it is called a 0-junction. By contrast, a second type of system, whose ground
state is ϕ = π and which arises if the Coulomb interaction on the dot is important [14],
is called a π-junction. These two types of junction will be discussed in more detail in
section 2.3. The transition between the two ground states is called the 0− π transition.

The results concord with other work [7, 55]. Note that the total Josephson current
could also have been calculated using quantum field theory [14] or the scattering matrix
formalism [6]. Nonetheless, the use of Green’s functions has the striking advantage of
revealing the different contributions.
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Figure 2.4: Josephson current for ∆ = Γ, εd = 0. The black solid curve corresponds to
the total Josephson current J , the blue dashed curve is the Andreev states contribution
and the red dash-dotted curve is the continuum contribution.

The effect of the dot’s energy level can be estimated with equation (2.9). If the level is
high (i.e. |εd| � Γ), the denominator Det(iωn) is basically given by εd. In particular, the
cos(ϕ/2)-term is not very important. Thus, the current’s overall ϕ-dependence will be
more and more purely sinusoidal (due to the global sin(ϕ)-factor in (2.22)). Furthermore,
as the denominator increases, the critical current will decrease [6]. In other words, as
the dot is weakly coupled to the leads in this non-resonant case, Josephson’s result [47]
is recovered.

If on the other hand the dot is tuned into resonance, i.e. εd → 0, the amplitude of
the current will increase: the critical current becomes of the order of Γ while it is of the
order Γ2/εd outside the resonance. Also, the cos(ϕ/2)-term, now being important, will
cause the ϕ-dependence to not be purely sinusoidal. The extreme case of a resonant level
(i.e. εd = 0) is shown in figure 2.4. The total current J still has the two contributions
(Andreev states and continuum) of different signs; again, the bound states carry the most
important part of the Josephson current. The current’s global “shape” stays somewhat
familiar to a sinus and the junction still is a 0-junction. Nevertheless, the ϕ-dependence
is clearly not purely sinusoidal.

2.3 Weak tunneling limit in the interacting case

If the Coulomb interaction U on the dot is taken into account, the dot’s behavior changes
in general importantly. Obviously, the ground state of the dot will depend crucially on
the strength of U . If the Coulomb interaction is small compared to other energies in the
system, the dot should behave as described in section 2.2. In contrast, if the interaction
is strong, the total charge on the dot should be limited to 1 by the Coulomb blockade.
This opposes the induction of superconducting features (which are linked to the existence
of Cooper pairs).

Unfortunately, the presence of interactions precludes an exact, analytic solution to the
problem. Fairly often, a perturbative approach around the weak tunneling limit Γ → 0
is considered in this case [18, 56]. In the limit Γ→ 0, the Hamiltonian is decomposed as
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H0 = H̃0 + H̃1 (2.23)

with

H̃0 =
∑
i=L,R

Hi +HD + U n↑n↓ , (2.24)

H̃1 =
∑
i=L,R

HTi
,

such that H̃0 only contains atomic states.
The explicit calculation of the Josephson current J (here done following [56]) is similar to
the one in section 2.2.3. In particular, equation (2.19) remains valid. The perturbation
expansion for expectation values is given by

〈d†σc~k,σ,L〉 =
∞∑
n=0

1

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτn〈TτH̃1(τ1) · · · H̃1(τn)d†σ,1c~k,σ,L〉0̃

(where 〈·〉0̃ denotes an expectation value taken with respect to the eigenstates of H̃0).
The first terms of this expansion vanish:

• the zero order terms vanish because the H̃0 eigenstates have a fixed particle number
on the dot and because of the pairing in the electrodes,

• the first order terms vanish because there is no BCS-like pairing on the unperturbed
dot,

• the second order terms vanish again because of the defined particle number on the
dot and the Cooper pairing in the electrodes.

The first non-zero contributions are the third order terms in the tunneling amplitude t.
They involve 8 operators, 4 dot and 4 electrode, and correspond to the tunneling of a
Cooper pair from one side to the other.

In order to calculate the Josephson current, the discrete sums over lead states |~k, i〉 are
replaced by integrals over a constant and infinitely large density of states ρ0. Furthermore,
the expectation values involving the lead operators (which can be separated from the dot
operators’ expectation value) are calculated by Fourier transformation of Ĝ0

~ki~ki;12
(iωn) =

Ĝ0
~ki~ki;21

(iωn) (Ĝ0
i,j;αβ denotes the matrix element Ĝ0

i,j|α,β(iωn)). This yields

G0
~ki~ki;12

(τ) =
∆

2E~k

(
e−E~k|τ | − 2 cosh(E~k|τ |)nF (E~k)

)
T→0 K−→ ∆

2E~k

(
e−E~k|τ | − e−E~k(β−|τ |)) ,

where the quasiparticle energy in the leads has been written as E~k =
√
ε~k

2 + ∆2 and as-
sumed to be identical for both leads. As the Coulomb interaction on the dot is taken into
account, Wick’s theorem can not be applied to evaluate the 〈Tτd†↓,1(τ1)d†↑,1(τ2)d↓,1(τ3)d↑,1(0)〉0-
type terms. Instead, Lehmann representation needs to be used.
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Figure 2.5: Critical Josephson current Jc as a function of the dot’s energy level εd in the
limit U →∞ and small Γ.

For the sake of simplicity, only the limit U → ∞ and temperature T → 0 K shall be
analyzed. Nonetheless, the results can easily be generalized to finite Coulomb interaction
[56]. For U → ∞, the dot is either empty (if its energy level εd is positive) or singly
occupied (if εd < 0). In the following, the empty state is noted |0〉, its energy is set to be
0, the spin σ state is referred to as |σ〉 and its energy is given by εd. Due to the strong
Coulomb interaction, the dot can not access the doubly occupied state. The Josephson
current is

J = Jc sin(ϕ) (2.25)

with

Jc =
−eΓ2∆2

π2

∫ ∞
∆

dE√
E2 −∆2

∫ ∞
∆

dE ′√
E ′2 −∆2

(2.26)

× 2e−βεd

1 + 2e−βεd

(
1

(E + E ′)(E − εd)(E ′ − εd)
− eβεd

(E + E ′)(E + εd)(E ′ + εd)

)
.

Equation (2.25) concords with reference [56]. Figure 2.5 shows the critical current
calculated using equation (2.25). If εd < 0, the ground state is a singly occupied dot
(double occupation is precluded by U → ∞). The critical current being negative, the
free energy F = 1

2e

∫
dϕJ = −Jc

2e
cosϕ + const. is minimized for ϕ = π. The system is

therefore called a π-junction. If εd > 0, the ground state is an empty dot. Furthermore,
as Jc > 0, F is now minimized for ϕ = 0, i.e. for a 0-junction. Finally, the two shoulders
of Jc around the Fermi level have a height ratio of 2.

The εd-dependence of Jc has been interpreted intuitively by Spivak and Kivelson [57].
For εd > 0, a Cooper pair can be transfered directly from one electrode to the other. If
on the other hand the dot is singly occupied, it can be shown that every possible transfer
process of a Cooper pair yields a minus sign due to the interchange of two electrons. This
minus sign corresponds to a phase shift of π. Therefore, the most natural phase difference
is 0 for εd > 0 and π for εd < 0. Figure 2.6 illustrates different transfer processes. The
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step interchanging two electrons is black-boxed. The π-junction behavior has been noted
in several papers (e.g. [7, 13, 14, 50, 54, 56–58]).

The ratio 2 between the two shoulders is linked to the fact that there are twice as
many transfer processes for an empty dot as for a singly occupied one (for U →∞): if the
dot is empty, the system can choose the order in which the two electrons are transferred.
The presence of an electron (and thus a defined spin) and Coulomb interaction on the
dot revokes this spin degeneracy [59].

(a) 0-junction (b) π-junction

Figure 2.6: Generic tunnel processes of a Cooper pair in a 0−π junction (the boxed step
involves the interchange of 2 electrons).

As an example for the numerous experimental evidences for the 0 − π transition,
figure 2.7 shows the absolute value of the critical current. The results fit very well to
the theoretical curve derived above, compare for instance the rightmost part of the curve
to the absolute value of figure 2.5. Because the sample does not have infinite Coulomb
interaction and more than one electronic level, several 0− π transitions are observed.

Figure 2.7: Experimental evidence for the 0 − π transition in a carbon nanotube (data
by Jørgensen et al. [50]). The experimental data fits very well to the theoretical curve
in Fig. 2.5.



Chapter 3

Self-consistent description of the
Andreev bound states

3.1 Motivation

As mentioned in the introduction, the Andreev bound states play an important role
for the behavior of a quantum dot coupled to superconducting leads. Indeed, section
2.2.2 suggests that the Andreev bound states may carry an important spectral weight.
Detailed numerical studies by Bauer et al. [8] substantiate that especially in the 0-phase,
the bound states can even carry the biggest part of the total spectral weight.

It is therefore not surprising that the largest contribution to the supercurrent through
the quantum dot is also carried by the Andreev bound states, as has been shown in section
2.2.3 as well as in other works (see for example references [7, 55]).

A physical understanding of the ABS requires to characterize how these states are
connected to the atomic or molecular levels of the uncoupled quantum dot, and to describe
quantitatively their evolution as a function of several parameters, such as gate voltage,
Coulomb interaction, tunnel couplings, and superconducting gap.

However, an exact theoretical description of a quantum dot coupled to superconduct-
ing leads is only possible when the Coulomb interaction is fully neglected. Hence, the
interacting single dot system, as described by the Anderson model with superconducting
electrodes, has been so far analyzed by treating the Coulomb interaction with various an-
alytical schemes, such as the mean field theory [14–16], the perturbation expansion in the
Coulomb interaction [17] or in the tunnel coupling [18]. Non-perturbative calculations like
the Non-Crossing Approximation (NCA) [19, 20], but also numerical simulations based
on the numerical renormalization group (NRG) [8, 21–25], the functional renormalization
group (FRG) (see [24] and references therein), and Quantum Monte Carlo [26, 27] have
been developed.

None of the analytical approaches mentioned above is able to describe entirely the
physics of a quantum dot coupled to superconducting leads. Whereas lowest order pertur-
bation expansions in the tunnel coupling will hardly capture the proximity effect induced
by the electrodes [60], mean field and weak-interaction approaches will miss the Kondo
effect. NRG calculations on the other hand can capture the physics of such a system over
a wide range of parameters, but are numerically demanding and not easily portable to
more complex molecular systems. More importantly, in the view of describing the ABS
alone, none of these techniques provides a simple physical picture. Henceforth we will

19
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develop a new perturbative approach based on an effective local Hamiltonian for dressed
ABS, that extends the limit of large superconducting gap proposed previously [44, 61]
and used by many authors [8, 43, 45, 46, 62–64]. This approach will illuminate the na-
ture of the ABS in interacting quantum dots, as well as provide a simple and accurate
analytical framework in cases where the gap is not smaller than the Kondo temperature,
that may be useful for interpreting future spectroscopic experiments. In addition, our
formalism, which incorporates the atomic or molecular levels from the outset, should
easily be extended to describe more complex systems, as for instance superconducting
double quantum dots or molecules with more complicated orbital structure (see e.g. Refs.
[28–31] and section 3.7).

3.2 The effective local Hamiltonian

As discussed in section 2.1, the total Hamiltonian

H =
∑
i=L,R

Hi +HD +
∑
i=L,R

HTi
+ U n↑n↓ (3.1)

is not exactly solvable due to the quartic term in the Coulomb interaction. Therefore,
some approximations must be made and a perturbation theory will be set up.

Among the physical ingredients that will be included in a non-perturbative way is the
local pairing on the dot that is crucial for the evolution of the Andreev bound states.
Furthermore, the Coulomb interaction shall be taken into account in an exact manner in
order to describe the atomic states reliably, and to highlight how these are adiabatically
connected to the Andreev bound states. However, the usual expansion in a weak tunnel
coupling t around the atomic limit [18] is not sufficient to describe the proximity effect
at lowest order. Therefore, we shall consider in what follows an expansion around a
superconducting atomic limit.

This simple solvable limiting case of the model (3.1) is often referred to as the limit of
large gap ∆→∞, and has been discussed previously [8, 44–46]. Expansions for finite gaps
∆ have however not been discussed to our knowledge, and are the topic of this chapter. We
emphasize from the outset (see equation (3.3) below), that the superconducting atomic
limit as used normally in the literature corresponds to the limit D → ∞ (i.e. infinite
electronic bandwidth), taken before ∆ → ∞. As will be demonstrated, the order of
the two limits is crucial: if the limit ∆ → ∞ was to be taken first, the dot would be
completely decoupled from the leads and the proximity effect would be lost, so that the
limit of infinite gap would reduce to the usual atomic limit.

In this section, it will be shown that the superconducting atomic limit should rather
be interpreted as a low frequency expansion, i.e. a limit where the gap is much larger
than the characteristic frequencies of the dot. During the derivation of an effective local
Hamiltonian, the Coulomb interaction U will at first be omitted for the sake of clarity.
Note that in the end, U will simply give an extra contribution that adds to the effective
Hamiltonian.

Because the physics of the system are entirely described by it’s Green’s function, it is
sufficient to derive the effective local Hamiltonian by working the dot’s Green’s function.
As shown in section 2.2.1, the latter is given (in the imaginary time formalism and in
Nambu notation) by
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Ĝ0
d,d
−1(iωn) = iωn1− Ĥd −

∑
~k,i

ĤTi
Ĝ0
~ki,~ki

(iωn)Ĥ†Ti . (3.2)

In Eq. (3.2), ωn is a fermionic Matsubara frequency and Ĝ0
~ki,~ki

(iωn) the bare Green’s

function of electrons with a wave vector ~k in the lead i. As the Coulomb interaction
(disregarded for the moment) only enters the dot’s Hamiltonian, the latter is still given
by equation (2.21). Transforming the sum over wave vectors ~k into an integral over
energies yields

∑
~k

Ĝ0
~ki,~ki

(iωn) = 2ρ0

∫ D

0

dε
1

ωn2 + ε2 + ∆2

(
−iωn − ε ∆

∆ −iωn + ε

)

= 2ρ0 arctan

(
D√

ωn2 + ∆2

)
1√

ωn2 + ∆2

(
−iωn ∆

∆ −iωn

)
. (3.3)

Note that the Green’s function (3.3) depends on the finite bandwidthD. As mentioned
in the outset of this section, the limit ∆→∞ should only be taken after a limit D →∞
for the proximity effect to survive. In what follows, both D and ∆ will be kept finite,
and a low frequency limit ωn � ∆ will be taken rather than the limit D →∞, ∆→∞
used in the literature [8, 44–46]. We emphasize that this way, the limit of large gap is
extended to finite bandwidths D.

In the low frequency limit, the Green’s function (3.3) becomes∑
~k

Ĝ0
~ki,~ki

(iωn) = 2ρ0 arctan

(
D

∆

)(
0 1
1 0

)
. (3.4)

Plugging Eq. (3.4) into the Green’s function Ĝ0
d,d
−1(iωn) leads to the same result as would

have been obtained with the effective local Hamiltonian

H0
eff =

∑
σ

εd d
†
σdσ −

(
Γϕ e

i
ϕL+ϕR

2 d†↑d
†
↓ + h.c.

)
, (3.5)

where the local pairing amplitude induced by the leads on the dot

Γϕ = Γ
2

π
arctan

(
D

∆

)
cos
(ϕ

2

)
(3.6)

explicitly depends on the ratio D/∆. By an appropriate gauge transformation for the
operators dσ, it is always possible to choose Γϕ e

i
ϕL+ϕR

2 = |Γϕ|, as shall be done from now
on.

The complete local effective Hamiltonian is obtained when the Coulomb interaction
is taken into account again. Defining ξd = εd + U

2
, the energy level of the dot is shifted

such that the Hamiltonian clearly exhibits particle-hole symmetry for ξd = 0. Omitting
an irrelevant global energy shift of −U

2
the final Hamiltonian reads

Heff =
∑
σ

ξd d
†
σdσ − |Γϕ|

(
d†↑d
†
↓ + h.c.

)
+
U

2

(∑
σ

d†σdσ − 1

)2

. (3.7)
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(a) General situation. (b) Low frequency limit.

Figure 3.1: In the low frequency limit, the quasiparticle excitations are far in energy and
the coupling of the quantum dot to the latter vanishes.

The physical interpretation of this effective local Hamiltonian is simple. For finite
gap, the quantum dot is coupled to both the Cooper pairs and the quasiparticles in the
leads. The Cooper pairs, which lie at the Fermi level, are responsible for the proximity
effect. The quasiparticles give rise to conduction electrons excitations with energies higher
than the gap ∆. In the limit ωn � ∆, the quasiparticles are far in energy and the
coupling between them and the dot vanishes, which greatly simplifies the physics and
makes an exact solution possible. Yet, as the dot is still coupled to the Cooper pairs at
the Fermi level, the proximity effect survives with a local pairing term proportional to
the hybridization Γ between dot and leads. Figure 3.1 illustrates how the coupling to the
quasiparticle continuum vanishes in the low frequency limit.

3.3 Spectrum of the effective local Hamiltonian

The Hilbert space associated with the quantum dot system is spanned by
{|0〉, | ↑〉, | ↓〉, | ↑↓〉}. However, these four states are not an eigenbasis of the effective
local Hamiltonian (3.7). The latter has the structure of a standard BCS Hamiltonian
with |Γϕ| as an effective gap. As furthermore the Coulomb interaction simply yields an
extra energy shift of U/2 for both empty and doubly occupied dot, the eigenvectors and
eigenvalues of the effective local Hamiltonian (3.7) are readily obtained by a Bogoliubov
transformation (see appendix D and [8]), in perfect analogy with solution of the BCS
Hamiltonian. The eigenstates of Heff are thus the singly occupied spin 1/2 states

| ↑〉 and | ↓〉 (3.8)

with energies E0
↑ = E0

↓ = ξd, and two BCS-like states given by

|+〉 = u| ↑↓〉+ v|0〉
|−〉 = −v| ↑↓〉+ u|0〉 (3.9)
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with u2 = 1
2

(
1 + ξd√

ξd
2+Γϕ2

)
and v2 = 1

2

(
1− ξd√

ξd
2+Γϕ2

)
. The energies corresponding

to the BCS-like states read

E0
± =

U

2
±
√
ξd

2 + Γϕ
2 + ξd . (3.10)

These results are identical to considerations in reference [8].

Figure 3.2: Phase diagram of a simple dot with Coulomb interaction U , energy level
ξd and hybridization Γ to superconducting electrodes in the effective local limit. The
transition line corresponds to E0

σ = E0
−.

As E0
+ is always larger than E0

−, the effective local Hamiltonian has two possible
ground states: the low energy BCS-like state |−〉 or the degenerate spin 1/2 doublet
{| ↑〉, | ↓〉}. In the |−〉 state, the energy is minimized for ϕ = 0. Thus, the spin singlet
phase corresponds to a 0-junction (a result well known from the weak coupling limit [18]).
The transition between the singlet phase and the spin-1

2
-doublet takes place at

ξd
2 + Γϕ

2 =
U2

4
.

Figure 3.2 shows the corresponding phase diagram for variable ξd, Γ and U . In the case of
small Coulomb interaction U and strong hybridization Γ, the system will be in a BCS-like
state. This is due to the pairing energy induced by the proximity effect. On the contrary,
strong Coulomb interaction opposes the BCS-like state (which is the superposition of the
empty dot and the doubly occupied one and therefore affected by Coulomb repulsion).
The transition from the BCS-like phase to the singly occupied one thus results in the
large gap limit from a competition between the local pairing (induced by the proximity
effect and characterized by the hybridization Γ) and the Coulomb interaction.

3.4 Andreev bound states
As outlined in the introduction, the coupling to superconducting leads induces a gap in
the spectral function of the dot, inside which discrete Andreev bound states can form.
As a result, the spectral function of the dot shows sharp peaks, which could be measured
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by STM or microwave experiments as proposed recently in references [10, 43]. Noise
measurements have been suggested in reference [12]. The peaks in the spectral function
indicate addition energies at which an electron may enter (or leave) the dot, and corre-
spond thus to transitions between states with n and n ± 1 electrons. Hence, the ABS
peaks in the spectral function may be interpreted as transitions between the supercon-
ducting atomic levels of the dot {|σ〉, |+〉, |−〉}, possibly renormalized by single-particle
tunneling events neglected in Heff (to be included in the next section).

Because the gap is taken to be bigger than the characteristic energy scales of the dot,
these transitions will indeed result in discrete sub-gap peaks. Furthermore, transitions
from a spin 1/2 doublet to a spin singlet necessarily involve an electron exchange between
the dot and the superconducting leads. As the states |−〉 and |+〉 correspond to the
superposition of an empty and doubly occupied dot, this electron exchange is in fact a
coherent addition of an electron and a hole and the final singlet states can be understood
within the Andreev reflection picture.

Putting everything together, the effective local Hamiltonian in Eq. (3.7) describes the
energies of the Andreev bound states as transition energies from the spin 1/2 doublet to
the spin singlet states [8, 45]. There are thus four Andreev bound states in the large gap
limit for the model (3.1), with energy ±a0 and ±b0 which read

a0 = E0
− − E0

σ =
U

2
−
√
ξd

2 + Γϕ
2 , (3.11)

b0 = E0
+ − E0

σ =
U

2
+
√
ξd

2 + Γϕ
2 . (3.12)

The 0/π transition corresponds to the crossing of the |−〉 and |σ〉 states, which occurs
for a0 = 0.

3.5 Incorporating fluctuations: perturbation expansion
around the effective local Hamiltonian

3.5.1 Preliminaries

The effective Hamiltonian (3.7) is not sufficient to obtain satisfying results for all regimes
of parameters. First, Heff only describes the 0 − π transition due to the competition
between a local moment state (stabilized by the Coulomb blockade) and a spin singlet
(induced by the proximity effect). However, if the Coulomb interaction is strong (i.e. U �
Γ, |ξd| and below the Kondo temperature), the local moment can be screened by the
Kondo effect, which will compete with the superconducting gap for the 0− π transition.
Consequently, a typical scaling in the ratio of the Kondo temperature to the gap ∆ will
appear. Also, the Josephson current in the π-phase identically vanishes from Heff , as
the spin doublet does not disperse with the superconducting phase difference. This is a
limitation of the large gap limit, as can be inferred e.g. from experiments and the low
hybridization limit (see section 2.3 and refs. [13, 50]). On a more quantitative basis, the
experimental gap ∆ is usually of the order of a few kelvins, which is also the typical scale
for both Γ and U in carbon nanotube quantum dot devices.

In order to extend the description of the quantum dot’s physics, energy corrections
shall be calculated with a perturbation theory around the effective Hamiltonian (3.7).
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Once these corrections have been obtained, physical observables like the Josephson cur-
rent may be computed via the free energy F = − 1

β
ln(Z), with β the inverse temperature.

