TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Electrical and Computer Engineering Institute of Control Theory

PYTHON FOR ENGINEERS
PYTHONKURS FUR INGENIEUR:INNEN

Performance Optimization
Performanzoptimierung

Slides: Carsten Knoll, Christoph Statz, Sebastian Voigt

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

Dresden, 2022-12-02

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

UNVERSITAT Outline

DRESDEN

® |Introduction

® Timing

® General Tips
® Compiled Code

Dresden, 2022-12-02 Python for Engineers (8) slide 2 of 17

TECHNISCHE

UNIVERSITAT Introduction

DRESDEN

What is performance?

—

runtime
memory requirements (RAM, hard disk)
power consumption

In this lecture: only execution time considered
(most important in most cases, easy to measure, correlated with power consumption)

Facts

—

Python: slower than compiled languages (interpreters)

in many applications: difference not even perceptible (0.1s vs. 0.01s)
runtime optimization of code itself often very time consuming

conflict of goals: execution vs. development time

Dresden, 2022-12-02 Python for Engineers (8) slide 3 of 17

TECHNISCHE

UNIVERSITAT Introduction

DRESDEN

What is performance?

—

runtime
memory requirements (RAM, hard disk)
power consumption

In this lecture: only execution time considered
(most important in most cases, easy to measure, correlated with power consumption)

Facts

—

¢l

Python: slower than compiled languages (interpreters)

in many applications: difference not even perceptible (0.1s vs. 0.01s)
runtime optimization of code itself often very time consuming

conflict of goals: execution vs. development time

general tips to follow from the start
specific optimization of runtime for critical algorithm parts

Dresden, 2022-12-02 Python for Engineers (8) slide 3 of 17

55‘.’5&"&2&5‘:? Time Measurement (I)

DRESDEN

® module time

® time.time () returns “epoch-time” (also called “UNIX-timestamp”)
time = seconds since 01/01/1970 00:00:00.00

® advantage: very simple

® disadvantage: additional (“boilerplate”) code distributed in the program

import time

s =0
start = time.time ()

for i in range (100000) :
s += ix*(0.5)

print ("Duration [s]:", time.time() - start)

Dresden, 2022-12-02 Python for Engineers (8) slide 4 of 17

G Iniversiiiar Time Measurement (ll)

DRESDEN

® module timeit

® runtime measurement of a statement (mostly function call)
® good for comparison of code snippets for special problem
® statement must be passed as string or callable

® advantages: non-invasive, averaging of multiple runs

Dresden, 2022-12-02 Python for Engineers (8) slide 5 of 17

http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

G Iniversiiiar Time Measurement (ll)

DRESDEN

® module timeit

® runtime measurement of a statement (mostly function call)
® good for comparison of code snippets for special problem
® statement must be passed as string or callable

® advantages: non-invasive, averaging of multiple runs
Listing: example-code/time-example.py

import timeit
import math

def rootl():
return math.sqrt (2)

def root2():
return 2xx0.5

print (timeit.timeit ("2x%0.5", number=100000))

print (timeit.timeit ("math.sqgrt (2)", setup="import math", number=100000))
print (timeit.timeit (rootl, number=100000))

print (timeit.timeit (root2, number=100000))

Dresden, 2022-12-02 Python for Engineers (8) slide 5 of 17

http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

G Iniversiiiar Time Measurement (ll)

DRESDEN

® module timeit

® runtime measurement of a statement (mostly function call)

® good for comparison of code snippets for special problem

® statement must be passed as string or callable

® advantages: non-invasive, averaging of multiple runs
Listing: example-code/time-example.py

import timeit
import math

def rootl():
return math.sqrt (2)

def root2():
return 2xx0.5

timeit.timeit ("2x%0.5", number=100000))

timeit.timeit ("math.sqrt(2)", setup="import math", number=100000))
timeit.timeit (rootl, number=100000))

timeit.timeit (root2, number=100000))

print
print
print
print

® See also: “magic macros” for both IPython and Jupyter: ¢time and $timeit

Dresden, 2022-12-02 Python for Engineers (8) slide 5 of 17

http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

Eﬁ‘fv“s"a'é‘ﬁ%% Professional Timing: Profiling (I)

DRESDEN

® module cProfile: detailed runtime analysis of a (possibly very large) program —
Find bottleneck.