Therefore, it is most convenient to work in an action based description, which directly
yields the partition function Z.

The action corresponding to the total Hamiltonian (3.1) is derived following the lines
of reference [14]. At first, we integrate over the fermions in the leads. Omitting the
resulting irrelevant constant, the partition function reads

Z =

∫
D(Ψd,Ψd)e

−Sdot with (3.13)

Sdot =
∑
~k,i,ωn

Ψd,nĤTi
Ĝ0
~ki,~ki

(iωn)Ĥ†TiΨd,n +
∑
ωn

Ψd,n

(
−iωn + εd 0

0 −iωn − εd

)
Ψd,n

+

∫ β

0

dτ Ud↑(τ)d↓(τ)d↓(τ)d↑(τ) (3.14)

(the derivation of the latter can be found in appendix F).
The perturbation consists of the terms in Eq. (3.13) that are not contained in the

action Seff corresponding to the effective local Hamiltonian, i.e. the low frequency limit
of the total action (3.14). This yields

Seff =

∫ β

0

dτ

(∑
σ

dσ(τ)(
∂

∂τ
+ εd)dσ(τ)− |Γϕ|d↑(τ)d↓(τ)− |Γϕ|d↓(τ)d↑(τ)

+Ud↑(τ)d↓(τ)d↓(τ)d↑(τ)

)
, (3.15)

Spert =

∫ β

0

dτ

∫ β

0

dτ ′
∑
~k,i

Ψd(τ)ĤTi
Ĝ0
~ki,~ki

(τ − τ ′)Ĥ†TiΨd(τ
′)

+

∫ β

0

dτ
(
|Γϕ|d↑(τ)d↓(τ) + |Γϕ|d↓(τ)d↑(τ)

)
. (3.16)

Note that Seff contains the local pairing term derived in section 3.2. The proximity effect
is thus treated non-perturbatively (just like the Coulomb interaction), which is the crucial
ingredient of our analytic approach. The perturbation Spert simply corresponds to the
tunnel coupling between the dot and the electrodes other than the lowest order proximity
effect.

3.5.2 The corrections of the energy levels

Now that the effective local Hamiltonian and its perturbation have been transposed into
the quantum field theory language, one may readily derive the action’s perturbation
expansion to be

Z =

∫
D(Ψ,Ψ)e−Seff−Spert ≈

∫
D(Ψ,Ψ)e−Seff

(
1− Spert +

1

2
SpertSpert + . . .

)
. (3.17)
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Observables like the Josephson current may then be computed according to

J = 2e
∂F

∂ϕ
= −2e

β

1

Z

∂Z

∂ϕ
(3.18)

=
2e

β

∫
D(Ψ,Ψ)e−Seff

(
1− Spert + 1

2
SpertSpert + . . .

) (
∂Seff

∂ϕ
+ ∂Spert

∂ϕ

)
∫
D(Ψ,Ψ)e−Seff

(
1− Spert + 1

2
SpertSpert + . . .

) .

To the first order,

Z ≈ Zeff −
∫
D(Ψ,Ψ)e−SeffSpert (3.19)

with Zeff =
∫
D(Ψ,Ψ)e−Seff . The explicit evaluation of these integrals is done in the

standard operator formalism. The passage into this formalism

• replaces the Grassmann fields by the corresponding operators,

• replaces the
∫
e−Seff (·) by Zeff〈(·)〉0 (the subscript 0 indicating the evaluation of the

expectation value in the effective local limit),

• introduces time-ordering.

The partition function takes the intermediate form

Z = Zeff − Zefft
2β
∑
~k,i

∫
dτ
(
G0
~ki~ki;11

(τ)〈Tτd†↑(τ)d↑(0)〉0 −G0
~ki~ki;12

(τ)eiϕi〈Tτd†↑(τ)d†↓(0)〉0

−G0
~ki~ki;21

(τ)e−iϕi〈Tτd↓(τ)d↑(0)〉0 +G0
~ki~ki;22

(τ)〈Tτd↓(τ)d†↓(0)〉0
)

(3.20)

−2β|Γϕ|
(
〈Tτd†↑(0)d†↑(0)〉0 + 〈Tτd↓(τ)d↑(0)〉0

)
.

The actual energy corrections are found by identification with

Z =
∑
σ

e−βEσ + e−βE+ + e−βE− , (3.21)

where the renormalized superconducting atomic levels Eσ = E0
σ+δEσ and E± = E0

±+δE±
are obtained from

e−βEσ ≈ e−βE
0
σ (1− βδEσ) , (3.22)

e−βE± ≈ e−βE
0
± (1− βδE±) . (3.23)

Because the Coulomb interaction is taken into account, Wick’s theorem cannot be used
to calculate Z. Instead, expectation values are calculated via Lehmann representation.
Explicit calculations may be found in appendix G. In the zero temperature limit β →∞,
the energy corrections are
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δEσ = −t2
∑
~k

(
1

E~k + (E0
+ − E0

σ)
+

1

E~k + (E0
− − E0

σ)

+
2∆

E~k
uv
∣∣∣cos(

ϕ

2
)
∣∣∣ ( 1

E~k + (E0
+ − E0

σ)
− 1

E~k + (E0
− − E0

σ)

))
, (3.24)

δE+ = −t2
∑
~k,σ

(
1

E~k − (E0
+ − E0

σ)
− 2∆

E~k
uv
∣∣∣cos(

ϕ

2
)
∣∣∣ 1

E~k − (E0
+ − E0

σ)

)
− 2|Γϕ|uv

, (3.25)

δE− = −t2
∑
~k,σ

(
1

E~k − (E0
− − E0

σ)
+

2∆

E~k
uv
∣∣∣cos(

ϕ

2
)
∣∣∣ 1

E~k − (E0
− − E0

σ)

)
+ 2|Γϕ|uv ,

(3.26)

with the quasiparticle energy E~k =
√
ε~k

2 + ∆2.

3.5.3 Self-consistent renormalization of the energies

Eqs. (3.24)-(3.26) yield the first order corrections to the energy levels, so that the bound
states energies are simply shifted by δa = δE− − δEσ and δb = δE+ − δEσ with

δa = −Γ

π

∫ D

0

dε

(
2

E − a0

− 1

E + b0

− 1

E + a0

+
∆

E
uv
∣∣∣cos

(ϕ
2

)∣∣∣ ( 2

E − a0

− 1

E + b0

+
1

E + a0

))
(3.27)

+ 2|Γϕ|uv

and

δb = −Γ

π

∫ D

0

dε

(
2

E − b0

− 1

E + b0

− 1

E + a0

+
∆

E
uv
∣∣∣cos

(ϕ
2

)∣∣∣ ( −2

E − b0

− 1

E + b0

+
1

E + a0

))
(3.28)

− 2|Γϕ|uv

(with a0, b0 as defined in Eqs. 3.11 and 3.12 and E =
√
ε2 + ∆2).

Nevertheless, these expressions are only valid in the perturbative regime, i.e. as long
as ∆� U,Γ, ξd. They diverge logarithmically when the bound states energies a0 and b0

approach the gap edge, and are therefore only reliable if e.g. a0 � Γ log[(D+∆)/(∆−a0)].
In the limit of large gap ∆ � a0, the above corrections to a0 are thus of the order

Γa0/∆, so that Γ/∆ is indeed the small dimensionless parameter controlling the pertur-
bation expansion. However, the peculiar logarithmic dependence of the Andreev bound
state energy renormalizations shows that doing a straightforward 1/∆ expansion around



28 CHAPTER 3. SELF-CONSISTENT DESCRIPTION OF THE ABS

Figure 3.3: Diagrammatic illustration of the resummation achieved by the self-consistency
condition, that “plugs the correction into the correction”.

the effective local Hamiltonian will be rapidly uncontrolled, and will have a hard time re-
producing the logarithmic singularities at ∆ close to a0. For this reason, and also because
the very large gap limit becomes trivial for a finite electronic bandwidth (as discussed in
section 3.2), it was indeed more appropriate to single out all terms in the total action that
correspond to the effective local Hamiltonian, and to perform the perturbation expansion
around these (see equations (3.15) and (3.16)).

Because our lowest-order expansion obviously still breaks down when the gap becomes
comparable to the bound state energy, one would naturally seek to resum the leading
logarithmic divergences in equations (3.24)-(3.26). Indeed, the renormalization group
(RG) framework allows to extend the regime of validity greatly.

The idea behind the renormalization group is that a small change of the physically
interesting scales (in the present case the energy gap ∆) will not change the physics of the
system dramatically. In fact, the “new” system can be described similarly to the old one
by simply renormalizing its parameters (e.g. energy levels, coupling strengths, etc.). This
renormalization is also called the “flow” of the parameters. It has been shown by works of
Wilson [65] and others that this is equivalent to summing up the most important terms
of the perturbation expansion to infinite order. In the present case, the renormalization
group allows to sum up the logarithmically divergent contributions to δa and δb. This
gives access to a regime where ∆ is not the largest energy scale anymore.

In a standard RG approach, one would calculate the modified energies for a slightly
lowered gap ∆. These renormalized energy levels would then be used to perform another
perturbation expansion and to calculate another energy correction and so on. Instead
of such a classical renormalization group approach, we will derive self-consistent equa-
tion inspired by Brillouin-Wigner perturbation theory [66]. Similarly to a standard RG
procedure, the latter resums the logarithmic divergences by plugging the renormalized
energies into the energy corrections. As illustrated in figure 3.3, diagrams with the first
order correction plugged into the first order correction are summed up to infinite order.

In order to derive the self-consistency condition, one must thus identify the logarith-
mically divergent contributions to δa and δb, here given by the terms 2/(E − a0) and
2/(E − b0). They are regularized by using the renormalized energies, which yields

δa = −Γ

π

∫ D

0

dε

(
2

E − a(∆)
− 1

E + b0

− 1

E + a0

+
∆

E
uv
∣∣∣cos

(ϕ
2

)∣∣∣ ( 2

E − a(∆)
− 1

E + b0

+
1

E + a0

))
(3.29)

+ 2|Γϕ|uv
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Figure 3.4: Phase diagram of a simple dot with Coulomb interaction U , tunnel coupling
Γ to superconducting electrodes with gap ∆ for ϕ = 0 and πΓ = 0.2D. The symbols
indicate NRG data from Ref. [8] and the various lines our results.

and

δb = −Γ

π

∫ D

0

dε

(
2

E − b(∆)
− 1

E + b0

− 1

E + a0

+
∆

E
uv
∣∣∣cos

(ϕ
2

)∣∣∣ ( −2

E − b(∆)
− 1

E + b0

+
1

E + a0

))
(3.30)

− 2|Γϕ|uv ,

where a(∆) = a0 + δa, b(∆) = b0 + δb and again E =
√
ε2 + ∆2. Note that terms like

1/(E+a0) have no self-consistency because there are no associated divergences. Eq. (3.29)
and (3.30) now clearly hold as long as the renormalized energies a(∆) and b(∆) are not
too close to the gap edge, ±∆ respectively.

3.6 Results

3.6.1 Phase diagram for the single dot with Coulomb interaction

We start by discussing the 0 − π transition line, by comparison to the numerical renor-
malization group (NRG) data by Bauer et al. [8]. This transition, being nothing but
the crossing of the states |−〉 and |σ〉, also corresponds to the crossing of the low energy
Andreev bound state and the Fermi level, i.e. a(∆) = E−(∆)− Eσ(∆) = 0.

Fig. 3.4 shows the extension of the phase diagram to finite values of the gap ∆. As a
general rule, the global shape of the phase diagram remains fairly similar to the large gap
case shown in figure 3.2 and discussed in section 3.3. Nevertheless, the phase diagram
now depends on the ratio of gap and hybridization. If this ratio ∆/(πΓ) decreases, i.e.
the energy scale Γ associated with the dot-electrode-hybridization increases, the pairing
induced by the coupling to the electrodes becomes stronger and the BCS-like phase
extends.

Even though our perturbative approach is fairly simple, the results reproduce nicely
the NRG data of Refs. [8] and [24]. The analytically obtained phase diagram is indeed
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Figure 3.5: Transition line between the spin 1/2 doublet and the BCS-like state at particle
hole symmetry ξd = 0 (solid curve) for ϕ = 0 and πΓ = 0.2D. The vertical dotted line
corresponds to the transition asymptote in the effective local limit at ∆→∞. The dots
indicate NRG data from Ref. [8] and the solid line our result. The inset displays the same
data on a logarithmic scale.

identical to the NRG data for ∆ & Γ.

3.6.2 Kondo physics

For smaller ∆/Γ, the Kondo effect sets in, but the transition lines remain quantitatively
correct for ξd near ±U/2, with increasing deviations from the NRG calculations close to
the particle-hole symmetric point ξd = 0 at large Coulomb interaction U. In this regime,
the 0-phase possesses a Kondo singlet ground state. As the leads are superconductors,
the formation of a Kondo resonance involves the breaking of Cooper pairs. Therefore,
the transition is now due to the competition between TK and the superconducting gap
∆, and should occur at kB TK ∝ ∆.

Fig. 3.5 shows a plot of the transition line for ξd = 0 as obtained with Eq. (3.29) (solid
curve). The vertical, dotted line depicts the asymptote in the effective local limit. The
symbols again correspond to NRG data [8]. For the particle hole symmetric case ξd = 0,
the Kondo temperature is given by

TK = 0.182U

√
8Γ

πU
e−

πU
8Γ (3.31)

(see for example Ref. [8]). The inset shows on a log-log scale that our approach captures
an exponential decay of the transition line with the Coulomb interaction. Nonetheless,
the suppression of the BCS-like phase appears quantitatively stronger than expected: a
factor 4 instead of 8 is found in the exponential factor of TK . The reason for this is
that the vertex renormalizations have not been taken into account, as discussed in the
context of U-NCA [67]. Far away from the particle-hole symmetric limit, our results
for the Kondo temperature reproduce the lowest-order scaling theory for the infinite-U
Anderson model [59], and are in relatively good agreement with NRG data for all ∆/Γ
values.
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3.6.3 Energy renormalizations at particle hole symmetry (ξd = 0)

While Fig. 3.4 only indicates the transition line between the spin 1/2 doublet and the
lowest BCS spin singlet, it is also instructive to look at the actual renormalization of
the energy levels while varying the gap ∆ from large values to smaller ones beyond the
critical point. Fig. 3.6 indicates the renormalized energies of the two Andreev bound
states (i.e. the difference between the spin 1/2 doublet and the two spin singlets energies)
for different hybridizations Γ. We note that our results are in quantitative agreement
with the NRG calculations of Yoshioka and Ohashi [23]. Several regions need to be
distinguished. If the gap ∆ is much larger than the bandwidth D, all curves collapse
at the value U/2 (left hand side of Fig. 3.6), since there is no hybridization with both
quasiparticles and Cooper pairs anymore, and one recovers the bare atomic levels. When
the gap starts to decrease, the proximity effect simply splits the two Andreev bound states
according to equations (3.11)-(3.12). When the gap becomes of the same order than the
typical energy scales of the dot a0 and b0, the superconducting atomic levels start to
mix with each other and the electrodes, so that the energies renormalize in a non trivial
way. The high energy Andreev bound states end up touching the gap edge for ∆ ≈ U/2,
so that half of the ABS are absorbed into the continuum above ∆, as can be seen in
Fig. 3.7. The lowest Andreev bound state follows however a downward renormalization,
until the Fermi level is crossed and the 0-state becomes the ground state. The difference
in behavior between the low and high energy bound states (the former being never allowed
to leave the superconducting gap) can be tracked into equations (3.29)-(3.30), where level
repulsion effects from the gap edge occur for the low energy level |−〉 but are canceled
for the high energy level |+〉, which is hence allowed to penetrate into the continuum.
These considerations unveil how the ABS may be adiabatically connected to the atomic
or molecular levels in a complicated fashion.

Again, our simple analytic approach reproduces the NRG results [23] over a vast
regime of parameters. Yet, some deviations are observed in the Kondo regime: we find
(for the highest hybridization πΓ = 0.005D) that the high energy BCS-like state is
not absorbed anymore into the continuum of states - an artifact of the limits of our
perturbative approach. Notice also that the energy corrections are too important if the
gap becomes very small, an effect actually due to our underestimation of the Kondo
temperature at particle-symmetry, as discussed previously. Finally Fig. 3.7 shows that,
in the limit of vanishing gap, our approach is only valid as long as a(∆) ≥ −∆ (as has
been mentioned in section 3.5.3), because the lowest bound state artificially escapes from
the gap.

The expected saturation of a(∆) near −∆ can be partly restored by adding a further
self-consistency for the term 1/(E + a0) in the equation (3.29) for δa and 1/(E + b0)
in the equation (3.30) for δb. Figure 3.8 shows the resulting curves, still for the same
parameters. The results fit qualitatively somewhat better, especially for πΓ = 0.005D
(green curves): the high energy Andreev bound state now escapes from the gap.

Nevertheless, the Kondo temperature is overestimated even more dramatically in the
case of two flows. Compared to section 3.6.2 where a factor 4 instead of 8 was found in
the exponential of TK (see equation (3.31)), we now even find a factor of 2 instead of 8.
This results in the clearly visible distortion of our curves to the right.

Strictly speaking, equations (3.29) and (3.30) will always have difficulties for small
gaps ∆, no matter if one uses one or two flows. First of all, this regime corresponds to
the limit of a perturbation expansion around a large gap limit. At the same time, it
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(a) Analytic results. (b) Superposition with NRG data.

Figure 3.6: Renormalization of the Andreev bound state energies as a function of TK/∆
(the Kondo temperature is given in the text). Figure (a) shows our analytic results. The
dashed curves correspond to the high energy bound state b(∆), the solid curves corre-
spond to a(∆). All curves have been calculated for U = 0.005D and ξd = 0, with several
hybridization values πΓ/D = 0.001, 0.002, 0.005 (from left to right). Quantitatively sim-
ilar results were obtained by the NRG in Ref. [23]. The superposition of the NRG data
and our results is given in figure (b), with Γ = Γ/D.

(a) Analytic results. (b) Superposition with NRG data.

Figure 3.7: Same data as in Fig. 3.6, but normalized by the gap. The numerical data is
again taken from Ref. [23] and Γ = Γ/D.
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(a) Analytic results. (b) Superposition with NRG data.

Figure 3.8: Renormalization of the Andreev bound state energies as a function of TK/∆
(the Kondo temperature is given in the text), calculated for 2 flows in equations (3.29) and
(3.30) (see text). Figure (a) shows our analytic results. The dashed curves correspond
to the high energy bound state b(∆), the solid curves correspond to a(∆). All curves
have been calculated for U = 0.005D and ξd = 0, with several hybridization values
πΓ/D = 0.001 (blue curves), 0.002 (red curves), 0.005 (green curves). The superposition
of the NRG data from Ref. [23] and our results is given in figure (b), with Γ = Γ/D.

corresponds also to the Kondo regime (that we cannot capture quantitatively due to the
missing vertex corrections). Finally, equations (3.29) and (3.30) describe a perturbation
theory around a limit with 4 Andreev bound states. Nevertheless, we found that the high
energy ABS escape from the gap for ∆ ≈ U/2.

It would thus be exaggerated to hope that our simple approach is able to describe the
very low gap regime. We therefore prefer to use only the one flow equations (3.29) and
(3.30) derived above, that describe the Kondo temperature better than their two-flow
correspondents.

3.6.4 Energy renormalizations outside particle hole symmetry
(ξd 6= 0)

From an experimental point of view, the position of the energy level of the quantum dot
is the most controllable parameter of the system (by a simple gate voltage). Therefore,
it is important to analyze the evolution of the Andreev bound states for different values
of ξd.

Fig. 3.9 illustrates how the energies of the bound states scale with ∆ for ξd 6= 0 and
can be favorably compared to the NRG data by Yoshioka and Ohashi [23]. The more
the particle-hole symmetry is broken, the more the low energy bound state moves away
from the gap edge, ensuring even better convergence of our expansion for a given value of
the hybridization Γ. Outside particle-hole symmetry, the dot either seeks to be as empty
as possible (for ξd > 0) or as occupied as possible (for ξd < 0). Thus, a BCS-like wave
function will be favored. As a consequence, the Kondo effect (that necessitates a singly
occupied dot) is less important. This corresponds to a regime where our approximation
scheme works at best.
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Figure 3.9: Renormalization of the Andreev bound state energies outside particle-hole
symmetry. The dotted curves correspond to the high energy bound state b(∆), the
solid curves correspond to a(∆). All curves have been calculated for U = 0.5D and
πΓ = 0.05D, with several level shifts ξd/U = 0.3, 0.375, 0.4, 0.425, 0.45.

Figure 3.10: Evolution of the Andreev bound state energies as a function of the dot’s
energy level for U = 0.005D and ∆ = U . The hybridization takes several values πΓ/D =
0.001, 0.002, 0.005.
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Further understanding can be gained by looking at the energies of the Andreev bound
states as a function of ξd in Fig. 3.10. We recover the fact that the high energy bound
states increase in energy by breaking particle-hole symmetry, whereas the low energy
bound state has a decreasing energy, which is already known from the analytic expressions
in the large gap limit. In addition, Fig. 3.10 shows that the dispersion of both ABS
weakens for increasing hybridization. Indeed, the more the dot is hybridized with the
leads, the less the Andreev bound state energy is sensitive to the bare values of the dot
parameters.

3.6.5 Superconducting correlations on the dot

In order to further analyze the evolution of the states in the dot as a function of the
different parameters, we investigate now the superconducting correlations 〈d†↑d

†
↓〉 on the

dot. For the effective local Hamiltonian, these correlations are zero in the spin doublet
phase. In the BCS-like phase, the correlations are maximal if the two states |0〉 and | ↑↓〉
are equivalent, i.e. at particle hole symmetry. If the dot level is far from ξd = 0, the wave
function will be predominantly |0〉 (if ξd is positive) or | ↑↓〉 (if ξd is negative). This kills
the superconducting correlations.

Within the self-consistent energy renormalization scheme derived above, the super-
conducting correlations can readily be obtained from the renormalized energies. For the
effective local limit Hamiltonian

Heff =
∑
σ

ξd d
†
σdσ − |Γϕ|

(
d†↑d
†
↓ + h.c.

)
+
U

2

(∑
σ

d†σdσ − 1

)2

,

the expectation value of the energy of the ground state at zero temperature is proportional
to

E0
GS = 〈Heff〉0 ∼ −|Γϕ| 〈d

†
↑d
†
↓ + d↓d↑〉0

(with the bare ground state energy E0
GS). Note the amplitudes u and v in the states |±〉

have been chosen to be real (see section 3.3). Equivalently, one might state the physical
argument that the superconducting correlations should be a real number in equilibrium.
This yields

E0
GS ∼ −2|Γϕ| 〈d†↑d

†
↓〉0.

In the effective local limit, the superconducting correlations can thus be computed by
simply deriving the ground state energy with respect to the hybridization. However, the
renormalized correlations cannot be calculated by such a simple derivation of the total
energy with respect to the hybridization, because the latter also enters several terms of
the energy corrections. One thus has to artificially add a hybridization γ only in the
effective local limit Hamiltonian that will tend to zero in the end of the calculation,

E0
GS ∼ lim

γ→0
−2(|Γϕ|+ γ) 〈d†↑d

†
↓〉0.

Then, superconducting correlations can be written as

〈d†↑d
†
↓〉 = lim

γ→0
−1

2

dE0
GS

dγ
. (3.32)
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Figure 3.11: Superconducting correlations as a function of the gap ∆ (for D = 200U and
ξd = 0).

For finite gaps ∆, the correlations can analogously be computed via

〈d†↑d
†
↓〉 = lim

γ→0
−1

2

dEGS
dγ

. (3.33)

In equation (3.33), EGS denotes the renormalized energy of the respective ground state
(i.e. spin doublet or low energy BCS-like state).

As the gap decreases from infinity, the (formerly) singly occupied state will start
having a BCS-like admixture and therefore a non zero superconducting correlation. In
contrast, the mixing will result in a decreased correlation in the BCS-like phase. Nev-
ertheless, if the gap tends to zero, one would expect the correlations to vanish as well.
This is indeed what Fig. 3.11 shows. For large gaps, the dot is in the spin 1/2 phase;
the correlations are small, but increase as the states mix. The transition to the BCS-like
phase results in a discontinuous jump in the correlations, before they finally vanish for
very small gaps. It can thus be concluded that the correlations should be normalized by
the gap if one is interested in measuring only the mixing effect. Finally, the two different
curves show how the hybridization stabilizes the BCS-like state with respect to the spin
doublet.

As the Coulomb interaction opposes the formation of a Cooper pair wave function, the
transition between the BCS-like phase and the spin doublet can also be achieved if the
Coulomb interaction is tuned, as shown in Fig. 3.12. The effect of the mixing is clearly
visible by an increase of the correlation 〈d†↑d

†
↓〉 (now normalized by the gap) while U is

lowered. We also find that the correlations relative to the gap decrease for higher gaps,
which is a simple saturation effect (the highest possible correlations are 〈d†↑d

†
↓〉 = 0.5).

Furthermore, our results match reasonably the NRG data from Ref. [8], the mismatch
originating probably from the low value of the gap used in this calculation. We also
recover the fact that for a given value of the hybridization, a higher gap reduces the
proximity effect (see section 3.6.3).

Finally, we analyze how the correlations evolve outside particle hole symmetry. As
mentioned above, one expects the correlations to decrease because the dot evolves from
a superconducting atomic limit toward the usual atomic limit (i.e. from the states |±〉
toward the states |0〉 and | ↑↓〉). On the other hand, there will be a transition from the spin
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Figure 3.12: Superconducting correlations as a function of the Coulomb interaction U
(for πΓ = 0.2D and ξd = 0). The diamonds correspond to NRG data from Ref. [8].

Figure 3.13: Superconducting correlations outside particle hole symmetry (for πΓ =
0.2D, U = 6 Γ and ∆ = 0.1D).

doublet to the singlet phase and therefore a mixing effect. Fig. 3.13 shows the competition
between the mixing effect (that increases the correlations outside particle hole symmetry)
and the evolution toward the normal atomic limit (that lowers the correlations) if ξd is
increased. The effect of the Coulomb interaction is once more found to favor the single
occupancy.

3.6.6 Josephson current

We now turn to the Josephson current through the quantum dot. The latter is given by
J = 2edF/dϕ (where F is the free energy). At zero temperature, the free energy is the
same than the level energies, so that the Josephson current can readily be obtained once
the renormalized energy levels have been calculated.

Nevertheless, our analytical approach only describes the effective local limit atomic
states, and we can therefore only determine the current through the Andreev bound
states. Yet, it is known that the Josephson current also contains a contribution of the
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Figure 3.14: Josephson current through the bound states for U = 3 Γ, ∆ = 0.1D.

continuum of states (see for example Ref. [7] or section 2.2.3). The latter can be of the
same order and opposite sign as the bound state contribution. Furthermore, Bauer et
al. [8] have shown that the spectral weight of the bound states may vary importantly
as a function of the different parameters (like the Coulomb interaction U), especially in
the spin doublet phase. As we exclusively investigate the effective local limit states, we
do not keep track of this effect either. Therefore, the Josephson currents obtained in
our approach will only provide a rather rough and qualitative idea of the actual total
Josephson current.

Fig. 3.14 shows the Josephson current calculated as the phase derivative of the ground
state energy EGS, J = dEGS/dϕ, for different values of ξd. One notices two regimes: If the
phase is close to ϕ = 0, the system will be in the BCS-like state. As there is no magnetic
moment in this phase, the ground state corresponds to a 0-junction. Thus the current
is proportional to + sin(ϕ). If ϕ increases, the energy of the BCS-like state increases (as

can be understood in the effective local limit, where E− = U/2 −
√
ξd

2 + Γϕ
2). When

the BCS-like state crosses with the spin doublet, the ground state changes and the dot
becomes singly occupied. This magnetic moment leads to a discontinuous jump in the
Josephson current and the formation of a π-junction. Again, we notice that the spin
doublet is stabilized in the particle hole symmetric case.

3.7 A first glance at more complex systems

After having analyzed the effective local Hamiltonian for the single dot system, a double
dot structure embedded between two superconducting leads shall be analyzed as a first
glance to more complex systems. As depicted in figure 3.15, the second dot is assumed
to be decoupled from the electrodes for simplicity (“T-geometry”).

The generalization of the single dot to the double dot system is fairly simple. The
Hamiltonian now consists of two dot HamiltoniansHD1

andHD2
, the Coulomb interaction

Ui (i=1,2) on both of the dots, U12 between the dots, a spin-spin exchange interaction
I ~S1 · ~S2 and an inter-dot tunneling HT12 . Furthermore, the leads are tunnel coupled to
the first dot just as in the single dot case, yielding the total Hamiltonian
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Figure 3.15: Double quantum dot coupled to superconducting leads (SC) via tunneling
tL and tR. The inter-dot tunnel coupling is t12.

H = HL +HR +HD1
+HD2

+HTL
+HTR

+HT12
+ U12n1n2 + I ~S1 · ~S2 . (3.34)

The different Hamiltonians read

Hi =
∑
~k,σ

ε~k,i c
†
~k,σ,i

c~k,σ,i −
∑
~k

∆~k,i
c†~k,↑,ic

†
−~k,↓,i

−
∑
~k

∆∗~k,i c−~k,↓,ic~k,↑,i , (3.35)

HTi
=

∑
~k,σ

(t~k,i d
†
σ,1c~k,σ,i + t∗~k,i c

†
~k,σ,i

dσ,1) , (3.36)

HT12
=

∑
σ

(t12 d
†
σ,1dσ,2 + t∗12 d

†
σ,2dσ,1) , (3.37)

HDj
=

∑
σ

εjnσ,j + Ujn↑,jn↓,j (3.38)

=
∑
σ

ε̃jnσ,j +
Uj
2

(n↑,j + n↓,j − 1)2 − Uj
2

,

with the spin σ populations nσ,j = d†σ,jdσ,j. The energy ε̃j is given by ε̃j = εj +
Uj
2
. The

shift −Uj
2

in HDj
will be omitted. The conduction bands in the leads are again supposed

to be flat and the tunnel matrix elements are taken to be t ∈ R. Also, t and the gap ∆
are modeled as independent of both i and ~k.

Especially interesting is the case of a local moment on the second dot, i.e. a singly
occupied spin doublet. For that purpose, U2 is sent to infinity while keeping ε̃2 finite.
This assumption implies several simplification of the total Hamiltonian. First of all, the
inter-dot Coulomb interaction U12n1n2 now becomes U12n1 and can be incorporated into
the first dot’s energy level. Secondly, as the second dot is always singly occupied, HD2

yields a constant shift of the total energy and can thus be omitted. Thirdly, tunneling
processes between the two dots are suppressed by Coulomb blockade and virtual processes
simply result in a positive (antiferromagnetic) shift of the spin-spin coupling I. Thus, the
associated Hamiltonian HT12

can be discarded. These remarks motivate the reduction of
the Hamiltonian to

Heff = HL +HR +HTL
+HTR

+ H̃D + I ~S1 · ~S2 (3.39)
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where H̃D =
∑

σ ξdnσ,1 + U1

2
(n↑,j + n↓,j − 1)2 and ξd = ε1 + U1

2
+ U12.

3.7.1 Effective local Hamiltonian

The effective Hamiltonian is derived just as in the single dot case. As the second dot’s
occupation is fixed to 1, the Hilbert space associated with this system is spanned by the
basis {|01〉, | ↑1〉, | ↓1〉, | ↑↓1〉} ⊗ {| ↑2〉, | ↓2〉} and has the dimension 8.
The associated eigenbasis is given by

|1〉 = | ↑1〉 ⊗ | ↑2〉
|2〉 = 1√

2
(| ↑1〉 ⊗ | ↓2〉+ | ↓1〉 ⊗ | ↑2〉)

|3〉 = | ↓1〉 ⊗ | ↓2〉

 spin triplet

|4〉 = 1√
2

(| ↑1〉 ⊗ | ↓2〉 − | ↓1〉 ⊗ | ↑2〉) spin singlet
|5〉 = (u| ↑↓1〉+ v∗|01〉)⊗ | ↑2〉
|6〉 = (−v∗| ↑↓1〉+ u|01〉)⊗ | ↑2〉
|7〉 = (u| ↑↓1〉+ v∗|01〉)⊗ | ↓2〉
|8〉 = (−v∗| ↑↓1〉+ u|01〉)⊗ | ↓2〉

 BCS-like states

with u = |u|eiθu and v = |v|eiθv , |u|2 = 1
2

(
1 + ξd√

ξd
2+Γϕ2

)
, |v|2 = 1

2

(
1− ξd√

ξd
2+Γϕ2

)
(again, u and v are chosen to be ∈ R, Γϕ = Γ 2

π
arctan

(
D
∆

)
cos
(
ϕ
2

)
, D denotes half the

electronic bandwidth in the leads and the matrix notation is |1〉 = (1, 0, 0, 0, 0, 0, 0, 0)T

etc.). In this basis, Heff is given by

Heff =



I
4

+ ξd 0 0 0 0 0 0 0
0 I

4
+ ξd 0 0 0 0 0 0

0 0 I
4

+ ξd 0 0 0 0 0
0 0 0 −3J

4
+ ξd 0 0 0 0

0 0 0 0 E+ 0 0 0
0 0 0 0 0 E− 0 0
0 0 0 0 0 0 E+ 0
0 0 0 0 0 0 0 E−


(3.40)

where E± = ±
√
ξd

2 + Γϕ
2 + ξd + U1

2
. Like for the simple dot, the low energy BCS-like

states |6〉 and |8〉 minimize their energy for ϕ = 0, thus corresponding to a 0-junction.

3.7.2 Phase diagram for the effective Hamiltonian

Having derived the effective Hamiltonian (3.40), phase diagrams can be drawn. Figure
3.16 shows several of them for the case of infinite bandwidth, i.e. D →∞ (for the sake of
simplicity). Three different phases are accessible: if the spin-spin interaction I is strong,
the dot will either be in the triplet or singlet regime, according to whether the coupling is
ferromagnetic or antiferromagnetic. If the spin-spin interaction is small and the Coulomb
interaction is not too strong, the system will be in the degenerated BCS-like states |6〉
and |8〉. Due to their higher energies, neither |5〉 nor |7〉 can become the ground state.

When the first dot’s energy level is moved away from the particle-hole symmetry
ξd = 0, the BCS-like phase is stabilized. This can be understood by analogies with the
non-interacting and non-superconducting double dot: whereas the doubly occupied state
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(a) I − U1-diagram at ξd = 0. (b) I − U1-diagram at ξd = 3Γ.

(c) I − Γ-diagram at ξd = 0. (d) I − Γ-diagram at ξd = 3U1.

Figure 3.16: Phase diagrams of the double dot, n2 fixed at 1 and ϕ = 0.

will be the ground states if the level has a negative energy, the dot will be empty for
positive energies. In any case, the singly occupied state is never the ground state. Thus,
the BCS-like phase is stabilized if ξd 6= 0.

Increasing tunnel coupling also stabilizes the BCS-like state, which is quite natural as
it is the latter that induces the superconductivity on the dot. Finally, a rising Coulomb
interaction suppresses the BCS-like state, as the latter is a superposition of the empty
and the doubly occupied state, thus being affected by the Coulomb interaction.

3.8 Summary

In this section we summarize the main results of this chapter. First, it has been shown how
the Hamiltonian of a quantum dot coupled to superconducting leads can be mapped on an
effective local model if the superconducting gap ∆ is much bigger than the characteristic
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energy scales of the dot. This limit can quite generally be regarded as a low frequency
expansion of the Green’s function of the dot rather than the limit ∆ → ∞ used in the
literature. This enabled us to extend the effective local Hamiltonian to leads with a finite
electronic bandwidth.

We have then set up a perturbation theory around this effective local Hamiltonian and
established self-consistent equations for the energy renormalizations of the Andreev bound
states. We have derived those equations based on the fact that the latter correspond to
transitions between different states of the effective local Hamiltonian.

In a subsequent section, we used our formalism to calculate physical quantities such
as the Andreev bound state energies or superconducting correlations, and understood
how these evolve as a function of gate voltage, hybridization, Coulomb interaction and
superconducting gap amplitude. It has been shown that our simple approach agrees well
with NRG data in a vast range of parameters, with the main limitation that the Kondo
temperature is not described quantitatively near particle-hole symmetry. However, most
experimentally interesting regimes should be described correctly by the simple equations
we have derived.

Finally, the generalization of this approach to more complex molecular systems has
shortly been envisioned analyzing the example of a double quantum dot.

The simplicity and portability constitute the main advantages of our approach, if
one is interested in the Andreev bound states only, compared to extended numerical
simulations. As the perturbative description is analytical and based on atomic-like levels,
it should in principle be able to describe more complex systems like multiple quantum
dots or molecules with several orbitals coupled to superconducting environments. Finally,
extensions of our formalism to the computation of the tunneling current at realistic gap
values in three-terminal geometries [43] relevant for STM experiments should certainly
deserve further scrutiny.



Chapter 4

Perturbation theory in the Coulomb
interaction

4.1 Introduction
In the last chapter, we have been interested in a perturbation expansion around a limit
where the typical frequencies of the dot were much smaller than the gap, i.e. ωn � ∆.
By a simple self-consistency condition, the validity of this perturbation expansion could
be pushed down to fairly small gaps, as was shown by comparison to NRG data.

Nevertheless, if one is interested in the physics for very small gaps ∆, one must
use a different approximation scheme. One possibility is to use a perturbation expansion
around the non-interacting limit, as has already been done to some extend in the literature
for superconductor-dot-superconductor systems (either with a second order perturbation
expansion [68], eventually formulated self-consistently [16, 46], or using discretized models
[69–71]).

In the non-interacting limit, exact solutions are easily found. This has been done in
section 2.2; we shall therefore only shortly recall some essential results.

The total Hamiltonian H including the Coulomb interaction U is decomposed as
H = H0 +Hpert with

H0 =
∑
i=L,R

(Hi +HTi) +
∑
σ

εd nσ and (4.1)

Hpert = U n↑n↓ , (4.2)

where Hi are the Hamiltonians of the leads, considered to be standard s-wave BCS
Hamiltonians, HTi describes the tunnel coupling between the dot and the lead i, εd the
energy level of the dot, and nσ = d†σdσ is the spin σ population operator of the dot (see
section 2.1).

The imaginary time Green’s function of the dot in Nambu matrix notation has been
derived via the equation of motion and reads

Ĝ0
d,d(iωn) =

iωn − εd + iωnΓ0(iωn)√
∆2−(iωn)2

∆Γϕ(iωn)√
∆2−(iωn)2

∆Γϕ(iωn)√
∆2−(iωn)2

iωn + εd + iωnΓ0(iωn)√
∆2−(iωn)2

−1

, (4.3)

43
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where ωn is a fermionic Matsubara frequency, ∆ the superconducting gap in the electrodes
and

Γϕ(iωn) = Γ
2

π
arctan

(
D√

∆2 − (iωn)2

)
cos
(ϕ

2

)
, (4.4)

with half the bandwidth of the leads D, the superconducting phase difference ϕ between
the leads and the hybridization Γ = 2πt2ρ0 (ρ0 = 1/(2D) is the electronic density of
states in the leads and t is the tunnel matrix element between leads and dot).

Unfortunately, the non-interacting limit is fairly unrealistic. In experiments with
carbon nanotubes, the Coulomb interaction often turns out to be one of the biggest energy
scales of the dot (if not the biggest [13, 50, 72]), which gives rise to the famous Coulomb
blockade (see section 1.2). Similar observations have been made in small semiconductor
quantum dots [2, 34]. In order to describe the physics correctly it is thus necessary to
push the perturbation theory as far as possible. Especially, the first order will not be
sufficient.

There should also be a regime where both the gap and the Coulomb interaction
have intermediate values. In this case, both perturbation theories (in U and around the
effective local limit) are supposed to yield quantitatively similar results; this would be
an additional verification of the two perturbative approaches. On the other hand, there
will certainly be regimes where only one of the two approaches is valid, and we will thus
have two complementary calculation schemes at hand.

As an additional interest, the perturbation expansion in the Coulomb interaction
is known to be a so-called conserving approximation, that has some very fundamental
symmetry properties. Whereas the latter are well-known for the case of a quantum dot
coupled to normal leads, their generalizations to the case of superconducting leads have
so far not been analyzed to our knowledge. This will be done in the following chapter 5.

4.2 Perturbation expansion

4.2.1 First order

The perturbation theory is done for the full propagators Gij(iωn), the (i, j) indicating
the respective matrix element of the full Nambu Green’s function Ĝd,d(iωn) (see equation
(4.3)). They are calculated by means of the Dyson equation. The latter expresses the
full Green’s function in terms of the bare Green’s function Ĝ0

d,d(iωn), G0
ij(iωn) and the

self-energy Σ̂(iωn) as

Ĝd,d(iωn) = Ĝ0
d,d(iωn) + Ĝ0

d,d(iωn) Σ̂(iωn) Ĝd,d(iωn) (4.5)

= Ĝ0
d,d(iωn) + Ĝ0

d,d(iωn) Σ̂(1)(iωn) Ĝ0
d,d(iωn) +O(U2) .

The first order self-energy Σ̂(1)(iωn) is thus easily obtained by the first order pertur-
bation expansion of the Green’s function. A short calculation (see appendix I.1) yields
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Σ
(1)
11 (iωn) = U〈d†↓d↓〉0 = −U G0

22(τ = 0+) , (4.6)

Σ
(1)
12 (iωn) = U〈d↓d↑〉0 = U G0

12(τ = 0) , (4.7)

Σ
(1)
21 (iωn) = U〈d†↑d

†
↓〉0 = U G0

21(τ = 0) , (4.8)

Σ
(1)
22 (iωn) = −U〈d†↑d↑〉0 = −U G0

11(τ = 0−) (4.9)

(Σ1
ij(iωn) is the (i, j) matrix element of Σ̂(1)(iωn)).
The first order self-energies are thus nothing but the well known Hartree term and

its anomalous equivalents, the superconducting correlations. We also want to point out
that the (i, j) matrix element of Σ is the self-energy that enters the full Green’s function
Gji (and not Gij). Denoting the bare Green’s functions as

G0
11 =
�

↑
, G0

12 =
�

↓ ↑
,

G0
21 =
�

↑ ↓
, G0

22 =
�

↓
,

the self-energies can diagrammatically be represented as

Σ
(1)
11 = − �

↓

, Σ
(1)
12 = �

↓↑

,

Σ
(1)
21 = �

↑↓

, Σ
(1)
22 = − �

↑

.

4.2.2 Second order

The second order terms are much more tedious to calculate analytically than the first
order ones. Luckily, the diagrammatic calculation technique offers a uniquely efficient way
to evaluate the irreducible second order self-energies. Decomposing the Nambu Green’s
function and self-energy to the different orders in U ,

Ĝd,d(iωn) = Ĝ0
d,d(iωn) + Ĝ

(1)
d,d(iωn) + Ĝ

(2)
d,d(iωn) + . . . and (4.10)

Σ̂(iωn) = Σ̂(1)(iωn) + Σ̂(2)(iωn) + . . . , (4.11)

the Dyson equation

Ĝd,d(iωn) = Ĝ0
d,d(iωn) + Ĝ0

d,d(iωn) Σ̂(iωn) Ĝd,d(iωn) (4.12)
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implies

Ĝ
(1)
d,d(iωn) = Ĝ0

d,d(iωn) Σ̂(1)(iωn) Ĝ0
d,d(iωn) and (4.13)

Ĝ
(2)
d,d(iωn) = Ĝ0

d,d(iωn) Σ̂(1)(iωn) Ĝ0
d,d(iωn) Σ̂(1)(iωn) Ĝ0

d,d(iωn)︸ ︷︷ ︸
reducible terms

(4.14)

+ Ĝ0
d,d(iωn) Σ̂(2)(iωn) Ĝ0

d,d(iωn)︸ ︷︷ ︸
irreducible terms

.

Because of the matrix character of the above equations, it is sufficient to calculate only
one of the matrix elements of Ĝ(2)

d,d(iωn) in order to identify all second order irreducible
self energy matrix elements Σ

(2)
ij (iωn). In their diagrammatic form, they read

Σ
(2)
11 = �↓ ↓

↑

− �↓ ↓

↓↑

↑

− �↓↓

↑↓

↑

− �↓↓

↓

↑↑

−�↑

↓

↓
+�↓

↓

↓

↑

↑

,

Σ
(2)
12 = − �↑ ↓

↓↑

− �↑ ↓

↑

↓

− �↓↑

↓

↑

+ �↓↑

↑↓

↑↓

+�↑
↑

↓

↓

−�↓
↑

↓

↑

↓

↑

,
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Σ
(2)
21 = − �↑↓

↓ ↑

− �↓ ↑

↓

↑

− �↑↓

↑

↓

+ �↑↓

↑ ↓

↓↑

+�↓
↑

↓ ↑

−�↑

↓

↑

↓

↑

↓

,

Σ
(2)
22 = �↑↑

↓

− �↑ ↑

↑↓

↓

− �↑↑

↓↑

↓

− �↑↑

↑

↓↓

−�↓
↑

↑

+�↑

↑

↑

↓

↓

.

4.2.3 Skeleton expansion

Quite generally, a perturbation expansion only to the second order may have difficulties
to describe the physics of a given system correctly in a realistic regime of parameters.
This is especially the case for the Coulomb interaction on a quantum dot considered
here because the latter is often one of the biggest energy scales involved. It is therefore
necessary to sum up the most important diagrams, desirably to infinite order. A fairly
often used resummation technique are so-called skeleton diagrams, that resum all graphs
with the same “external” structure.