® profiling creates overhead - program runs slightly slower than without it

® results as print output or to file for use in analysis tools

® argument is passed as string
Listing: example-code/profile-example.py

import cProfile
import math

def main () :
s =0
for i in range(100000) :
s += math.sqrt (i)

cProfile.run("main()")

alternative: command line call:
python -m cProfile -s cumtime test.py > test.txt

— sorted by cumulative time
— ... > test.txt redirects outputto file: test.txt

— with option —o test.prfl will redirect results in binary format to file

test.prfl (canthen be evaluated with pstats).
Dresden, 2022-12-02 Python for Engineers (8) slide 6 of 17

https://docs.python.org/3.5/library/profile.html#module-cProfile
https://docs.python.org/3.9/library/profile.html#module-pstats

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Profiling (I1)

Output of the example
100004 function calls in 0.021 seconds

Ordered by:

standard name

ncalls tottime

1 0.

0
0.
0
0

000

.014

000

.006
.000

percall

0.

000

0.014

o oo

.000
.000
.000

cumt ime

0.
.021

0
0.
0
0

021

021

.006
.000

percall

0.
.021

0
0.
0
0

021

021

.000
.000

filename:lineno (function)

<string>:1 (<module>)

profile-example.py:4 (main)

{built-in method builtins.exec}

{built-in method math.sqrt}

{method ’disable’ of ’_lsprof.Profiler’ objects}

® shows which function was called how often and how much time it needed
— find starting points for optimization
® interesting here: only ~ % of the runtime for sqrt needed

® rest: overhead (function call, loop)

Dresden, 2022-12-02

Python for Engineers (8) slide 7 of 17

https://docs.python.org/3.9/library/profile.html#module-pstats

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Profiling (I1)

Output of the example
100004 function calls in 0.021 seconds

Ordered by:

standard name

ncalls tottime

1 0.

0
0.
0
0

000

.014

000

.006
.000

percall

0.

000

0.014

o oo

.000
.000
.000

cumtime

0.
.021

0
0.
0
0

021

021

.006
.000

percall

0.
.021

0
0.
0
0

021

021

.000
.000

filename:lineno (function)

<string>:1(<module>)

profile-example.py:4 (main)

{built-in method builtins.exec}

{built-in method math.sqrt}

{method ’disable’ of ’_lsprof.Profiler’ objects}

® shows which function was called how often and how much time it needed
— find starting points for optimization
® interesting here: only ~ % of the runtime for sqrt needed

® rest: overhead (function call, loop)
® Further analysis: module pstats

Dresden, 2022-12-02

Python for Engineers (8) slide 7 of 17

https://docs.python.org/3.9/library/profile.html#module-pstats

TECHNISCHE

UNIVERSITAT Genel’a| TIpS (|)

DRESDEN

optimize code only when there is an actual need
(“Premature optimisation is the root of all evil.”)
use profiling and identify only the worthwhile jobs.

optimize only correct code
use unit tests to ensure correctness of the code during/after rework
» order: ,Make it run. Make it right. Make it fast.”

use appropriate libraries for respective problem
e.g. numpy for numerics
— is written in C/Fortran — much faster than pure Python
Python scripts usually faster than Jupyter Notebooks (rendering overhead)

Dresden, 2022-12-02 Python for Engineers (8) slide 8 of 17

G ShivemernaT General Tips (II)

DRESDEN

® use appropriate data types: tuple or dict instead of list .
example: “element Lookup”

res = 3 in {1: True, 2: True, 3: True} # effort: O(1) (= const)
res = 3 in [1, 2, 3] # effort O(n)

® in (nested) loops: move functionality “from inside to outside”.
— initializations of variables
— calculations — intermediate results save/cache
— execute statements only as often as necessary, but as rarely as possible
— “loops in functions” are faster than “functions in loops”
(every function-call costs time)

® create auxiliary local variables to avoid “points” (e. g. from object orientation):
» each point (obj.attr) means attributes/member lookup,
« local caching is worthwhile especially in loops

root = math.sqgrt
#
root (2) # inside a loop avoid name-lookup

Dresden, 2022-12-02 Python for Engineers (8) slide 9 of 17

Outdated Tips (111

Often recommended but not so effective (anymore) w.r.t speedup

® use iterators (e.g. range (4) instead of [0, 1, 2, 3])
— background: iterators generate function to calculate next element,
— more memory-efficient than generating whole sequence in advance

® use list comprehension instead of for -loops

r = [str(k) for k in [1, 2, 3]]
1instead of
r =[]
for k in [1, 2, 3]:
r.append (str(k))

® vectorize functions for array operations (numpy .vectorize), see docs

def f (x):
if x > 2: return xx100
else: return x

XX = np.arange (5)

f(xx) # —-> ValueError

f_vect = np.vectorize (f)

f_vect (xx) # -> array([O, i, 2, 300, 400])

https://docs.python.org/3/library/stdtypes.html#range
https://leadsift.com/loop-map-list-comprehension
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html