The starting point is the observation that for every given diagram, the perturbation
expansion also contains diagrams with all possible self-energy decorations on all internal
lines. These diagrams can uniquely be classified by their external lines. Removing all
internal self energy decorations of a given diagram, one is left with the corresponding
skeleton diagram.

The skeleton of a diagram is thus obtained by cutting out all internal self energy
insertions, i.e. replacing “partly dressed” propagators with bare ones wherever possible.
Then, the bare propagators are replaced by full propagators. This way all diagrams with
the same skeleton are summed up. Figure 4.1 illustrates the reduction of a diagram to
its skeleton. As all internal self energy insertions have been removed, a skeleton diagram
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Figure 4.1: How to obtain a skeleton diagram: cut all internal self energy insertions and
replace the remaining bare propagators by their fully dressed correspondents.

may also be classified as a diagram that can not be separated into two diagrams by
cutting two lines.

To make a long story short, the skeleton diagram technique allows to partially resum
diagrams to infinite order, thereby expressing the self energy as a function of the full
propagator, that itself contains the self energy. One is thus left with a self-consistency
problem.

For the perturbation series in powers of the Coulomb interaction, the skeleton expan-
sion of the self energies up to the second order can easily be obtained starting from the
diagrams in section 4.2.1 and 4.2.2. Applying the rules discussed above, one finds

Σ11 = − �
↓

−�↑

↓

↓
+�↓

↓

↓

↑

↑

,

Σ12 = �
↓↑

+�↑
↑

↓

↓

−�↓
↑

↓

↑

↓

↑

,

Σ21 = �
↑↓

+�↓
↑

↓ ↑

−�↑
↓

↑

↓

↑

↓

,
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Σ22 = − �
↑

−�↓
↑

↑

+�↑

↑

↑

↓

↓

.

Thereby, the full Green’s functions are denoted by

G11 =
�

↑
, G12 =
�

↓ ↑
,

G21 =
�

↑ ↓
, G22 =
�

↓
.

The above skeleton diagrams may also be transposed to analytic formulas. Doing so
yields

Σ11(iωn) = −U G22(τ = 0+) − U2

∫ β

0

dτ eiωnτ G11(τ)G22(τ)G22(−τ)

+ U2

∫ β

0

dτ eiωnτ G12(τ)G21(τ)G22(−τ) ,

(4.15)

Σ12(iωn) = U G12(τ = 0) + U2

∫ β

0

dτ eiωnτ G11(τ)G22(τ)G12(−τ)

− U2

∫ β

0

dτ eiωnτ G21(τ)G12(τ)G12(−τ) ,

(4.16)

Σ21(iωn) = U G21(τ = 0) + U2

∫ β

0

dτ eiωnτ G11(τ)G22(τ)G21(−τ)

− U2

∫ β

0

dτ eiωnτ G12(τ)G21(τ)G21(−τ) ,

(4.17)

Σ22(iωn) = −U G11(τ = 0−) − U2

∫ β

0

dτ eiωnτ G22(τ)G11(τ)G11(−τ)

+ U2

∫ β

0

dτ eiωnτ G12(τ)G21(τ)G11(−τ) .

(4.18)

The self-energies thus all have the generic form of a Hartree-type diagram and two
so-called sunrise diagrams. In the limit ∆→ 0, the first order terms reduce to the well-
known spin-unpolarized Hartree-Fock terms. Due to the finite gap, additional diagrams
involving anomalous propagators also contribute to the self-energies.
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4.2.4 Particle hole symmetry

Green’s function

The particle hole symmetry corresponds to the case where the energy level of the quantum
equals minus half the Coulomb interaction, i.e. εd = −U/2 or ξd = 0. Then, both
the empty and doubly occupied state have zero energy, whereas the singly occupied
states have a negative energy of −U/2. The ground state is thus the spin doublet.
Transitions from this state toward either the empty state (addition of a hole) or the
doubly occupied state (addition of an electron) are equally probable, thus the name
of particle hole symmetry. Mathematically, the particle hole symmetry corresponds to
the invariance of the Hamiltonian to an exchange of creation and annihilation operators
according to

d↑ ↔ d†↓ , (4.19)

d†↑ ↔ d↓ (4.20)

Note that because of the BCS-terms in the Hamiltonian one has to exchange creation and
annihilation operators of distinct spin species. Yet, none of the two spins is preferential.
Therefore, the expectation value of the spin populations read

〈d†↑d↑〉 = 〈d†↓d↓〉 =
1

2
. (4.21)

In particular, this implies that the first order self-energies Σ
(1)
11 and Σ

(1)
22 are

Σ
(1)
11 =

U

2
= −εd and (4.22)

Σ
(1)
22 = −U

2
= εd . (4.23)

The value of the off-diagonal self-energies Σ
(1)
12 and Σ

(1)
21 can unfortunately not be derived

from symmetry considerations. Nevertheless, equations (4.19) and (4.20) indicate that
they are identical. For the remainder, we define

Σ
(1)
12 = Σ

(1)
21 = U〈d↓d↑〉 =: ∆eff . (4.24)

With these considerations at hand, one can now turn to the derivation of the ex-
plicit analytic form of the skeleton expansion. As outlined in section 4.2.3, the latter is
constructed only with full Green’s functions.

As has been mentioned in the last section, the skeleton expansion expresses the self-
energies as a function of the full propagators; one thus has to solve equations (4.15)-(4.18)
self-consistently. Unfortunately, a fully self-consistent calculation scheme can lead to
unphysical resummations. For instance, it is known from reference [73] that the Hubbard
bands may be lost. One therefore has to work with Hartree shifted propagators, that
correspond to the correct low frequency expansion of the self-energies. This technique
yields in general better results.

The Hartree-Fock shifted propagators are defined by
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(a) Typical neglected diagram (b) Typical summed diagram

Figure 4.2: Examples for diagrams that are summed up (a) or not (b).

̂̃
Gd,d

−1(iωn) := Ĝ0
d,d
−1(iωn)− Σ̂(1)(iωn) , (4.25)

and correspond to the spin-unpolarized mean-field propagators. The absorption of these
first order shift, that have been evaluated for the particle hole symmetric case, limits the
validity of this perturbative approach to particle hole symmetry. Furthermore, as one is
dealing with a perturbation theory around a weakly interacting limit, the perturbation
expansion will only be reliable in the phase that is adiabatically connected to the nonin-
teracting limit. In the case of superconducting leads, the latter is a BCS-like spin singlet
stabilized by the proximity effect.

The “partly dressed” propagators are then used, instead of the actual full propagators,
to compute the self-energy. The error due to this simplification is of the order O(U3),
which is anyway the error of the second order perturbation expansion considered here. In
terms of diagrams, the use of these propagators in the skeleton expansion corresponds to
the neglect of skeleton diagrams higher than third order and some diagrams contributing
to the second order skeleton diagram. More precisely, this prescription neglects diagrams
where a “sunrise” term (the one loop second order term) is inserted directly into another
sunrise term, as indicated in figure 4.2 (a). Diagrams containing third (and higher) order
skeleton diagrams are neglected as well. On the contrary, terms where two “sunrises” are
separated by at least one Hartree term (i.e. first order loop) are summed up to infinite
order, as shown in figure 4.2 (b).

The partly dressed Green’s function ̂̃Gd,d explicitly reads

̂̃
G
−1

d,d(iωn) =

 iωn + iωnΓ0(iωn)√
∆2−(iωn)2

∆Γϕ(iωn)√
∆2−(iωn)2

−∆eff

∆Γϕ(iωn)√
∆2−(iωn)2

−∆eff iωn + iωnΓ0(iωn)√
∆2−(iωn)2

 :=

(
g−1

0 f−1
0

f−1
0 g−1

0

)
. (4.26)

In the particle hole symmetric case, the two normal Green’s functions are thus identical,
and so are the anomalous ones. Hence, we define

G̃11 = G̃22 =
1

2

(
1

g−1
0 + f−1

0

+
1

g−1
0 − f−1

0

)
=: G , (4.27)

G̃12 = G̃21 =
1

2

(
1

g−1
0 + f−1

0

− 1

g−1
0 − f−1

0

)
=: F . (4.28)
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Due to the symmetric form of the Nambu matrix Green’s function Ĝd,d, the self-energy
derived with the skeleton expansion is also symmetrical,

Σ̂ =

(
ΣG ΣF
ΣF ΣG

)
, (4.29)

and thus is the full Green’s function Ĝd,d defined by

Ĝ−1
d,d(iωn) =

̂̃
G
−1

d,d(iωn)− Σ̂(iωn) . (4.30)

The matrix elements of the latter read

G11 = G22 =
1

2

(
1

g−1
0 − ΣG + f−1

0 − ΣF
+

1

g−1
0 − ΣG − f−1

0 + ΣF

)
,

(4.31)

G12 = G21 =
1

2

(
1

g−1
0 − ΣG + f−1

0 − ΣF
− 1

g−1
0 − ΣG − f−1

0 + ΣF

)
.

(4.32)

Self-consistency

Within the (approximated) skeleton resummation scheme, the first order energy correc-
tions have been absorbed into “partly dressed” Green’s functions. Thus, only the second
order self-energy corrections need to be calculated. This must be done in such a manner
that the superconducting correlations are described self-consistently, i.e. such that the
equation

∆eff = U〈d↓d↑〉
!

= −U
π

Im

{∫ ∞
−∞

dω GR
12(ω)

}
(4.33)

is satisfied (GR
12(ω) denotes the fully dressed retarded real time anomalous Green’s func-

tion). This boundary condition is most efficiently evaluated numerically.

4.2.5 Explicit calculation of the skeleton self energy

The next step in the calculation of the dressed Green’s functions is the derivation of
explicit formulas for the evaluation of ΣR

G(ω) and ΣR
F (ω), the retarded real time self

energies. For the particle hole symmetric case, the results of section 4.2.3 become

ΣG(iωn) = −U2

∫ β

0

dτ eiωnτ G(τ)G(τ)G(−τ) + U2

∫ β

0

dτ eiωnτ F(τ)F(τ)G(−τ) ,

(4.34)

ΣF(iωn) = U2

∫ β

0

dτ eiωnτ G(τ)G(τ)F(−τ)− U2

∫ β

0

dτ eiωnτ F(τ)F(τ)F(−τ) .

(4.35)

These expressions now need to be transposed into the real time formalism. In order
to simplify the following discussions as much as possible, we will consider a generalized
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self-energy form

Σ123 = −U2

∫ β

0

dτ eiωnτ G1(τ)G2(τ)G3(−τ) .

The analytic continuation is greatly simplified by the Kramers-Kronig identity that
expresses the Mastubara frequency Green’s function in terms of the imaginary part of
the real time Green’s function,

G(iωn) = − 1

π

∫ ∞
−∞

dE
Im
{
GR(E)

}
iωn − E

. (4.36)

Using this formula, one is left with sums over Matsubara frequencies of some explicit,
analytic functions. These sums can then be rewritten as integrals in the complex plane
using the fact that the fermionic Matsubara frequencies are the poles of the analytically
continued Fermi-Dirac distribution nF (z). Explicit calculations may be found in appendix
I.2.1. At the end of the day, one ends up with a fairly simple expression that reads

ΣR
123

′′
(ω) =

U2

π2

∫ ∞
−∞

dε1

∫ ∞
−∞

dε2

∫ ∞
−∞

dε3

×GR1
′′
(ε1)GR2

′′
(ε2)GR3

′′
(−ε3)δ(ω − ε1 − ε2 − ε3) (4.37)

× [nF (ε1)nF (ε2)nF (ε3) + nF (−ε1)nF (−ε2)nF (−ε3)] .

Thereby, double apostrophes indicate imaginary parts, i.e. Im {G} =: G ′′. Real part will
from now on be indicated by simple apostrophes, i.e. Re {G} =: G ′. For Green’s functions
and self-energies, the latter can generally be obtained from the imaginary parts by the
Kramers-Kronig relation

ΣR
123

′
(ω) = −P 1

π

∫ ∞
−∞

dE ΣR
123
′′
(E)

ω − E
.

The results of this section, and especially equation (4.37), concords with other work
[46, 68].

Specifics for superconducting leads

In the present case, i.e. a quantum dot coupled to superconducting leads, the density of
states of the dot is characterized by a gap between −∆ and ∆, where ∆ is the gap of the
electrodes. Inside this gap, the discrete Andreev bound states are formed.

Due to their singular character, one needs to calculate the bound state contributions
to the self-energies carefully. The evaluation of equation (4.37) is correspondingly some-
what tedious. We shall therefore here only motivate the results physically, but explicit
calculations can be found in appendix I.2.2.

What are the different contributions to the self-energies? First, one should keep in
mind that all contributions to the self-energies (4.34) and (4.35) have the form of a sunrise
term (see equation (4.37) for the generic formula). The corresponding Feynman graph is

Σsunrise = .



54 CHAPTER 4. PERTURBATION THEORY IN THE COULOMB INTERACTION

Each contributing process thus involves three electrons (or holes). As there are only
two Andreev bound states in the phase connected adiabatically to the limit U = 0, one of
these electrons (or holes) necessarily needs to propagate in the electrodes and therefore
has an energy higher than the gap ∆. The two other electrons (or holes) may either be
in an Andreev bound state or in the electrodes. We can therefore identify tree kinds of
processes:

• Processes with two electrons in ABS and one electron in the leads
⇒ energy higher than ∆ + 2 × ABS energy

• Processes with one electrons in ABS and two electrons in the leads
⇒ energy higher than 2×∆ + 1 × ABS energy

• Processes with all three electrons in the leads ⇒ energy higher than 3×∆

This means especially that there are no processes with energies lower than ∆ + 2×ABS en-
ergy (at least in the phase adiabatically connected to the non-interacting limit). There-
fore, the imaginary part of the self-energies (being proportional to the density of states
induced by the considered processes) also shows a gap between ± (∆ + 2 × ABS en-
ergy). Furthermore, the imaginary part of the self-energies has no Andreev bound state
like singularities inside the gap.

With the above considerations and the calculations in appendix I.2.2, it is straightfor-
ward to obtain the full Green’s functions. The only minor obstacle is the self-consistent
determination of the self consistent parameter according to equation (4.33). This can eas-
ily be achieved by a simple iterative calculation scheme, that actually converges without
difficulties.

4.3 Results

4.3.1 Density of states and Green’s functions

At last, we shall give some results derived with the self-consistent perturbation theory
presented in the last sections. We shall first turn to the density of states. We shortly
recall that the perturbation theory is set up around the spin singlet state. Therefore, it
is only valid in the singlet phase. If the gap ∆ is big, this singlet is a BCS-like state (see
chapter 3). If the gap is small, the proximity effect becomes less important, and a simple
BCS-like state will be suppressed by the Coulomb interaction. Instead, the system can
form a Kondo-like singlet.

It is well-known that the Kondo effect can not be described by a simple perturbation
theory as the one we are dealing with here. Therefore, the Kondo-like state is not a
real Kondo singlet. Also, the transition to this state, that would appear for ∆ ≈ kBTK
for a Kondo singlet (and thus be an exponentially decreasing with increasing Coulomb
interaction according to TK ∼ exp(−πU/(8Γ))) will rather scale as U−2 at large U for
the second order expansion considered here. Finally, we want to stress that the singlet-
doublet transition (whether it is a BCS-like or a Kondo-like singlet) results in a crossing
of the Andreev bound states and the Fermi level (see section 3.6.1).

One expects two fundamentally different regimes. If the gap ∆ is much smaller than
the other energy scales, the dot should behave similarly to the case of coupling to normal
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leads. Of course, the density of states will by cut at ±∆ and discrete sub-gap peaks,
the Andreev bound states, will appear. Nevertheless, the latter will have a very small
spectral weight. By analogies with the non-superconducting case, one would rather expect
that there will be a shift of spectral weight from the central, Fermi-liquid excitations
peak toward two so-called Hubbard bands at ±U/2. These generally large resonances
correspond to the transitions between single occupation and a doubly occupied or empty
dot, i.e. energy differences of U/2 at particle hole symmetry.

Figure 4.3 indeed shows that if the gap is small, the density of states is very similar to
the non-superconducting case (shown by a blue dashed line in the plots). Especially, the
formation of Hubbard bands around ±U/2 is clearly observed. Furthermore, one finds
that the Andreev bound states have an almost negligible spectral weight (see zooms into
the gap). Finally, we find that the stronger the Coulomb interaction, the closer the ABS
move to the Fermi level, which is nothing but the precursor of the transition from the
Kondo-like singlet to the spin doublet.

If the gap becomes of the same order or bigger than the Coulomb interaction, the
density of states changes remarkably. In this case, the Hubbard bands, located at U/2,
would be inside the gap - which obviously is not possible.

The physics behind this can be understood with what has been outlined in section
4.2.5. As the superconducting gap ∆ becomes the most important energy scale, the
virtual transitions renormalizing the density of states will now predominantly depend
on the energy of the Andreev bound states and the gap ∆. Especially, these virtual
processes (and thus the self-energies) will have energies higher than ∆ + 2 × energy of
ABS. This can be seen in figure 4.4, that shows the normal and anomalous self energy
(note that for U = 3 Γ, ∆ = 2 Γ, the bound states are located at ω ≈ ±0.035 Γ, see
Fig. 4.4 (b)). Furthermore, one would expect the Andreev bound states to have a big
spectral weight, which is indeed what is shown in figure 4.5. As a final remark, the
Coulomb interaction can be seen to reduce the spectral weight of the Andreev bound
states (as it opposes a Cooper-pair like wavefunction). For strong Coulomb interactions
the dot again approaches the transition toward the spin 1/2 doublet, and the bound
states are located close to the Fermi level.

4.3.2 Andreev bound state energies and phase diagram

We have already seen in figures 4.3 and 4.4 that a phase transition between a Kondo-
like singlet state and the spin 1/2 doublet occurs if the Coulomb interaction is strong.
Figure 4.6 shows the transition line between these two phases (compare to figure 3.5).
The perturbation theory in U matches qualitatively both the effective local Hamiltonian
approach as well as the NRG data by Bauer et al. [8] The transition line derived by
the perturbation theory in U decays slower than the two other curves, which is the
signature of the above mentioned U−2-dependence of the quasiparticle weight at large U .
Nevertheless, as the plot only shows a regime of intermediate Coulomb interaction, this
dependence is not fully established yet.

As a second check, we now turn to the energy corrections outside the transition line.
Figure 4.7 shows the renormalized energies for variable gap and two different values of
the hybridization. All three methods, namely the perturbation theory in the Coulomb
interaction, the effective local Hamiltonian and the NRG data by Yoshioka and Ohashi
[23] show again the same qualitative features. The bound state first renormalizes to-
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(a) U = 6 Γ, ∆ = 0.05 Γ. (b) U = 6 Γ, ∆ = 0.05 Γ, zoom into the gap.

(c) U = 8 Γ, ∆ = 0.05 Γ. (d) U = 8 Γ, ∆ = 0.05 Γ, zoom into the gap.

Figure 4.3: Spin up density of states ρ↑(ω) for large Coulomb interactions U and small
gaps ∆ (solid black curves). The bandwidth is given by D = 1000 Γ. The corresponding
density of states for a quantum dot coupled to normal electrodes (but with all other
parameters identical) is indicated by the blue dashed curves. Andreev bound states are
depicted by arrows (but have very small spectral weight).
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(a) U = 0.2 Γ, ∆ = 2 Γ. (b) U = 3 Γ, ∆ = 2 Γ.

Figure 4.4: Spin up density of states ρ↑(ω) for small Coulomb interactions U and large
gaps ∆ (solid black curves). The bandwidth is given by D = 1000 Γ. The corresponding
density of states for a quantum dot coupled to normal electrodes (but with all other
parameters identical) is indicated by the blue dashed curves. Andreev bound states are
depicted by arrows.

(a) Normal Green’s function GR
full(ω). (b) Anomalous Green’s function FR

full(ω).

Figure 4.5: Normal self-energy ΣR
G (ω) and anomalous self-energy ΣR

F(ω) of the dot for a
gap of ∆ = 2 Γ, Coulomb interaction U = 3 Γ and a bandwidth of D = 1000 Γ.
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Figure 4.6: Transition line between the singlet and doublet phase for πΓ = 0.2D and
ϕ = 0. The black solid line indicates the transition line calculated by the effective local
Hamiltonian approach. The red diamonds show NRG data by Bauer et al. [8] The blue
triangles are the result of the perturbation theory in the Coulomb interaction.

ward lower energies. If the gap becomes very small, the bound state energy remains
“pinned” to −∆ because the bound state is not allowed to leave the gap. Furthermore,
an increasing hybridization results in a stronger proximity effect, i.e. more pronounced
renormalizations.

The plot reveals that the two perturbative methods actually complete each other.
In the large gap regime, i.e. in the spin doublet phase, the effective local Hamiltonian
approach yields excellent results (as has been discussed in chapter 3). The perturbation
theory in U on the other hand is only controlled and valid in the singlet phase, i.e. for
negative bound state energies. If the gap is not too small, we find a regime where both
analytic approaches basically yield the same results. For very small gaps, the effective
local Hamlitonian approach looses its validity, whereas the perturbation theory in the
Coulomb interaction matches perfectly the NRG data (unless the Coulomb interaction
becomes very big).

4.3.3 Superconducting correlations

At last, we want to investigate the superconducting correlations. Again, we compare the
perturbation theory in U to the effective local Hamiltonian approach to the NRG data
by Bauer et al. [8]. Figure 4.8 affirms that the perturbation theory in U works very well
in the singlet phase. It is thus truly complementary to the effective local Hamiltonian
approach: The latter fits the NRG data especially in the spin doublet phase (see also
section 3.6.5), that is not at all described by the perturbation theory in U .

4.4 Summary

Before turning to the Luttinger-Ward functional for a quantum dot coupled to supercon-
ducting leads, we want to summarize shortly the main findings of this chapter. First,
we want to point out that the perturbation expansion around the non-interacting limit
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(a) Eff. loc. Ham. vs. pert. theory in U . (b) Comparison with NRG data.

Figure 4.7: Renormalization of the low energy Andreev bound state. The orange solid
and the violet dashed line correspond to πΓ = 2U , the light and dark blue curves to
πΓ = 6U . In all cases, the bandwidth D is D = 200U . Subfigure (b) shows a comparison
to NRG data from reference [23], Γ̄ = Γ/D.

Figure 4.8: Superconducting correlations as a function of the Coulomb interaction U (for
πΓ = 0.2D, ∆ = 0.06D and ξd = 0). The symbols correspond to NRG data from Ref. [8].
The red solid line is the result of the self-consistent approach discussed in section 3, the
blue dashed line is the result of the perturbation theory in the Coulomb interaction.
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considered here has already been established by Vecino, Martín-Rodero and Levy Yeyati
[46]. Nevertheless, their paper mainly focuses on limiting situations, as for instance a zero
bandwidth limit, the limit ∆� Γ or ∆� Γ. On the other hand, a paper by Dell’Anna
and collaborators [16] deals with the Josephson current through a Josephson quantum
dot. Although they also used a perturbation expansion in the Coulomb interaction to
the second order, only the first order terms have been treated self-consistently.

We compared the results of the perturbation theory in U for intermediate regimes
to both NRG calculations and the renormalized effective local Hamiltonian approach
developed in chapter 3. We have shown that as long as the gap is not too small, and as long
as the dot is in the phase adiabatically connected to the limit U = 0, all three approaches
yield similar results. Furthermore, we have pointed out that the perturbation expansion
in powers of the Coulomb interaction and the effective local Hamiltonian approach are
actually complementary. The effective local Hamiltonian describes the physics in the
spin doublet phase accurately, but fails for very small gaps. On the other hand, the
perturbation expansion in U can not describe the spin doublet phase, because the latter
is not adiabatically connected to the non-interacting limit. It does works well, on the
contrary, in the small gap regime.



Chapter 5

Luttinger-Ward functional and Friedel
sum rule

5.1 Luttinger-Ward functional

5.1.1 Introduction

As stated in section 4.2.3, the skeleton expansion allows to sum up an infinity of diagrams.
While one would naively expect such a resummation to improve the convergence and
exactness of the perturbation theory, this is only true if the summed diagrams are chosen
carefully.

As a simple example, consider a case where some diagrams increase the energy of a
given state and a second set lowers its energy. If one would sum up e.g. only the first set
of diagrams, the energy level might be overestimated dramatically. To make a long story
short it is thus important to carefully select the diagrams one sums up.

The choice of physically important diagrams is generally guided by intuition. Yet, one
would always like to end up with an approximation that respects the conservation laws of
the system like energy or momentum conservation. A simple criterion to check whether an
approximation is “conserving” or not has been provided by Baym and Kadanoff [74, 75].
They showed that conservation laws are respected if the resulting self energy Σ, considered
as a functional of the full Green’s functions G, can itself be written as a derivative of a
functional Φ,

Σ[G] =
δΦ

δG
. (5.1)

As will become clear later on, the functional Φ is nothing but the self-energy diagrams,
closed by a full propagator G.

In an earlier paper, Luttinger and Ward had already analyzed how symmetries of this
functional Φ relate to equations the self energy must fulfill [76]. Therefore, Φ is also called
the Luttinger-Ward functional. Ever since, symmetries of Luttinger-Ward functionals
have been exploited in order to derive rather fundamental properties of (conserving)
perturbation series, as for instance the Friedel sum rule [77, 78]. The latter quite generally
relates the total charge displaced by an impurity to the scattering of electrons at the Fermi
level by that impurity, stating that the number of displaced electrons nd relates to the
sum of all scattering phase shifts δl of the partial waves l as

61
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nd =
2

π

∑
l

(2l + 1)δl . (5.2)

Because the phase shifts δl also relate to the extra states induced by the impurity, the
Friedel sum rule indicates that the number of extra states below the Fermi level must be
such that the accommodated charge exactly screens the charge of the impurity (see for
example textbooks like [79]).

Whereas the Luttinger-Ward functional and the resulting Friedel sum rule have been
studied extensively for several systems (as for instance the Fermi liquid models [79, 80],
more specifically the Anderson impurity model [78] and interacting electrons [77], Mott
insulators (see [81, 82] and references therein) or semiconductors [83]), the case of a quan-
tum dot coupled to superconducting leads has so far not been treated (in a previous work
by Alastalo et al., the expression of the Luttinger-Ward functional Φ has been obtained
up to the second order in U , but no further calculations like the derivation of the Friedel
sum rule have been performed [68]). In the remainder of this chapter, the Luttinger-Ward
functional for the case of a single quantum dot connected to superconducting electrodes
will thus be analyzed for the first time. Symmetries of the Luttinger-Ward functional
shall be used to derive the superconducting generalization of the Friedel sum rule for
this system. This equation is a useful condition for the self-consistent determination of
parameters like local superconducting correlations and may constitute an important in-
gredient to non-conserving schemes like the local moment approach (LMA) (see [84, 85]
and references therein).

5.1.2 Explicit form up to second order

Equation (5.1) serves as a starting point for the derivation of the explicit form of the
Luttinger-Ward functional. It states that we need to set up a functional of full prop-
agators such that its functional derivative equals the self-energies. A natural starting
point is thus to look at the self-energies in their skeleton expansion; the latter indeed
only involves full propagators.

The effect of a derivative is, roughly spoken, to remove one of the entities that is
derived for (as in d

dx
x ·x ∼ x). Here, this corresponds to removing one of the full Green’s

functions. The functional Φ we are looking for is thus nothing but the skeleton self-
energies with an additional full Green’s function. As Φ has no frequency dependence,
but the self energy ΣR(ω) does, this additional Green’s function closes the two open ver-
tices of the self-energy diagrams. More precisely, for a given diagram of the self-energy
Σij, the corresponding term in Φ is obtained by simply closing the diagram with a full
propagator Gij. Diagrammatically and up to the second order in U , Φ is given by:
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Φ = −

�
↓

↑

+

�
↓ ↑

↑↓

−1

2�↑
↑

↓

↓
+

�↑ ↑
↓

↓↑

↓

−1

2�↑

↑

↓

↓

↑

↑

↓

↓

These diagrams can of course be transposed into analytic formulas, which yields

Φ =
∑
m=1,2

∑
n

β

2m
tr
{
Ĝd,d(iωn)Σ̂(m)(iωn)

}
= −Uβ

∫ β

0

dτ δ(τ) [G11(τ)G22(τ)−G12(τ)G21(τ)] (5.3)

−U
2

2
β

∫ β

0

dτ [G11(τ)G22(τ)−G12(τ)G21(τ)] · [G11(−τ)G22(−τ)−G12(−τ)G21(−τ)] .

The self-energies (4.15)-(4.18) can now indeed be written as

Σij(iωn) =
δΦ

δGij

. (5.4)

At this point, we want to stress that the Luttinger-Ward functional, up to the second or-
der, factorizes into determinants of the Nambu Green’s function Ĝd,d(iωn). This property
will be important for the derivation of the symmetries of Φ. As we are only analyzing
the explicit form of Φ up to the second order, this factorization and the resulting sym-
metries a priori only hold for the second order expansion. Nevertheless, we suspect this
factorization to be linked to the invariance of Φ to an orthogonal transformation of the
Nambu spinor basis (i.e. SU(2) spin symmetry). Therefore, the invariances we will derive
below might hold to infinite order and not only to the second one. Work in this direction
is in progress.

5.1.3 Symmetries of the Luttinger-Ward functional

The Luttinger-Ward functional Φ has a number of symmetries, i.e. invariances under
transformations of the Green’s functions Gij. The most simple one is a global frequency
shift,

Gij(iωn)→ Gij(iωn + iδω) ∀ i, j, n . (5.5)

It is straightforward to see that this invariance holds for all orders of the perturbation
expansion:
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Φ =
∞∑
m=1

∑
n

β

2m
tr
{
Ĝd,d(iωn)Σ̂(m)(iωn)

}
→

∞∑
m=1

∑
n

β

2m
tr
{
Ĝd,d(iωn + iδω)Σ̂(m)(iωn + iδω)

}
(5.6)

index shift
=

∞∑
m=1

∑
n

β

2m
tr
{
Ĝd,d(iωn)Σ̂(m)(iωn)

}
.

As shall be shown now, the invariance under a global frequency shift results from a
number of more specific symmetries. The latter will be derived by evaluating the effect
of a small frequency shift

Gij(iωn)→ Gij(iωn) + iδω
∂Gkl(iωn)

∂(iωn)
, (5.7)

that can also be written as

Gij(τ)→ Gij(τ) + iτδωGkl(τ) . (5.8)

Two types of invariances are to be distinguished, namely those that mix different
Green’s functions and those that do not. The four “non-mixing invariances” are

G11(iωn) → G11(iωn) + iδω ∂G11(iωn)
∂(iωn)

G12(iωn) → G12(iωn) + iδω ∂G12(iωn)
∂(iωn)

}
∀n , (5.9)

G11(iωn) → G11(iωn) + iδω ∂G11(iωn)
∂(iωn)

G21(iωn) → G21(iωn) + iδω ∂G21(iωn)
∂(iωn)

}
∀n , (5.10)

G22(iωn) → G22(iωn) + iδω ∂G22(iωn)
∂(iωn)

G12(iωn) → G12(iωn) + iδω ∂G12(iωn)
∂(iωn)

}
∀n , (5.11)

G22(iωn) → G22(iωn) + iδω ∂G22(iωn)
∂(iωn)

G21(iωn) → G21(iωn) + iδω ∂G21(iωn)
∂(iωn)

}
∀n . (5.12)

Here shall only be stated the proof of the first invariance, the others can be understood
similarly. In terms of imaginary time, equation (5.9) becomes

G11(τ) → G11(τ) + iτδωG11(τ)
G12(τ) → G12(τ) + iτδωG12(τ)

. (5.13)

The first order term of the Luttinger-Ward functional only contains Green’s functions
at imaginary time τ = 0. Therefore, this term is trivially invariant under the above
transformation. The second order term, when expanded to the order O(δω1), becomes

Φ(2) = −U
2

2
β

∫ β

0

dτ [G11(τ)G22(τ)−G12(τ)G21(τ)] · [G11(−τ)G22(−τ)−G12(−τ)G21(−τ)]

→ Φ(2) · (1 + iτδω) · (1− iτδω) = Φ(2) · (1 + iτδω − iτδω) = Φ(2) . (5.14)
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The transformations (5.9)-(5.12) thus leave the functional Φ invariant. The global fre-
quency shift invariance of Φ is nothing but the combination of (5.9) and (5.12).

The Luttinger-Ward functional is also invariant under four transformations that mix
the normal and anomalous propagators. The invariances in question are

G11(iωn) → G11(iωn) + iδω ∂G21(iωn)
∂(iωn)

G12(iωn) → G12(iωn) + iδω ∂G22(iωn)
∂(iωn)

}
∀n , (5.15)

G11(iωn) → G11(iωn) + iδω ∂G12(iωn)
∂(iωn)

G21(iωn) → G21(iωn) + iδω ∂G22(iωn)
∂(iωn)

}
∀n , (5.16)

G22(iωn) → G22(iωn) + iδω ∂G21(iωn)
∂(iωn)

G12(iωn) → G12(iωn) + iδω ∂G11(iωn)
∂(iωn)

}
∀n , (5.17)

G22(iωn) → G22(iωn) + iδω ∂G12(iωn)
∂(iωn)

G21(iωn) → G21(iωn) + iδω ∂G22(iωn)
∂(iωn)

}
∀n . (5.18)

The proof of invariance (5.15) is exemplary for the others. The latter can be written as

G11(τ) → G11(τ) + iτδωG21(τ)
G12(τ) → G12(τ) + iτδωG22(τ)

. (5.19)

The first order term is thus again trivially invariant, as it involves only Green’s functions
at τ = 0. The second order term is invariant because

G11(τ)G22(τ)−G12(τ)G21(τ) (5.20)
→ G11(τ)G22(τ)−G12(τ)G21(τ) +G21(τ)G22(τ)−G22(τ)G21(τ)

= G11(τ)G22(τ)−G12(τ)G21(τ) .

Symmetries of the Luttinger-Ward functional at particle hole symmetry

As there are only two different propagators at particle-hole symmetry (see section 4.2.4),
G and F , the eight Luttinger-Ward functional invariances derived above condense into
two simple equations, that read

G(iωn) → G(iωn) + iδω ∂G(iωn)
∂(iωn)

F(iωn) → F(iωn) + iδω ∂F(iωn)
∂(iωn)

}
∀n and (5.21)

G(iωn) → G(iωn) + iδω ∂F(iωn)
∂(iωn)

F(iωn) → F(iωn) + iδω ∂G(iωn)
∂(iωn)

}
∀n . (5.22)

5.2 Superconducting Friedel sum rule at particle hole
symmetry

5.2.1 Luttinger-Ward equations

In this section, equations (5.21) and (5.22) shall be transposed from imaginary time to
real time in order to check them in some simple limiting cases analytically in the following
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section. In the following, the discussion will be simplified by using a generic self-energy
Σα(iωn) and a generic Green’s function Gβ(iωn).

The self-energy Σα(iωn) can be written as the functional derivative of the Luttinger-
Ward functional,

Σα(iωn) =
δΦ

δGα(iωn)
. (5.23)

Let us consider the case where the functional Φ = Φ [Gα, Gβ, . . .] is invariant under the
transformation Gα(ωn)→ Gα(ωn) + iδω

∂Gβ
∂(iωn)

, i.e.

Φ [Gα, Gβ, . . .] = Φ

[
Gα + iδω

∂Gβ

∂(iωn)
, Gβ, . . .

]
(5.24)

= Φ [Gα, Gβ, . . .] +
∑
ωn

iδω
δΦ

δGα

∂Gβ

∂(iωn)
.

Now integrating by parts, one ends up with∑
ωn

∂Σα(iωn)

∂(iωn)
Gβ = 0 . (5.25)

The next step is to perform the analytic continuation of this equation, i.e. to find its
retarded real time formulation. This can be achieved by writing sums over Matsub-
ara frequencies as an integral in the complex plane via the residues of the Fermi-Dirac
distribution function. This yields∫ ∞

−∞
dω nF (ω) Im

{
∂ΣR

α (ω)

∂ω
GR
β (ω)

}
= 0 . (5.26)

For the symmetries derived above, the equations corresponding to (5.26) read

Im

{∫ ∞
−∞

dω nF (ω)

(
GR

11(ω)
∂ΣR
G

∂ω
+GR

12(ω)
∂ΣR
F

∂ω

)}
= 0 , (5.27)

Im

{∫ ∞
−∞

dω nF (ω)

(
GR

11(ω)
∂ΣR
F

∂ω
+GR

12(ω)
∂ΣR
G

∂ω

)}
= 0 . (5.28)

In the limit ∆ → 0, equations (5.27) and (5.28) both reduce to the well known
Luttinger equation for a quantum dot coupled to normal leads [77, 78]. Following the
lines of reference [78], we shall exploit these two equations to simplify

(
GR

11 +GR
12

) ∂

∂ω

1

GR
11 +GR

12

= − ∂

∂ω
ln
(
GR

11 +GR
12

)
(5.29)

=
(
GR

11 +GR
12

) ∂

∂ω

(
g−1

0
R

+ f−1
0

R − ΣR
G − ΣR

F

)
.

Plugging (5.27) and (5.28) into this equation and taking the zero temperature limit yields
the rather simple formula
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Im

{∫ 0

−∞
dω

(
∂

∂ω
ln
(
GR

11 +GR
12

)
+
(
GR

11 +GR
12

)(∂g−1
0

R

∂ω
+
∂f−1

0
R

∂ω

))}
= 0 . (5.30)

In a perfectly symmetric way, one may also derive

Im

{∫ 0

−∞
dω

(
∂

∂ω
ln
(
GR

11 −GR
12

)
+
(
GR

11 −GR
12

)(∂g−1
0

R

∂ω
− ∂f−1

0
R

∂ω

))}
= 0 . (5.31)

These expressions can be simplified further on. Indeed,∫ 0

−∞
dω

∂

∂ω
ln
(
GR

11 ±GR
12

)
=
[
ln
(
GR

11 ±GR
12

)]0
−∞ . (5.32)

For complex numbers z, the logarithm is defined by ln(z) = ln(‖z‖ ei arg(z)) = ln(‖z‖) +
i arg(z). Taking the imaginary part of the above equation will therefore simply yield the
argument of expression inside the logarithm. Yet, the latter expression is the sum or
difference of two retarded Green’s functions. Therefore, this argument must be arg(z) ∈
{−π, 0}. We thus obtain

Im

{∫ 0

−∞
dω

∂

∂ω
ln
(
GR

11 ±GR
12

)}
=

[
− arctan

(
Re
{
GR

11 ±GR
12

}
Im {GR

11 ±GR
12}

)
− π

2

]0

−∞

. (5.33)

Because the self energies ΣR
G (ω) and ΣR

G (ω) tend to zero for ω → −∞, the phase of the
Green’s functions at ω → −∞ can easily be evaluated based on the known expressions
for U = 0. Considering for example

GR
11(ω) +GR

12(ω) =
1

g−1
0

R
(ω) + f−1

0
R

(ω)− ΣR
G (ω)− ΣR

F(ω)

ω→−∞−→ 1

g−1
0

R
(ω) + f−1

0
R

(ω)
,

(5.34)

one can easily understand that both Re
{
GR

11 +GR
12

}
and Im

{
GR

11 +GR
12

}
will tend to

0−. Nevertheless, as the imaginary part tends much slower to zero than the real part,
their ratio will tend to infinity. A similar consideration holds for GR

11 − GR
12. Thus, one

ends up with

Im

{∫ 0

−∞
dω

∂

∂ω
ln
(
GR

11 ±GR
12

)}
=
π

2
− arctan

(
Re
{
GR

11(0)±GR
12(0)

}
Im {GR

11(0)±GR
12(0)}

)
. (5.35)

The Green’s functions and self energies at ω = 0 have several very useful properties.
First of all, the imaginary parts of the self energies vanish inside that gap and thus
in particular at ω = 0. Furthermore, the imaginary part of the self energy ΣR

G (ω) has
to be symmetric, just as the Green’s functions GR and GR

11. From the Kramers-Kronig
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relation, one finds thus that the real part of ΣR
G (ω) is antisymmetric in ω, and in particular

ΣR
G (ω = 0) = 0. This implies, together with equations (I.17) and (I.18), that

GR
11(ω = 0) = iη (5.36)

and
GR

12

′′
(ω = 0) = 0 . (5.37)

On the other hand,
GR

12

′
(ω = 0) 6= 0 (5.38)

due to superconducting correlations. These properties obviously simplify equation (5.35)
considerably. Putting everything together allows to write down the final version of the
Luttinger-Ward equations, that read

− 1

π

∫ 0

−∞
dω Im

(GR
11 +GR

12

) ∂ (g−1
0

R
+ f−1

0
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)
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 =
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2
− 1

2
sgn

(
ΣR
F
′
(0)− f−1

0
R′

(0)
)

,

(5.39)

− 1

π
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dω Im

(GR
11 −GR

12

) ∂ (g−1
0

R − f−1
0

R
)

∂ω

 =
1

2
+

1

2
sgn

(
ΣR
F
′
(0)− f−1

0
R′

(0)
)

.

(5.40)
Equations (5.39) and (5.40) are worth looking at in more detail. They state that at

zero temperature and in the singlet phase of the quantum dot, there are two quantized
entities. These quantities are either 1 or 0 depending on the value of the anomalous
Green’s function at ω = 0.

This is a result known from the non-superconducting case. There, the left hand side
of equations (5.39) and (5.40) is the charge added to the system by the presence of the
interacting quantum dot, the so-called excess charge. In the superconducting case, such
a simple physical interpretation is not possible. If the excess charge is calculated, one
ends up with an expression similar but not equal to equation (5.39). We attribute this
to the non-conservation of the charge in a superconducting system.

Anyhow, equations (5.39) and (5.40) above are powerful boundary conditions that
need to be satisfied as long as one stays adiabatically connected to the U = 0 phase. If
the ground state changes to a spin doublet, the basic perturbation theory around the
singlet phase considered here will show singularities and equations (5.39) and (5.40) will
be violated.

5.2.2 Some simple limiting cases

Non-interacting quantum dot (U = 0)

In this section, we shall check equations (5.39) and (5.40) in some simple limiting cases.
At first, the non-interacting case U = 0 will be considered.

The self-energies vanish identically, and so does the self-consistent parameter ∆eff =
U〈d↓d↑〉. Therefore, already equations (5.27) and (5.28) are trivially satisfied, and thus
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are all the subsequent ones. As the imaginary part of the anomalous Green’s function
is antisymmetric with respect to ω = 0 (see equation (I.16) for ∆eff = 0), ∆eff = 0 is
indeed self-consistent (see equation (4.33)).

First order approximation

In the formalism we have derived above, the first order corrections to the Green’s functions
have been absorbed into the “partly dressed” propagators. The latter have subsequently
been used for the skeleton expansion of the self energies. Therefore, the self-energies only
start at the second order (that is disregarded in a first order approximation). As a conse-
quence, equations (5.27) and (5.28) are trivially satisfied for a first order approximation.

Effective local Hamiltonian

In the effective local limit, corresponding to the large gap limit of the total Hamiltonian,
an exact solution for the interacting problem exists. In order to simplify the discussions
at much as possible, we shall further consider the limit of infinite electronic bandwidth in
the leads, i.e. D →∞. The generalization of the below considerations to finite bandwidth
is straightforward. The system has four eigenstates, that read for particle hole symmetry

| ↑〉 , energy E↑ = 0
| ↓〉 , energy E↓ = 0
|+〉 = 1√

2
(| ↑↓〉+ |0〉) , energy E+ = U

2
+ |Γϕ|

|−〉 = 1√
2

(−| ↑↓〉+ |0〉) , energy E− = U
2
− |Γϕ| ,

(5.41)

with Γϕ = Γ + cos
(
ϕ
2

)
.

Because Coulomb interaction is taken into account, the exact Green’s functions can
only be calculated in Lehmann representation (i.e. not using Wick’s theorem). They
depend on whether the ground state is the BCS-like spin singlet |−〉 or the spin 1/2
doublet and read

GR
11(ω) =


1
2

(
1

ω+iη+|Γϕ|−U2
+ 1

ω+iη−|Γϕ|+U
2

)
, U

2
< |Γϕ| (singlet phase)

1
2

(
1

ω+iη+|Γϕ|−U
2

4
1

ω+iη+|Γϕ|
+ 1

ω+iη−|Γϕ|−U
2

4
1

ω+iη−|Γϕ|

)
, U

2
> |Γϕ| (doublet phase) ,

(5.42)

GR
12(ω) =


1
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ω+iη+|Γϕ|−U2
− 1

ω+iη−|Γϕ|+U
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2
< |Γϕ| (singlet phase)

1
2

(
1

ω+iη+|Γϕ|−U
2

4
1

ω+iη+|Γϕ|
− 1

ω+iη−|Γϕ|−U
2

4
1

ω+iη−|Γϕ|

)
, U

2
> |Γϕ| (doublet phase) .

(5.43)

Sticking to the notation defined in (4.31) and (4.32), i.e.
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GR
11 =

1

2

(
1

g−1
0

R − ΣR
G + f−1

0
R − ΣR

F

+
1

g−1
0

R − ΣR
G − f

−1
0

R
+ ΣR

F

)
, (5.44)

GR
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1

2

(
1
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0

R − ΣR
G + f−1

0
R − ΣR

F

− 1

g−1
0

R − ΣR
G − f

−1
0

R
+ ΣR

F

)
, (5.45)

one can identify

g−1
0

R
= ω + iη , (5.46)

f−1
0

R
= |Γϕ| , (5.47)

ΣR
G =

0 , U
2
< |Γϕ| (singlet phase)

U2

4
ω+iη

(ω+iη)2−Γϕ2 , U
2
> |Γϕ| (doublet phase) ,

(5.48)

ΣR
F =


U
2

, U
2
< |Γϕ| (singlet phase)

−U2

4

|Γϕ|
(ω+iη)2−Γϕ2 , U

2
> |Γϕ| (doublet phase) .

(5.49)

Quite interestingly, the exact self energies are purely first order in U in the singlet
phase and purely second order in the doublet phase [24]. The abrupt transition between
these two self-energy dependences shows how a simple perturbation theory around the
singlet phase breaks down as soon as the doublet becomes the ground state. As mentioned
before, and as we shall see in a moment, this implies especially that the Luttinger-Ward
equations (5.39) and (5.40) (based explicitly on the perturbation expansion) are only
valid in the singlet phase.

The evaluation of the Luttinger-Ward equations in the singlet phase is rather simple.
The self-energies are purely real, and so are g−1

0
R and f−1

0
R and the Green’s functions

apart the Andreev bound states. To be completely consistent with section 4.2.4, the
first order self-energies are again incorporated into the now “partly dressed” propagators.
Then,

g−1
0

R
= ω + iη , (5.50)

f−1
0

R
= |Γϕ| −∆eff and ∆eff =

U

2
, (5.51)

ΣR
G = 0 , (5.52)

ΣR
F = 0 . (5.53)

Thus, the imaginary part of the Green’s functions reads

Im
{
GR

11 +GR
12

}
= −πδ(ω + |Γϕ| −

U

2
) (5.54)

Im
{
GR

11 −GR
12

}
= −πδ(ω − |Γϕ|+

U

2
) (5.55)

As the self-energies vanish within this definition, one might simply apply the proof
given above for the first order. Yet, it is instructive to evaluate equations (5.39) and
(5.40) at least once. We start off by computing
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= − 1

π

∫ 0

−∞
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)
· (1 + 0) .

In the singlet phase, |Γϕ| − U/2 > 0, which yields
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An analogous calculation yields
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For the Luttinger-Ward equations (5.39) and (5.40) to be satisfied, this imposes

1
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)
, (5.59)

0
!

=
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2
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2
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2
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)
, (5.60)

which is obviously true in the singlet phase. The last part of the consistency check is the
evaluation of ∆eff . According to

∆eff = U〈d↓d↑〉 = −U
π

Im

{∫ ∞
−∞

dω GR
12(ω)

}
= −U
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·
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2
)− δ(ω − |Γϕ|+
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2
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(5.61)

=
U

2
.

The exact solution in the wide gap ∆ limit thus indeed satisfies the Luttinger-Ward
equations and the self-consistency of the local pairing amplitude. Before ending by some
remarks on the evaluation of the Luttinger-Ward equations in a general regime, we shall
show that in the spin doublet phase (i.e. the one not adiabatically connected to non-
interacting limit), the Luttinger-Ward equations are violated. First of all, we notice
that

∆eff = U〈d↓d↑〉 = 0 ,
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because there are no superconducting correlations on a purely singly occupied dot. There-
fore,

g−1
0

R
= ω + iη , (5.62)

f−1
0

R
= |Γϕ| , (5.63)

ΣR
G =

U2

4

ω + iη

(ω + iη)2 − Γϕ
2 , (5.64)

ΣR
F = −U

2

4

|Γϕ|
(ω + iη)2 − Γϕ

2 . (5.65)

Again, self energies as well as g−1
0

R and f−1
0

R are real, so that only the bound states
contribute. For equation (5.39), the contribution of the latter is given by
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Using the fact that the doublet phase is characterized by U
2
> |Γϕ|, we obtain analogously

to equation (5.56)
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In order to respect the Luttinger-Ward equation (5.39), we would thus need to have

1

2
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=
1

2
− 1

π
arctan

(
U2

4|Γϕ| − |Γϕ|
η

)
= 0 . (5.68)

This is of course wrong, which shows that the Luttinger-Ward equations based on the
perturbation theory set up in chapter 4 are in general only valid in the singlet phase.

Numerical evaluation for arbitrary parameters

We shall finish with some remarks on the numerical evaluation of the Luttinger-Ward
equations in general parameter regime. As they are singular contributions to equations
(5.39) and (5.40), one needs to deal with the Andreev bound states separately. Neverthe-
less, also the evaluation of the integrals corresponding to the continuum of states above
the gap is numerically somewhat tricky, because the gap edge has a singular contribution
as well. These singularities can by avoided by subtracting the first order Luttinger-Ward
equations (that have been shown to be always satisfied in the singlet phase). Indeed, the
integral
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turn out to converge much better than the simple equations (5.39) and (5.40). The
Luttinger-Ward equations have been checked for the pertubative approach for various
parameters (e.g. for all the results presented in section 4.3); they are satisfied within
numerical precision.
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Chapter 6

Conclusion

6.1 Summary and Conclusions

The beginning of this diploma thesis was devoted to the rederivation of some well-known
results. After having gained some information on the electronic structure of a non-
interacting single quantum dot, the Josephson current through this system has been
reanalyzed. It has been checked that the latter has two contributions, namely one of the
bound states inside the gap and one of a continuum of states outside the gap. These
contributions were found to have opposite signs. Using a perturbation theory around
the weak hybridization limit, it has further been explained that the total Josephson
current changes its sign if the quantum dot becomes magnetic (i.e. observation of a 0−π
transition).

The next chapter presented a new perturbative calculation scheme around an effective
local Hamiltonian. In order to obtain the latter, the total Hamiltonian was transposed
into an action-based description. The effective local Hamiltonian corresponds to the
low frequency limit of this action, i.e. the limit where the superconducting gap is much
bigger than the characteristic frequencies of the dot. In this limit, the dot is described
by superconducting atomic states. Within the effective local Hamiltonian approach,
the energies of the Andreev bound states are described as the energy differences of the
superconducting atomic states.

We have then set up a self-consistent perturbation theory around the effective local
Hamiltonian that describes how the superconducting atomic states mix if the gap de-
creases. This leads to a non-trivial renormalization of the Andreev bound states. By
comparison to recent NRG data, we could show that our approach accurately describes
the Andreev bound states as well as the superconducting correlations on the dot as
a function of gate voltage, hybridization, Coulomb interaction and superconducting gap
amplitude. As a major limitation, the Kondo regime could only be captured qualitatively,
because of vertex corrections that have not been included in our energy corrections.

Due to its simple and reliable description of the Andreev bound states, the effective
local Hamiltonian approach should be readily applicable to describe future spectroscopic
measurements. The main advantage of our formalism, compared to numerical calcula-
tions, is that it is based on simple, analytic equations. It should thus not be very difficult
to transpose it to more complex systems, like double dots. Indeed, a short glance at a
generalization of our approach to double dots completed this part of the thesis.

The fourth chapter described a perturbation theory in the Coulomb interaction. As

75
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the latter can be a large energy scale in experimental systems, the perturbation expansion
had to be pushed to the second order. Using a skeleton expansion, we were able to resum
certain diagrams to infinite order. Nevertheless, this perturbation theory, set up around
the non-interacting limit, is only valid in the singlet phase of the quantum dot. In this
phase, the physics is indeed very well described, as has been shown by comparison to
both numerical data and results obtained with the effective local Hamiltonian approach.

We found that the intermediate coupling regime was satisfactorily described by all
three approaches. Still, the two analytic approaches are complementary. For large gaps,
when the proximity effect becomes less important and the dot is in a spin doublet phase,
only the effective local Hamiltonian is able to give correct results. On the other hand, the
latter cannot describe the low gap regime. This regime, on the contrary, is well captured
by the perturbation expansion in the Coulomb interaction. The two analytic approaches
thus constitute a set of tools that describes almost any experimentally relevant regime
quantitatively (except for the Kondo regime at very large Coulomb interaction and near
particle hole symmetry).

The fifth and last chapter dealt with the derivation of the Luttinger-Ward functional
of a quantum dot connected to superconducting electrodes. The explicit expression of
the latter has been found up to the second order based on the perturbation expansion in
the Coulomb interaction. The symmetries of the Luttinger-Ward functional allowed us
to derive two Luttinger-Ward equations. We found two quantized entities (instead of just
one for the case of normal electrodes), linked to the normal and anomalous propagators.
These equations, that may serve as powerful boundary conditions in numerical studies,
have been checked analytically in some simple limiting cases, but also numerically in a
general regime of parameters for the second order perturbation calculation of chapter 4.

6.2 Outlook
A first objective is to increase the validity and exactness of the low frequency expansion.
It would be especially desirable to capture the Kondo temperature correctly by eventually
including the vertex corrections.

A second aim would be to further analyze the double dot structure, for example using
the perturbative approach developed in this thesis (i.e. around the low frequency limit).
Yet, different approaches may be necessary for different regimes.

Furthermore, it would certainly be of great interest to try and generalize the invari-
ances of the Luttinger-Ward functional to infinite order. Also, one might use them as
self-consistency conditions in, for instance, a generalized local moment approach (LMA)
calculation.

Finally, a generalization of the effective local Hamiltonian approach to non-equilibrium
situations, i.e. applied bias voltage across the junction, would be desirable. In this con-
text, recent work by Governale, Pala and König [43, 60, 64] might be a promising starting
point. Based on a diagrammatic technique, they analyzed the out-of-equilibrium physics
of a quantum dot coupled to superconducting and normal electrodes. The spectroscopy
of Andreev bound states by such a device, which could for instance be an STM (scanning
tunneling microscope, see below), is also envisioned. Yet, their work only deals with
the large gap limit ∆ → ∞. The combination of our perturbation theory around the
effective local Hamiltonian and their diagrammatic approach is a promising candidate
for the description of the out-of-equilibrium physics of a superconducting quantum dot
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Figure 6.1: Sketch of a STM Andreev spectroscopy experiment [11] (see text).

in a general regime of parameters.

6.2.1 Andreev bound state spectroscopy

As discussed in the introduction, we expect the effective local Hamiltonian approach de-
veloped in this thesis to describe Andreev bound state spectroscopy experiments. ABS
spectroscopy has been discussed recently for microwave experiments [10] and noise mea-
surements [12] on quantum dots. Additionally, the spectrum of a superconducting quan-
tum dot could be measured by a transport setup through a STM, as has been suggested
in reference [43]. Indeed, STM spectroscopy experiments on carbon nanotubes are sched-
uled in the near future at the CNRS Grenoble [11]. Figure 6.1 shows a sketch of the
intended experimental setup. A carbon nanotube (CNT) connected to superconducting
electrodes corresponds to the quantum dot considered in this thesis. In order to measure
the density of states of the latter, a STM tip will be placed on top of the nanotube.
The energy levels of the carbon nanotube can be controlled by means of a gate voltage
Vg. Eventually, a bias voltage can be applied, so that a current I would flow across the
junction.

In contrast to more standard transport experiments, where the current through elec-
trodes and dot as a function of an applied bias voltage across the junction is measured,
this device has the striking advantage that the hybridization of the nanotube to the su-
perconducting electrodes can be controlled separately from the tunnel coupling to the
STM tip. This way, the carbon nanotube can be coupled sufficiently strongly to the
superconducting electrodes for the proximity effect to be well-established, while the den-
sity of states is probed by a weak tunneling link. This is indeed an advantage compared
to more standard transport experiments, where it is difficult to perform a true tunnel
spectroscopy in regimes where the proximity effect is important.
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Appendix A

Some conventions on Matsubara
Green’s functions

Quite often, the Matsubara imaginary-time formalism is used to calculate Green’s func-
tions. It allows to treat the perturbation expansions of the time evolution operator U(t, t′)
and the Boltzmann factor e−βH (β = 1

kT
) in one single go. Nevertheless, one should al-

ways bear in mind that the Matsubara formalism is only valid for time independent
Hamiltonians (including possible perturbations). If a perturbation is time dependent, a
non-equilibrium formalism (e.g. Keldysh formalism) has to be used.

The real time Green’s functions like the retarded Green’s function
GR(~r, σ, t;~r′, σ′, t′) = −iθ(t′ − t)〈[Ψσ(~r, t),Ψ†σ′(~r

′, t′)]±〉 have the form of a correlation
function (with commutators for bosons and anticommutators for fermions). The Mat-
subara formalism is based on correlation functions that generalize these Green’s functions.
The innovation is the use of an imaginary time, basically “replacing” i t by τ . Deeper
insight in this formalism can be found in textbooks [53]. Here shall only be given some
definitions and properties concerning Matsubara Green’s functions.

A Matsubara Green’s function is defined by

CAB(τ, τ ′) := −〈TτA(τ)B(τ ′)〉 , (A.1)

where A and B are two observables and Tτ is the imaginary-time ordering operator. Two
central properties of CAB(τ, τ ′) are

CAB(τ, τ ′) = CAB(τ − τ ′, 0) := CAB(τ) (A.2)
CAB(τ) = ±CAB(τ + β) (A.3)

(+ for bosons and − for fermions).
Very often, Fourier transforms of Matsubara Green’s functions have to be dealt with.
These are defined by

CAB(iωn) =

∫ β

0

dτeiωnτCAB(τ) (A.4)

with the Matsubara frequencies

ωn =

{
2nπ
β

, for bosons
(2n+1)π

β
, for fermions.

(A.5)
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The inverse transformation is given by

CAB(τ) =
1

β

∞∑
n=−∞

e−iωnτCAB(iωn). (A.6)

The real frequency Green’s functions (retarded and advanced) can be recovered once the
Matsubara Green’s functions are evaluated by an analytic continuation:

CR
AB(ω) = CAB(iωn → ω + iη) (A.7)

CA
AB(ω) = CAB(iωn → ω − iη) (A.8)

with η → 0+.
While working with Matsubara Green’s functions, sums over Matsubara frequencies

of the form

1

β

∑
iωn

CAB(iωn)eiωnτ , τ > 0

might be encountered. In order to evaluate these, the residue theorem can be used. To
do so, functions with poles at the Matsubara frequencies are needed. These functions are
(for bosons and fermions respectively) the well-known bosonic and fermionic distribution
functions (if they are considered as functions of z ∈ C):

nB(z) =
1

eβz − 1
, poles for z =

i2nπ

β
(A.9)

nF (z) =
1

eβz + 1
, poles for z =

i(2n+ 1)π

β
(A.10)

The residues of these functions are res(nB; iωn) = 1
β

and res(nF ; iωn) = − 1
β
. Thus,

fermionic Matsubara sums can be rewritten as

1

β

∑
iωn

CAB(iωn)eiωnτ = −
∮
c

dz

2πi
nF (z)CAB(iωn) (A.11)

(similar formulas exist for bosonic Green’s function). Thereby, c labels a contour enclosing
all poles of the distribution function.

Finally, the Matsubara Green’s function can be calculated, just as real-time Green’s
functions, via the equation of motion technique. This technique is nothing but the tran-
script of the Schrödinger equation to Green’s functions. The basic ingredient is the
use of the Heisenberg equation of motion for an operator A(t), given by i d

dt
A(t) =

[A(t), H] + i( ∂
∂t
AS(t))H (noting A(t) an operator in the Heisenberg picture, AS(t) the

same operator in the Schrödinger picture and (·)H the entity (·) in the Heisenberg pic-
ture). In terms of imaginary-time, this equation yields

d

dτ
A(τ) =

∂

∂τ
A(τ) = [H,A(τ)]. (A.12)

The imaginary unit i has disappeared as a consequence of the imaginary-time formalism.
Applying these relations to the Matsubara Green’s function, the equation of motion reads
(with + for bosons and − for fermions):
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d

dτ
CAB(τ) =

∂

∂τ
{−θ(τ)〈A(τ)B(0)〉 − (±)θ(−τ)〈B(0)A(τ)〉}

= −δ(τ)〈A(τ)B(0)− (±)B(0)A(τ)〉 − 〈Tτ [H,A](τ)B(0)〉
= −δ(τ)〈[A(0), B(0)]±〉 − 〈Tτ [H,A](τ)B(0)〉 (A.13)
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Appendix B

Analytic continuation

Whilst dealing with Green’s functions, it is often convenient to work in the Matsubara
imaginary-time formalism. Nevertheless, physical quantities are related to the real-time
Green’s functions. To establish the link between these two, Lehmann representation
for generic imaginary-time Green’s functions CAB(τ, τ ′) and retarded real-time Green’s
functions CR

AB(t, t′) can be used. The latter are defined by

CAB(τ, τ ′) = −〈TτA(τ)B(τ ′)〉 (B.1)

and
CR
AB(t, t′) = −iθ(t− t′)〈[A(t), B(t′)]±〉 . (B.2)

These expressions can readily be Fourier transformed and rewritten in Lehmann repre-
sentation, which yields

CAB(iωn) =
1

Z

∑
n,n′

〈n|A|n′〉〈n′|B|n〉
iωn + En − En′

(
e−βEn − (±)e−βEn′

)
(B.3)

and
CR
AB(ω) =

1

Z

∑
n,n′

〈n|A|n′〉〈n′|B|n〉
ω + En − En′ + iη

(
e−βEn − (±)e−βEn′

)
, (B.4)

where Z is the system’s partition function, |n〉 and |n′〉 the eigenstates of its Hamiltonian.
The sign + (−) is for bosonic (fermionic) operators and η → 0+.

Now, the remarks in appendix A on the recovery of the retarded Green’s function
from the Matsubara Green’s function by an analytic continuation iωn → ω + iη are
obvious. Nevertheless, this analytic continuation needs to be done carefully. Especially,
the above derivation only holds if the Matsubara Green’s function has the form of an
rational function.

The analytic continuation is not always trivial. Fortunately, working the above
Lehmann representation, a helpful relation can be derived:

CR
AB(ω) =

1

Z

∑
n,n′

〈n|A|n′〉〈n′|B|n〉
ω + En − En′ + iη

(
e−βEn − (±)e−βEn′

)
(B.5)

=
1

Z

∑
n,n′

〈n|A|n′〉〈n′|B|n〉
(
e−βEn − (±)e−βEn′

)
·
(
P 1

ω + En − En′
− iπδ(ω + En − En′)

)
,
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and thus

Im{CR
AB(ω)} =

−iπ
Z

∑
n,n′

〈n|A|n′〉〈n′|B|n〉
(
e−βEn − (±)e−βEn′

)
δ(ω + En − En′) . (B.6)

Using this equation, the Matsubara Green’s function can be written as

CAB(iωn) = −
∫
dE
π

Im{CR
AB(E)}

iωn − E
=

∫
dE
π

Im{CR
AB(E)}

ωn2 − E2
(iωn + E) . (B.7)

Finally, an instructive example shall be inspected, i.e. the analytic continuation of the
function

C(iωn) =
1√

∆2 + ωn2
=

1√
∆2 − (iωn)2

. (B.8)

The latter is particularly interesting because an analytic continuation of this type is
needed in section 2.2.2.
If |∆| > |ωn|, the continuation is straightforward and yields

CR(ω) =
1√

∆2 − (ω + iη)2

|∆|>|ωn|
=

1√
∆2 − ω2

. (B.9)

If |∆| < |ωn|, the continuation is a priori not obvious:

CR(ω) =
1√

∆2 − (ω + iη)2

|∆|<|ωn|
=

1√
−(ω2 −∆2)

?
=

{
+i√
ω2−∆2

−i√
ω2−∆2

(B.10)

Which of the two signs is the right one? Or may there be different signs for different values
of ω? These questions can be answered using equation (B.7). Firstly, C(iωn) = 1√

∆2+ωn2

is an even function of ωn and entirely real. This means that Im{CR(E)} needs to be an
odd function of E . Furthermore, C(iωn) is > 0, which yields the ansatz

CR(ω) =

{
1√

∆2−ω2 , |∆| > |ωn|
+i sgn(ω)√
ω2−∆2 , |∆| < |ωn| .

(B.11)

Using equation (B.7) it can easily be checked that this is indeed the correct analytic
continuation.



Appendix C

Derivation of the superconducting
single dot’s Green’s functions

The Green’s functions of the non-interacting superconducting single dot system are most
conveniently derived in Nambu notation using the spinors defined in section 2.2.1. The
Green’s functions then become 2×2 matrices. The dot’s Green’s function is given by

Ĝ0
d,d(τ) = −〈TτΨD(τ)Ψ†D(0)〉 (C.1)

=

(
−〈Tτd↑(τ)d†↑(0)〉 −〈Tτd↑(τ)d↓(0)〉
−〈Tτd†↓(τ)d†↑(0)〉 −〈Tτd†↓(τ)d↓(0)〉 .

)

The system’s other Green’s function are defined by

ĜU=0
~ki,d

(τ) = −〈TτΨ~k,i
(τ)Ψ†D(0)〉 , (C.2)

ĜU=0
~ki,~ki

(τ) = −〈TτΨ~k,i
(τ)Ψ†~k,i(0)〉 . (C.3)

They are evaluated using the equation of motion (see appendix A),

d

dτ
ĜAB(τ) = −δ(τ)〈{A(0), B(0)}〉 − 〈Tτ

(
d

dτ
A

)
(τ)B(0)〉. (C.4)

Thus, the imaginary-time derivatives of the different spinors need to be calculated:

∂

∂τ
d↑(τ) = [H0, d↑(τ)] = −εd d↑(τ)−

∑
~k,i

tei
1
2
ϕic~k,↑,i(τ) ,

∂

∂τ
d†↓(τ) = [H0, d

†
↓(τ)] = εd d

†
↓(τ) +

∑
~k,i

te−i
1
2
ϕic†~k,↓,i(τ)

⇒ ∂

∂τ
ΨD(τ) = −ĤDΨD(τ)−

∑
~k,i

ĤTi
Ψ~k,i

(τ) . (C.5)
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∂

∂τ
c~k,↑,i(τ) = [H0, c~k,↑,i(τ)] = −ε~k,ic~k,↑,i(τ) + ∆c†

−~k,↓,i
(τ)− te−i

1
2
ϕid↑(τ) ,

∂

∂τ
c†
−~k,↓,i

(τ) = [H0, c
†
−~k,↓,i

(τ)] = ε−~k,ic
†
−~k,↓,i

(τ) + ∆∗c~k,↑,i(τ) + tei
1
2
ϕid†↓(τ)

⇒ ∂

∂τ
Ψ~k

(τ) = −Ĥ~k,i
Ψ~k,i

(τ)− Ĥ†TiΨD(τ) . (C.6)

Using (C.4) - (C.6), the time derivatives of the Green’s functions (C.1) - (C.3) take the
form

∂

∂τ
Ĝ0
d,d(τ) = −δ(τ)1− ĤDĜ

0
d,d(τ)−

∑
~k,i

ĤTi
ĜU=0
~ki,d

(τ) , (C.7)

∂

∂τ
ĜU=0
~ki,d

(τ) = −Ĥ~k,i
ĜU=0
~ki,d

(τ)− Ĥ†TiĜ
0
d,d(τ) . (C.8)

Fourier transforming and combining these expressions yields

Ĝ0
d,d(iωn) =

iωn1− ĤD −
∑
~k,i

ĤTi

(
iωn1− Ĥ~k,i

)−1

Ĥ†Ti

−1

, (C.9)

ĜU=0
~ki,d

(iωn) =
(
iωn1− Ĥ~k,i

)−1

Ĥ†TiĜ
0
d,d(iωn) . (C.10)

With these considerations, the actual expression of the Green’s function Ĝ0
d,d(τ) can be

computed. The most difficult step is the inversion of a 2× 2 matrix, i.e.

(
iωn1− Ĥ~k,i

)−1

=

(
iωn − ε~k,i ∆

∆ iωn + ε~k,i

)−1

(C.11)

=
1

(iωn)2 − ε~k,i2 −∆2

(
iωn + ε~k,i −∆

−∆ iωn − ε~k,i

)
.

The next step is the calculation of∑
~k,i

ĤTi

(
iωn1− Ĥ~k,i

)−1

Ĥ†Ti =
∑
i

ĤTi
Ĝ0
i Ĥ

†
Ti

(C.12)

with

Ĝ0
i =

∑
~k

1

(iωn)2 − ε~k,i2 −∆2

(
iωn + ε~k,i −∆

−∆ iωn − ε~k,i

)
. (C.13)

In the above equation, Ĝ0
i is the bare Green’s function, i.e. decoupled from the dot, for

the lead i (i = L,R). In order to evaluate Ĝ0
i , the electrons in the leads are supposed to

be in a flat and infinite band with a constant density of states ρ0, which leads to
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Ĝ0
i =

∑
~k

1

(iωn)2 − ε~k,i2 −∆2

(
iωn + ε~k,i −∆

−∆ iωn − ε~k,i

)

→
∫ ∞
−∞

dε ρ0
1

(iωn)2 − ε2 −∆2

(
iωn + ε −∆
−∆ iωn − ε

)
(C.14)

=
πρ0√

∆2 − (iωn)2

(
−iωn ∆

∆ −iωn

)
.

Putting everything together yields the final expression of the dot’s Green’s function,

Ĝ0
d,d(iωn) =

1

Det(iωn)

(
iωn + εd −

∑
i t

2G0
i,22 −

∑
i t

2e−iϕiG0
i,12

−
∑

i t
2eiϕiG0

i,21 iωn − εd −
∑

i t
2G0

i,11

)
,

(C.15)

where G0
i,αβ denotes the matrix element Ĝ0

i |α,β and

Det(iωn) =
∣∣∣Ĝ0

d,d(iωn)−1
∣∣∣

= (iωn(1 + α(iωn))− εd) · (iωn(1 + α(iωn)) + εd) (C.16)

−
(
α(iωn)∆ cos(

ϕ

2
)
)2

.

In the above equation, ϕ = ϕL − ϕR is the phase difference of the two superconducting
electrodes and

α(iωn) =
2πρ0t

2√
∆2 − (iωn)2

=
Γ√

∆2 − (iωn)2
. (C.17)
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Appendix D

The Bogoliubov transformation for the
effective local Hamiltonian

The diagonalization of the quantum dot system’s effective BCS Hamiltonian can be
achieved using a transformation proposed by Bogoliubov. In the present case of an effec-
tive local Hamiltonian, the first step is to rewriteHeff =

∑
σ ξdd

†
σ,1dσ,1−

(
Γϕd

†
↑,1d

†
↓,1 + h.c.

)
+

U1

2

(∑
σ d
†
σ,1dσ,1 − 1

)2

with Γϕ = Γ 2/π arctan (D/∆) cos(ϕ
2
) in Nambu notation. For the

non-magnetic subspace, this yields

Heff =

(
d↑,1
d†↓,1

)†(
ξd −Γϕ
−Γ∗ϕ −ξd

)(
d↑,1
d†↓,1

)
+ ξd +

U1

2
. (D.1)

The Bogoliubov transformation consists of the ansatz(
γ↑
γ†↓

)
=

(
u∗ v
−v∗ u

)(
d↑,1
d†↓,1

)
. (D.2)

The constraint for γσ to be a fermionic operator yields |u|2 + |v|2 = 1, derivable by a
straightforward calculation using the commutation relations. This is why |u| and |v| can
be written as |u| = cos(θ) and |v| = sin(θ). These new operators are now inserted into
Heff . The above transformation diagonalizes the Hamiltonian if the equations

tan(2θ) = −|Γϕ|
ξd

and (D.3)

θu + θv =
ϕL + ϕR

2
(D.4)

are fulfilled (where the notations u = |u|eiθu and v = |v|eiθv have been used). Using these
results yields

Heff =

(
γ↑
γ†↓

)†(
E+ 0
0 E−

)(
γ↑
γ†↓

)
, (D.5)

with E± = ±
√
ξd

2 + Γϕ
2+ξd+

U1

2
. In addition, it can be shown that |u|2 = 1

2

(
1 + ξd√

ξd
2+Γϕ2

)
and |v|2 = 1

2

(
1− ξd√

ξd
2+Γϕ2

)
. Finally, as the absolute value of the superconductors’
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phases is without physical meaning, equation (D.4) implies that u, v ∈ R is always a
possible choice.



Appendix E

Some basics of quantum field theory

E.1 Introduction

Quantum field theory (often referred to with the abbreviation QFT) has been developed
in the mid-20th-century and can be regarded as the quantum mechanics analogue of the
classical Hamilton-Lagrange formalism. In the latter, the (classical) trajectory q(t) of a
particle corresponds to an extremum of the action S[q(t)] =

∫ t2
t1
L[q(t), q̇(t), t]dt.

The idea behind quantum field theory is to generalize this formalism to quantum
mechanics, which has initially been formulated in a Hamiltonian approach. Pioneer work
was done by Richard P. Feynman [86], who developed the so-called Feynman path integral
for single particles. Different to classical particles, a quantum particle does not need
to obey strict energy and momentum conservation, but has a Heisenberg uncertainty.
Thus, also trajectories which are not the “optimal”, classical one are possible. Now, in
terms of an action-based description, this means that not only the classical trajectory,
but also other trajectories “close” to the classical one contribute to the action S[q(t)] =∫ t2
t1
L[q(t), q̇(t), t]dt. Still, these trajectories have a smaller contribution than the classical

one.
As an example for such processes, a tunneling event out of a potential well (e.g. of

an electron in a free atom) may be considered. Classically, the particle has no chance
of leaving the well. Nevertheless, a quantum mechanics particle may tunnel through
the potential barrier and leave the well. This explains for example the spontaneous
disintegration of radioactive atoms.

The generalization of the Feynman path integral to many-particle physics is called
“quantum field theory”. For more explicit explanations, the reader is referred to references
[87] or [88], for example.

E.2 Grassmann numbers

As suggested by its name, the quantum field theory uses second quantization parti-
cle fields. Two types of fields need to be distinguished, namely bosonic and fermionic
fields. Different to bosonic fields, which commute, fermionic fields anticommute. Whereas
bosonic fields can be described by complex numbers (that commute), fermionic fields can
not be dealt with in a “standard” way. Indeed, a new kind of numbers needs to be intro-
duced: the so-called Grassmann numbers. Not very much needs to be known about them
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(for instance, no norm is defined for Grassmann numbers, they can thus not be regarded
as “small” or “big”), but they have some important properties.

First of all, Grassmann numbers anticommute with Grassmann numbers and fermionic
operators,

[η, η′]+ = [η, c]+ = [η, c†]+ = 0 . (E.1)

In particular, this implies that η η = 0. Secondly, functions of Grassmann numbers are
defined by their Taylor expansion:

f(η1, ..., ηk) =
∞∑
n=0

k∑
i1,...,in=1

1

n!

∂nf

∂ηi1 · · · ηin

∣∣∣∣
ηj=0 ∀j

ηi1 · · · ηin . (E.2)

Thirdly, integrals over Grassmann numbers are defined as

∫
dηi = 0 and (E.3)∫
dηiηj = δi,j . (E.4)

This implies that integration and differentiation of Grassmann numbers is the same:∫
dηf(η) =

∫
dη

(
f(0) +

∂f

∂η

∣∣∣∣
η=0

η

)
=
∂f

∂η

∣∣∣∣
η=0

=
∂f

∂η
. (E.5)

E.3 The partition function
The basis for all calculations in quantum field theory is the partition function Z =
tr{e−β(H−µN)}. How can this trace be evaluated for a general, fermionic Hamiltonian
H, containing any kind of combinations of creation and annihilation operators c† and c?
The answer of quantum field theory is the use of so-called coherent states |η〉 which are
eigenstates of the annihilation operator, c|η〉 = η|η〉. The fermionic coherent states are
given by

|η〉 = exp
{
−ηc†

}
|0〉 (E.6)

(where |0〉 denotes the vacuum).
The analog of a hermitian conjugate of a coherent state is

〈η| = 〈0| exp {−c η} = 〈0| exp {η c} . (E.7)

Note that Grassmann numbers are not complex numbers. This is why η is not the
complex conjugate of η, but has to be seen as a different and completely independent
Grassmann number. Therefore, the generalization of a Gaussian integral of complex
numbers,

∫
dr dϕ e−z

∗z =
∫
dRe{z} d Im{z} e−z∗z = π reads∫

dη dη e−ηaη = a . (E.8)
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It shall again be insisted on the fact that the integration over η and η are independent.
The overlap of two coherent states is found to be

〈η′|η〉 = exp {η′η} (E.9)

and because of equations (E.3) and (E.4), the Grassmann number’s completeness relation
is

1 =

∫
d(η, η) e−η

′η |η〉〈η| . (E.10)

With these basic relations, the partition function for fermions can finally be derived.
Starting point is the general definition

Z = tr{e−β(H−µN)} =
∑
n

〈n|e−β(H−µN)|n〉 . (E.11)

The above Hamiltonian is written in terms of fermionic creation and annihilation oper-
ators, H = H(c, c†). These operators now need to be in “normal order”, i.e. all creation
operators at the left side of the different terms and the annihilation operators at the right
side. The Hamiltonian is then given by a sum of terms of the form c†ic

†
j · · · c

†
kclcm · · · cn.

Then, a 1 of coherent states is injected, yielding

Z =

∫
d(η, η) e−η

′η
∑
n

〈n|η〉〈η|e−β(H(c†,c)−µN(c†,c))|n〉 . (E.12)

Finally, 〈n|η〉〈η|n〉 = 〈−η|n〉〈n|η〉 is used. Note that there is a sign change due to the
commutation of two fermionic fields [87]. Furthermore, 1 =

∑
n |n〉〈n| is always true.

This yields

Z =

∫
d(η, η) e−η

′η 〈−η|e−β(H(c†,c)−µN(c†,c))|η〉 . (E.13)

Although it would be tempting to simply replace the fermionic operators in H(c†, c) and
N(c†, c) by the corresponding Grassmann fields, different operators and Grassmann fields
do in general not commute. This is why β(H(c†, c)−µN(c†, c)) has to be subdivided into
small intervals δ = β

N
. The exponential function can now be Taylor expanded. Terms that

include two operators (which might not commute) are small as δ2 and can be neglected,

〈−η|e−β(H(c†,c)−µN(c†,c))|η〉 = 〈−η|e−δ
∑N−1
n=0 (H(c†,c)−µN(c†,c))|η〉 (E.14)

≈ 〈−η|
N−1∏
n=0

(1− δ(H(c†, c)− µN(c†, c)))|η〉 .

Now, a “Grassmann-1” is inserted between the different time steps and the product can
be re-exponentiated. This yields

Z =

∫ N∏
n=0

d(ηn, ηn) e−δ
∑N−1
n=0 [δ−1(ηn−ηn+1)ηn+H(ηn+1,ηn)−µN(ηn+1,ηn)] . (E.15)
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If the limit N →∞ is taken, the partition function becomes

Z =

∫
D(η, η)e−S[η,η] with (E.16)

S[η, η] =

∫ β

0

dτ

[
η
∂

∂τ
η +H(η, η)− µN(η, η)

]
with the conditions η(0) = −η(β) and η(0) = −η(β). Note that in the above derivation,
the definition

∑
n

δ−1(ηn − ηn+1)ηn =
∑
n

ηn − ηn+1

δ
ηn

N→∞→
∫
dτ

(
− ∂

∂τ
η

)
η =

∫
dτη

∂

∂τ
η (E.17)

has been used. Nonetheless, as Grassmann numbers do not have a defined norm, ηn−ηn+1

can not be regarded as small, even if N → ∞ [88]. What are the consequences of the
simplification ηn−ηn+1

δ
ηn

N→∞→
(
− ∂
∂τ
η
)
η? If for example the Matsubara Fourier transform

is taken, the term − ∂
∂τ

yields an iω. In fact, if the above approximation is not used,
this term would be replaced by eiω − 1. This means that only quantities insensitive
to high frequencies are fully captured by the above approximation. Especially the free
energy may come out wrong. Nevertheless, all correlation functions will be reproduced
correctly: they are given by derivatives of the free energy, which makes the integrals
sufficiently insensitive to high frequencies.

Fairly often, calculations will be done in the above mentioned Matsubara frequency
space. Using the standard Matsubara frequencies ωn, the Fourier transforms of the fields
are given by

η(τ) =
1

β

∑
ωn

ηne
−iωnτ and ηn =

1

β

∫ β

0

dτη(τ)eiωnτ , (E.18)

η(τ) =
1

β

∑
ωn

ηne
iωnτ and ηn =

1

β

∫ β

0

dτη(τ)e−iωnτ . (E.19)

The Fourier transformation of an action

S[η, η] =

∫ β

0

dτ

[∑
i,j

ηi(τ)[(
∂

∂τ
− µ)δi,j + hi,j]ηj(τ) +

∑
i,j,k,l

Vi,j,k,lηi(τ)ηj(τ)ηk(τ)ηl(τ)

]
(E.20)

yields

S[η, η] =
∑
i,j,ωn

ηi,n[(−iωn − µ)δi,j + hi,j]ηj,n+
1

β

∑
i,j,k,l,{ωni}

Vi,j,k,lηi,n1
ηj,n2

ηk,n3ηl,n4δn1+n2,n3+n4

(E.21)
(using the identity

∫ β
0
dτe−iωnτ = βδωn,0). Note that (−iωn − µ)δi,j + hi,j is an inverse

interaction-less Green’s function G−1
0 (iωn) (c.f. the Green’s functions in appendix C).



Appendix F

Derivation of the effective action

A fairly compact and efficient way to derive the energy corrections of a perturbed system
is the use of quantum field theory, a formalism that directly yields the system’s partition
function. Some remarks on this formalism can be found in appendix E. Just as for the
creation and annihilation operators, Nambu notation is used for the Grassmann fields:

Ψ~k,i(τ) =

(
c~k,↑,i(τ)

c−~k,↓,i(τ)

)
, Ψ~k,i(τ) =

(
c~k,↑,i(τ), c−~k,↓,i(τ)

)
,

Ψd(τ) =

(
d↑(τ)

d↓(τ)

)
, Ψd(τ) =

(
d↑(τ), d↓(τ)

)
.

Their Fourier transforms are given by

Ψn = 1√
β

∫ β
0
dτΨ(τ)eiωnτ , Ψ(τ) = 1√

β

∑
ωn

Ψne
−iωnτ ,

Ψn = 1√
β

∫ β
0
dτΨ(τ)e−iωnτ , Ψ(τ) = 1√

β

∑
ωn

Ψne
iωnτ ,

where ωn is a Matsubara frequency.
The partition function is

Z =

∫
D(Ψ,Ψ) e−S (F.1)

with

S =
∑
~k,i,ωn

Ψ~k,i,n

(
−iωn + ε~k −∆
−∆ −iωn − ε~k

)
︸ ︷︷ ︸

=−Ĝ0
~ki,~ki

−1(iωn)

Ψ~k,i,n (F.2)

+
∑
~k,i,ωn

Ψd,n

(
tei

1
2
ϕi 0

0 −te−i 1
2
ϕi

)
︸ ︷︷ ︸

=ĤTi

Ψ~k,i,n + Ψ~k,i,n

(
te−i

1
2
ϕi 0

0 −tei 1
2
ϕi

)
Ψd,n


+

∑
ωn

Ψd,n

(
−iωn + εd 0

0 −iωn − εd

)
Ψd,n +

∫
dτ Ud↑(τ)d↓(τ)d↓(τ)d↑(τ)︸ ︷︷ ︸

=:Sdot,local

,
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where D(Ψ,Ψ) stands for the integration over all present Grassmann fields. As only the
dot’s state is interesting, it would be advantageous to integrate over the electrodes’ fields,
and we do that following reference [14]. Nonetheless, due to the mixed term involving a
Ψd,n and a Ψ~k,i,n, the electrodes first need to be decoupled from the dot. This is done by
shifting the electrodes fields’ integration variables according to

Ψ~k,i,n
→ Ψ′~k,i,n = Ψ~k,i,n

−Ψ0
~k,i,n

and Ψ~k,i,n → Ψ
′
~k,i,n = Ψ~k,i,n −Ψ

0
~k,i,n . (F.3)

To get rid of the mixed terms, Ψ
0
~k,i,n and Ψ0

~k,i,n
are chosen such that ∂S

∂Ψ′

∣∣
Ψ
′
,Ψ′=0

=

∂S

∂Ψ
′

∣∣∣
Ψ
′
,Ψ′=0

= 0. This condition leads to

Ψ0
~k,i,n

= Ĝ0
~ki,~ki

Ĥ†TiΨd,n and Ψ
0
~k,i,n = Ψd,nĤTi

Ĝ0
~ki,~ki

. (F.4)

Incorporating these transformations into the action yields

S =
∑
~k,i,ωn

(
Ψ
′
~k,i,n

(
−Ĝ0

~ki,~ki

)
Ψ′~k,i,n︸ ︷︷ ︸

=:Sel

+ Ψd,nĤTi
Ĝ0
~ki,~ki

Ĥ†TiΨd,n

)
+ Sdot,local︸ ︷︷ ︸

=:Sdot

. (F.5)

Now, as the electrodes have been decoupled, the integration over the fields Ψ
′ and Ψ′ can

be performed:

Z =

∫
D(Ψ,Ψ)e−S =

∫
D(Ψ

′
,Ψ′)e−Sel

∫
D(Ψd,Ψd)e

−Sdot = Zel

∫
D(Ψd,Ψd)e

−Sdot ,

(F.6)
where Zel is just an irrelevant constant (which will be omitted from now on). The final
results are:

Z =

∫
D(Ψd,Ψd)e

−Sdot with (F.7)

Sdot =
∑
~k,i,ωn

Ψd,nĤTi
Ĝ0
~ki,~ki

Ĥ†TiΨd,n +
∑
ωn

Ψd,n

(
−iωn + εd 0

0 −iωn − εd

)
Ψd,n

+

∫
dτ Ud↑(τ)d↓(τ)d↓(τ)d↑(τ) . (F.8)



Appendix G

Derivation of the partition function for
a single dot

The partition function is derived starting from the action’s perturbation expansion in
section 3.5.2. The calculations are performed in the operator formalism. The passage
into this formalism

• replaces the Grassmann fields by the corresponding operators,

• replaces the
∫
e−Seff (·) by Zeff〈(·)〉0,

• introduces time-ordering.

This yields two types of terms. While terms like∫ β

0

dτ〈Tτd†↑(τ)d†↓(τ)〉0 =

∫ β

0

dτ〈Tτd†↑(0)d†↓(0)〉0 = β〈Tτd†↑(τ)d†↓(τ)〉0

are fairly obvious to deal with, terms like∫ β

0

dτ

∫ β

0

dτ ′G0
~ki~ki;12

(τ − τ ′)〈Tτd†↑(τ)d†↓(τ
′)〉0

seem rather laborious to calculate. Fortunately, the product of two fermionic (or bosonic)
Greens functionsGa(τ) andGb(τ) obeys

∫ β
0
dτ
∫ β

0
dτ ′Ga(τ − τ ′)Gb(τ − τ ′) = β

∫ β
0
dτGa(τ)Gb(τ)

(as can be shown using Fourier transformation). Therefore, the partition function’s per-
turbation expansion is

Z = Z0 − Z0t
2β
∑
~k,i

∫ β

0

dτ
(
G0
~ki~ki;11

(τ)〈Tτd†↑(τ)d↑(0)〉0 (G.1)

−G0
~ki~ki;12

(τ)eiϕi〈Tτd†↑(τ)d†↓(0)〉0 −G0
~ki~ki;21

(τ)e−iϕi〈Tτd↓(τ)d↑(0)〉0

+G0
~ki~ki;22

(τ)〈Tτd↓(τ)d†↓(0)〉0
)
− 2β |Γϕ|

(
〈Tτd†↑(0)d†↑(0)〉0 + 〈Tτd↓(τ)d↑(0)〉0

)
.

In the above equation, G0
~ki~ki;lm

is the Fourier transformed Nambu matrix element

Ĝ0
~ki,~ki

(iωn)
∣∣∣
l,m

and the subscript 0 indicates that the expectation values are statistical

averages calculated in the effective local limit. The leads’ Green’s functions are:
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∑
~k

G0
~ki~ki;11

(τ) =
∑
~k

−sgn(τ)

2

(
e−|τ |E~k + e−(β−|τ |)E~k

)
, (G.2)

G0
~ki~ki;12

(τ) =
∆

2E~k

(
e−|τ |E~k − 2 cosh(|τ |E)nF (E~k)

)
(G.3)

T→0 K→ ∆

2E~k

(
e−|τ |E~k − e−(β−|τ |)E~k

)
,

with E~k =
√
ε~k

2 + ∆2. Furthermore, G0
~ki~ki;21

(τ) = G0
~ki~ki;12

(τ)
∗ and

∑
~kG

0
~ki~ki;22

(τ) =∑
~kG

0
~ki~ki;11

(τ).
As one cannot apply Wick’s theorem because of the Coulomb interaction, the dot’s

Green’s functions are calculated using Lehmann representation, which yields (for τ > 0)

〈Tτd†↑(τ)d↑(0)〉0 =
1

Z0

(
u2
(
e−E

0
−τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
+(β−τ)

)
+v2

(
e−E

0
+τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
−(β−τ)

))
, (G.4)

〈Tτd†↑(τ)d†↓(0)〉0 =
1

Z0

uv
(
e−E

0
↓τe−E

0
−(β−τ) − e−E0

−τe−E
0
↑(β−τ)

−e−E0
↓τe−E

0
+(β−τ) + e−E

0
+τe−E

0
↑(β−τ)

)
, (G.5)

〈Tτd↓(τ)d↑(0)〉0 =
1

Z0

uv
(
e−E

0
↓τe−E

0
−(β−τ) − e−E0

−τe−E
0
↑(β−τ)

−e−E0
↓τe−E

0
+(β−τ) + e−E

0
+τe−E

0
↑(β−τ)

)
, (G.6)

〈Tτd↓(τ)d†↓(0)〉0 =
1

Z0

(
u2
(
e−E

0
+τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
−(β−τ)

)
+v2

(
e−E

0
−τe−E

0
↑(β−τ) + e−E

0
↓τe−E

0
+(β−τ)

))
. (G.7)

Using u2 + v2 = 1, the partition function becomes:

Z = Z0 + βt2
∑
~k,σ

×
(

1

E~k − (E0
+ − E0

σ)

(
e−βE

0
+ − e−β(E~k+E0

σ)
)

+
1

E~k − (E0
− − E0

σ)

(
e−βE

0
− − e−β(E~k+E0

σ)
)

+
1

E~k + (E0
+ − E0

σ)

(
e−βE

0
σ − e−β(E~k+E0

+)
)

+
1

E~k + (E0
− − E0

σ)

(
e−βE

0
σ − e−β(E~k+E0

−)
)

+
2∆

E~k
uv
∣∣∣cos(

ϕ

2
)
∣∣∣

×
(

1

E~k + (E0
+ − E0

σ)

(
e−βE

0
σ − e−β(E~k+E0

+)
)
− 1

E~k + (E0
− − E0

σ)

(
e−βE

0
σ − e−β(E~k+E0

−)
)

− 1

E~k − (E0
+ − E0

σ)

(
e−βE

0
+ − e−β(E~k+E0

σ)
)

+
1

E~k − (E0
− − E0

σ)

(
e−βE

0
− − e−β(E~k+E0

σ)
)))

+2β |Γϕ|uv
(
e−βE

0
+ − e−βE0

−

)
. (G.8)
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As E~k =
√
ε~k

2 + ∆2 > 0, terms with an e−βE~k are exponentially suppressed for T → 0 K
and can be omitted.
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Appendix H

Explicit self consistent expression of δa

The energy shift δa = δE− − δEσ is calculated starting from the self consistent equation
(3.29). The shift δb follows from equation (3.30). As these two equations are completely
symmetric, only δa shall be discussed here. The calculation of δb is quasi-identical.

In equation (3.29), a0 = U
2
−
√
ξd

2 + Γϕ
2 and b0 = U

2
−
√
ξd

2 + Γϕ
2 are the initial, not

renormalized parameters. For a0 > 0, δa is given by

δa = −Γ

π

∫ D

0

dε

(
2

E − a(∆)
− 1

E + b0

− 1

E + a0

+
∆

E
uv
∣∣∣cos

(ϕ
2

)∣∣∣ ( 2

E − a(∆)
− 1

E + b0

+
1

E + a0

))
(H.1)

+ 2|Γϕ|uv

(with E =
√
ε2 + ∆2). The integrals can be performed analytically. Thereby, the density

of states ρ0 = 1/(2D) is assumed to be constant, D being half the electronic bandwidth
of the leads. Using

∫ D

−D
dερ0

1√
ε2 + ∆2 +X

(H.2)

= 2ρ0

[
X√

∆2 −X2

(
arctan

(
Xε√

∆2 −X2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 −X2

))
+ ln

(
ε+
√
ε2 + ∆2

)]D
0

and

∫ D

−D
dερ0

1√
ε2 + ∆2 +X

(H.3)

= 2ρ0

[
− ∆√

∆2 −X2

(
arctan

(
Xε√

∆2 −X2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 −X2

))]D
0

yields the explicit self-consistent equation for δa as a function of the gap ∆. As only
energy differences are considered, the logarithms simplify. The final expression for δa
reads
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δa = −Γ

π

 2a(∆)√
∆2 − a(∆)2

arctan

 a(∆)ε√
∆2 − a(∆)2

√
∆2 + ε2

+ arctan

 ε√
∆2 − a(∆)2


− a0√

∆2 − a0
2

(
arctan

(
a0ε√

∆2 − a0
2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 − a0
2

))
− b0√

∆2 − b0
2

(
arctan

(
b0ε√

∆2 − b0
2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 − b0
2

))
+uv

∣∣∣cos
(ϕ

2

)∣∣∣ 2∆√
∆2 − a(∆)2

arctan

 a(∆)ε√
∆2 − a(∆)2

√
∆2 + ε2

+ arctan

 ε√
∆2 − a(∆)2


− ∆√

∆2 − a0
2

(
arctan

(
a0ε√

∆2 − a0
2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 − a0
2

))
+

∆√
∆2 − b0

2

(
arctan

(
b0ε√

∆2 − b0
2
√

∆2 + ε2

)
− arctan

(
ε√

∆2 − b0
2

)))]D
0

.

(H.4)

Whenever necessary, the analytic continuation

1√
x2 − y2

arctan

(
Z√

x2 − y2

)
|y|>|x|−→ 1

2

1√
y2 − x2

ln

1− Z√
y2−x2

1 + Z√
y2−x2

 (H.5)

is understood.



Appendix I

Perturbation expansion in the Coulomb
interaction

I.1 First order

The first order self energies in the perturbation expansion around the non-interacting
limit are calculated by expanding the dot’s full Green’s function

Ĝ(τ) =

(
−〈Tτd↑(τ)d†↑(0)〉 −〈Tτd↑(τ)d↓(0)〉
−〈Tτd†↓(τ)d†↑(0)〉 −〈Tτd†↓(τ)d↓(0)〉

)
(I.1)

to the first order in the Coulomb interaction U . Due to the matrix character of the Nambu
notation, it is only necessary to calculate one of the four matrix elements in order to derive
the complete first order self energy Σ̂. The latter is defined by the Matsubara frequency
Dyson equation,

Ĝd,d(iωn) = Ĝ0
d,d(iωn) + Ĝ0

d,d(iωn) Σ̂(iωn) Ĝd,d(iωn) (I.2)

= Ĝ0
d,d(iωn) + Ĝ0

d,d(iωn) Σ̂(1)(iωn) Ĝ0
d,d(iωn) +O(U2) .

Expanding now for instance G11 to the first order, one finds

G11(τ) = G0
11(τ) − U

∫ β

0

dτ1G
0
12(τ − τ1)G0

21(τ1)G0
11(0) (I.3)

+ U

∫ β

0

dτ1G
0
12(τ − τ1)G0

11(τ1)G0
21(0)

+ U

∫ β

0

dτ1G
0
11(τ − τ1)G0

11(τ1)G0
22(0)

− U

∫ β

0

dτ1G
0
11(τ − τ1)G0

21(τ1)G0
12(0) .

Fourier transformation and simple identification determines the self energies Σ1
ij(iωn)

(i.e. the (i, j) matrix element of Σ(1)(iωn)) as
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Σ
(1)
11 (iωn) = U〈d†↓d↓〉0 = −U G0

22(τ = 0+) , (I.4)

Σ
(1)
12 (iωn) = U〈d↓d↑〉0 = U G0

12(τ = 0) , (I.5)

Σ
(1)
21 (iωn) = U〈d†↑d

†
↓〉0 = U G0

21(τ = 0) , (I.6)

Σ
(1)
22 (iωn) = −U〈d†↑d↑〉0 = −U G0

11(τ = 0−) . (I.7)

I.2 Explicit calculation of the self-energy

I.2.1 Deriving the explicit formula

In order to derive explicit formulas for the self-energies, the retarded real time equivalent
of self-energies of the generic form

Σ123 = −U2

∫ β

0

dτ eiωnτ G1(τ)G2(τ)G3(−τ) (I.8)

needs to be found. At first, we define Π(τ) = −G2(τ)G3(−τ) . Diagrammatically, Π(τ) is

nothing but the bubble in the sunrise graph constituting Σ123. Using

these definitions, Σ123 has the form

Σ123(iωn) = U2

∫ β

0

dτ eiωnτ G1(τ)Π(τ)

= U2
∑
ω1,ωp

1

β2

∫ β

0

dτ ei(ωn−ω1−ωp)τ G1(iω1)Π(iωp) (I.9)

=
U2

β

∑
ω1

G1(iω1)Π(iωn − iω1) ,

where ω1 and ωn are fermionic Matsubara frequencies and ωp is a bosonic one.
At this stage, it is very useful to note that the imaginary time version G(iωn) of a

Green’s function and the imaginary part of its retarded version GR(ω) are related by

G(iωn) = − 1

π

∫ ∞
−∞

dω
Im
{
GR(ω)

}
iωn − ω

, (I.10)

as can be seen in Lehmann representation. As we will encounter quite a lot of imaginary
parts in the remainder of this section, they shall be indicated by a double apostrophe,
i.e. Im {G} =: G ′′, whereas real part will be indicated by simple apostrophes, i.e. Re {G} =:
G ′. Furthermore, we will exploit the fact that the fermionic Matsubara frequencies are
the poles of the analytically continued Fermi-Dirac distribution nF (z). Therefore, sums
over Matsubara frequencies can be written as integrals in the complex plane. Evaluating
the latter yields
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Σ123(iωn) =
U2

π2β

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ GR1
′′
(ω)ΠR′′(ω′)

∑
ω1

1

iω1 − ω
1

iωn − iω1 − ω′
(I.11)

=
U2

π2

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ GR1
′′
(ω)ΠR′′(ω′)

−nF (−ω)− nB(ω′)

iωn − ω − ω′
,

where nF (ω) is the Fermi-Dirac distribution and nB(ω) denotes the Bose-Einstein dis-
tribution. Using equation I.10 once more and performing the analytic continuation, one
obtains

ΣR
123

′′
(ω) =

U2

π

∫ ∞
−∞

dεGR1
′′
(ε)ΠR′′(ω − ε) [nF (−ε) + nB(ω − ε)] . (I.12)

ΠR′′(ω) can be obtained by a perfectly analog calculation, yielding

ΠR′′(ω) =
1

π

∫ ∞
−∞

dεGR2
′′
(ω − ε)GR3

′′
(ε) [nF (ε)− nF (ω + ε)] . (I.13)

Plugging everything together one ends up with

ΣR
123

′′
(ω) =

U2

π2

∫ ∞
−∞

dε1

∫ ∞
−∞

dε2

∫ ∞
−∞

dε3

×GR1
′′
(ε1)GR2

′′
(ε2)GR3

′′
(−ε3)δ(ω − ε1 − ε2 − ε3)

× [nF (−ε3)− nF (ε2)] [nF (−ε1) + nB(ε2 + ε3)] .

In a last step, the Fermi-Dirac and Bose-Einstein factors are simplified. Doing so yields
the final result for the imaginary part of the retarded self-energy,

ΣR
123

′′
(ω) =

U2

π2

∫ ∞
−∞

dε1

∫ ∞
−∞

dε2

∫ ∞
−∞

dε3 (I.14)

×GR1
′′
(ε1)GR2

′′
(ε2)GR3

′′
(−ε3)δ(ω − ε1 − ε2 − ε3)

× [nF (ε1)nF (ε2)nF (ε3) + nF (−ε1)nF (−ε2)nF (−ε3)] .

I.2.2 Evaluation of the self-energies for superconducting leads

In order to calculate the self-energies via equation (4.37), GR(ω) and FR(ω) need to be
computed by analytic continuation of (4.27) and (4.28). One obtains

GR(ω) =
1

2

(
1

g−1
0

R
(ω) + f−1

0
R

(ω)
+

1

g−1
0

R
(ω)− f−1

0
R

(ω)

)
, (I.15)

FR(ω) =
1

2

(
1

g−1
0

R
(ω) + f−1

0
R

(ω)
− 1

g−1
0

R
(ω)− f−1

0
R

(ω)

)
, (I.16)

where

g−1
0

R
(ω) =


(ω + iη)

(
1 + |Γ0|(ω)√

∆2−ω2

)
, |ω| < ∆ (inside gap)

(ω + iη)

(
1 +

|Γ̃0|(ω)
√
ω2−∆2

)
+ iΓ |ω|√

ω2−∆2 , |ω| > ∆ (outside gap)
(I.17)
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and

f−1
0

R
(ω) =

∆ |Γϕ|(ω)√
∆2−ω2 −∆eff , |ω| < ∆ (inside gap)

∆
|Γ̃ϕ|(ω)
√
ω2−∆

+ iΓ | cos(ϕ
2
)| ∆ sgn(ω)√

ω2−∆2 −∆eff , |ω| > ∆ (outside gap).
(I.18)

Thereby, the definitions

Γϕ(ω) = Γ
2

π
cos
(ϕ

2

)
arctan

(
D√

∆2 − ω2

)
(I.19)

and

Γ̃ϕ(ω) = Γ
1

π
cos
(ϕ

2

)
ln

(
D −

√
ω2 −∆2

D +
√
ω2 −∆2

)
(I.20)

have been introduced and η → 0+.

It is worth to notice that GR and FR both have discrete subgap Dirac-peak contri-
butions if either g−1

0
R

(ω) + f−1
0

R
(ω) or g−1

0
R

(ω) − f−1
0

R
(ω) vanishes. These peaks are

nothing but the Andreev bound states. Working their explicit forms, one finds that
g−1

0
R

(ω) + f−1
0

R
(ω) and g−1

0
R

(ω)− f−1
0

R
(ω) are in fact symmetric with respect to ω = 0.

Thus, the peaks are located at symmetric frequencies we shall denote±ω0 (we take ω0 > 0
without loss of generality); they have equal weight for GR′′ and opposite weight for FR′′.
In order to simplify the discussions as much as possible, we thus work with a generalized
Green’s function, defined by

GR′′(ω) =

G
cont(ω) , |ω| > ∆

W+δ(ω − ω0) +W−δ(ω + ω0) , |ω| < ∆ .
(I.21)

For a numerical evaluation of the self-energies it is obviously necessary to deal with
the Andreev bound states separately because they constitute singular contributions. Fur-
thermore, only the zero temperature limit will be considered, in which the Fermi-Dirac
distributions become Heaviside step functions. Writing down all terms in equation (4.37),
one finds that a self-energy term

Σ123(τ) = −U2 G1(τ)G2(τ)G3(−τ)
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corresponds to an imaginary part of the retarded real time self-energy

π2

U2 ΣR
123
′′
(ω) = W+

1 W
+
2 W

−
3 δ(ω − ω0

1 − ω0
2 − ω0

3) +W−
1 W

−
2 W

+
3 δ(ω + ω0

1 + ω0
2 + ω0

3) (I)

+ θ(ω − (ω0
2 + ω0

3 + ∆)) W+
2 W

−
3 Gcont1 (ω − ω0

2 − ω0
3) (II)

+ θ(−ω − (ω0
2 + ω0

3 + ∆)) W−
2 W

+
3 Gcont1 (ω + ω0

2 + ω0
3)

+ θ(ω − (ω0
1 + ω0

3 + ∆)) W+
1 W

−
3 Gcont2 (ω − ω0

2 − ω0
3) (III)

+ θ(−ω − (ω0
1 + ω0

3 + ∆)) W−
1 W

+
3 Gcont2 (ω + ω0

2 + ω0
3)

+ θ(ω − (ω0
1 + ω0

2 + ∆)) W+
1 W

+
2 Gcont3 (−ω + ω0

2 + ω0
3) (IV)

+ θ(−ω − (ω0
1 + ω0

2 + ∆)) W−
1 W

−
2 Gcont3 (−ω − ω0

2 − ω0
3)

+ θ(ω − (ω0
1 + 2∆))

∫ ω−∆−ω0
1

∆
dεW+

1 Gcont2 (ε)Gcont3 (ε− ω + ω0
1) (V)

+ θ(−ω − (ω0
1 + 2∆))

∫ −∆

ω+∆+ω0
1
dεW−

1 Gcont2 (ε)Gcont3 (ε− ω − ω0
1)

+ θ(ω − (ω0
2 + 2∆))

∫ ω−∆−ω0
2

∆
dεW+

2 Gcont1 (ε)Gcont3 (ε− ω + ω0
2) (VI)

+ θ(−ω − (ω0
2 + 2∆))

∫ −∆

ω+∆+ω0
2
dεW−

2 Gcont1 (ε)Gcont3 (ε− ω − ω0
2)

+ θ(ω − (ω0
3 + 2∆))

∫ ω−∆−ω0
3

∆
dεW−

3 Gcont1 (ε)Gcont2 (ω − ω0
1 − ε) (VII)

+ θ(−ω − (ω0
3 + 2∆))

∫ −∆

ω+∆+ω0
3
dεW+

3 Gcont1 (ε)Gcont2 (ω + ω0
1 + ε)

+ θ(ω − 3∆)
∫ ω−2∆

∆
dε1 Gcont1 (ε1)

×
∫ ω−ε1−∆

∆
dε2 Gcont2 (ε2)Gcont3 (ε1 + ε2 − ω) (VIII)

+ θ(−ω − 3∆)
∫ −∆

2∆+ω
dε1 Gcont1 (ε1)

×
∫ −∆

∆−ε1+ω
dε2 Gcont2 (ε2)Gcont3 (ε1 + ε2 − ω)

.

There are several important remarks on this explicit form. First of all, the contribution
denoted (I), i.e. the triple Andreev bound state contribution, seems to add singularities
at ±3ω0 to the self-energy. Yet, both ΣG and ΣF are composed by two terms. As shown
above, one has

ΣG(τ) = U2 G(τ)G(τ)G(−τ)− U2F(τ)F(τ)G(τ) (I.22)

and
ΣF(τ) = −U2 G(τ)G(τ)F(−τ) + U2F(τ)F(τ)F(τ) . (I.23)

Note that two contributions to either self-energy have opposite signs. If one considers
the total self-energies, the singular contributions of the two parts cancel exactly, because
both G and F have Andreev bound states of same (absolute) weight at frequency ±ω0.
Thus, the total self-energy is a non-singular function.
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Because the (I)-term vanishes, the self-energy has only three kinds of contributions.
The first ones are processes of energies |ω| ≥ ∆+2ω0. They correspond to a sunrise graph
with two of the three electrons in an Andreev bound state and one in the continuum.
These processes are terms (II) - (IV).

The second kind of contributions have energies |ω| ≥ 2∆ + ω0. They involve two
electrons in the continuum and one electron in an Andreev bound state. They correspond
to the terms (V) - (VII).

The third and last processes contributing to the self energies involve only electrons in
the continuum of states. Consequently, they start at energies higher then 3∆; they are
given by (VIII).

As a concluding remark on these explicit formulas, we want to stress again that the
imaginary parts of the self energies have no singular Andreev bound state like contribu-
tions and always start at frequencies |ω| > ∆.
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List of the most important Symbols

Symbol Comment Meaning

BCS Abbreviation for Bardeen, Cooper, Schrieffer.
Denotes the microscopic theory for superconductivity
proposed by the latter.

ABS Abbreviation for Andreev bound state.
NRG Abbreviation for numerical renormalization group.
σ σ =↑, ↓ Spin of an electron on the dot or quasiparticle in the leads.
~k Wave vector of a quasiparticle in the leads.
ε~k,i i = L,R Kinetic energy of a quasiparticle with wave vector ~k

in the lead i.
εd Level energy of the dot.
c~k,σ,i Annihilation operator of a quasiparticle of wave vector ~k

and spin σ in the lead i.
dσ Annihilation operator of an electron of spin σ on the dot.
nσ nσ = d†σdσ Spin σ population on the dot.
H Total Hamiltonian.
Hi i = L,R Hamiltonian of the lead i (BCS-Hamiltonian).
HD Hamlitonian of the dot (without Coulomb interaction).
HTi i = L,R Tunneling between the dot and the lead i.
U Coulomb interaction between two electrons on the dot.
ξd ξd = εd + U/2 Energy level of the dot with respect to

particle hole symmetry.
∆ Absolute value of the superconducting gap in the leads.
ϕi i = L,R Superconducting phase in the lead i.
ϕ ϕ = ϕL − ϕR Superconducting phase difference.
t Tunneling amplitude between the dot and the leads.
D Half the electronic bandwidth in the leads.
ρ0 ρ0 = 1/(2D) Density of states in the leads.
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Symbol Comment Meaning

Γ Γ = 2πt2ρ0 Total hybridization between dot and leads.
Γϕ Γϕ = Γ 2

π
arctan

(
D
∆

)
cos
(
ϕ
2

)
.

X̂ Operator or Green’s function X
in Nambu matrix notation.

Ψ~k,i Nambu spinor for the wave vector ~k in the lead i.
ΨD Nambu spinor for the dot.
τ Imaginary time.
ωn Matsubara frequency.
Ĝd,d Green’s function of the interacting dot.
Ĝ0
d,d Green’s function of the non-interacting dot.

Ĝ~ki,~ki i = L,R Green’s function of quasiparticles of wave vector ~k
in the lead i.

Ĝ0
~ki,~ki

i = L,R Green’s function of quasiparticles of wave vector ~k
in the lead i decoupled from the dot.

ĜU=0
~ki,~ki

i = L,R Green’s function of quasiparticles of wave vector ~k
in the lead i coupled to the non–interacting dot.

Ĝi i = L,R Ĝi =
∑

~k Ĝ
0
~ki,~ki

.
GR
x Retarded real time version of the Green’s function Gx.
G Normal, spin-unpolarized Hartree-Fock

mean field Green’s function.
F Anomalous, spin-unpolarized Hartree-Fock

mean field Green’s function.
g−1

0 Diagonal element of the inverse Nambu matrix
spin-unpolarized Hartree-Fock mean field
Green’s function.

f−1
0 Off-diagonal element of the inverse Nambu matrix

spin-unpolarized Hartree-Fock mean field
Green’s function.

Σ Self-energy.
Heff Effective local limit Hamiltonian.
E0
σ Energy of the spin σ state on the dot

in the effective local limit.
E0
− Energy of the state |−〉 in the effective local limit.

E0
+ Energy of the state |+〉 in the effective local limit.

a0 a0 = E0
− − E0

σ Energy of the low energy ABS
in the effective local limit.

b0 b0 = E0
+ − E0

σ Energy of the high energy ABS
in the effective local limit.
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Symbol Comment Meaning

Eσ Renormalized energy of the spin σ state on the dot.
E− Renormalized energy of the state |−〉.
E+ Renormalized energy of the state |+〉.
a a = E− − Eσ Renormalized energy of the low energy ABS.
b b = E+ − Eσ Renormalized energy of the high energy ABS.
u, v Coefficients in the BCS-like wave function on the dot.

E~k E~k =
√
ε~k,i

2 + ∆2 Energy of a quasiparticle of wave vector ~k.
TK Kondo temperature.
nF Fermi-Dirac distribution function.
nB Bose-Einstein distribution function.
Φ Luttinger-Ward functional.
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