UNVERSITAT Compiled Code (Overview)

DRESDEN

Python source code
® Compiled into so called bytecode and executed by the Python interpreter at runtime.
— high flexibility, but comparatively low execution speed

Dresden, 2022-12-02 Python for Engineers (8) slide 11 of 17

https://github.com/cknoll/python-c-code-example
http://numba.pydata.org/
http://docs.cython.org/en/latest/

ONVERSITAT Compiled Code (Overview)

DRESDEN

Python source code
® Compiled into so called bytecode and executed by the Python interpreter at runtime.
— high flexibility, but comparatively low execution speed
Compiled code
® Compiled into machine language and processed directly by the processor
— high execution speed, low flexibility (e.g. static data types, memory management)

Dresden, 2022-12-02 Python for Engineers (8) slide 11 of 17

https://github.com/cknoll/python-c-code-example
http://numba.pydata.org/
http://docs.cython.org/en/latest/

ONVERSITAT Compiled Code (Overview)

Python source code
® Compiled into so called bytecode and executed by the Python interpreter at runtime.
— high flexibility, but comparatively low execution speed
Compiled code
® Compiled into machine language and processed directly by the processor
— high execution speed, low flexibility (e.g. static data types, memory management)

Possible combinations (embedding compiled code in Python):
® ctypes

— Can load external libraries into Python (e.g. *.dll on Windows, *.so on Unix)

— very powerful and flexible

— Not considered here, see if necessary.
https://github.com/cknoll/python-c-code-example

— mostly useful if C-library already exists
(or is needed anyway, e.g. for target hardware)

Dresden, 2022-12-02 Python for Engineers (8) slide 11 of 17

https://github.com/cknoll/python-c-code-example
http://numba.pydata.org/
http://docs.cython.org/en/latest/

R Compiled Code (Overview)

Python source code
® Compiled into so called bytecode and executed by the Python interpreter at runtime.
— high flexibility, but comparatively low execution speed
Compiled code
® Compiled into machine language and processed directly by the processor
— high execution speed, low flexibility (e.g. static data types, memory management)

Possible combinations (embedding compiled code in Python):
® ctypes
— Can load external libraries into Python (e.g. *.dll on Windows, *.so on Unix)
— very powerful and flexible
— Not considered here, see if necessary.
https://github.com/cknoll/python-c-code-example
— mostly useful if C-library already exists
(or is needed anyway, e.g. for target hardware)
e “Just in Time” compilation of certain code sections (e.g. module numba)

® compile Python code into cython
— very similar to Python but statically typed and compiled
Dresden, 2022-12-02 Python for Engineers (8) slide 11 of 17

https://github.com/cknoll/python-c-code-example
http://numba.pydata.org/
http://docs.cython.org/en/latest/

@it Just-in-time-Compilation with numba

e Significant acceleration potential for mathematical operations.

® Necessary: pip install numba
® Example: “Mandelbrot set"™

— (simple math, high numerical effort, visual result).

Listing: example-code/numbai.py (14-29)

Decorator for just—-in-time comp. (-> 30x speedup)

ejit
def mandel (x, y, max_iters):
wnn

Given a complex number x + y+j, determine
delbrot set given

if it is part of the

a fixed number of ite
o

i=0
c = complex(x, y)
z = 0.03
for i in range (max_iters):
Z = zxz + C
if (z.realxz.real + z.imagxz.imag)

return i

le3:

Dresden, 2022-12-02 Python for Engineers (8)

slide 12 of 17

https://en.wikipedia.org/wiki/Mandelbrot_set
http://numba.pydata.org/

TECHNIECI_'I_E b
UNIVERSITAT
DRESDEN numoa

® Significant acceleration potential for mathematical operations.
® Necessary: pip install numba

® Example: “Mandelbrot set"
— (simple math, high numerical effort, visual result).

Listing: example-code/numbai.py (14-29)

@jit
def mandel (x, y, max_iters):

wnn

wnn

i=0
c = complex (x, y)
z = 0.03
for i in range (max_iters):
z = zxz + C
if (z.realxz.real + z.imagxz.imag) >= le3:

return i

Dresden, 2022-12-02 Python for Engineers (8) slide 12 of 17

https://en.wikipedia.org/wiki/Mandelbrot_set
http://numba.pydata.org/

TECHNISCHE
@uEES cython ()

e Cython is a separate programming language, installation: pip install cython

® Very close to Python but with explicit static type information
— can be compiled to C automatically — compilable — faster
® details: see docs

Dresden, 2022-12-02 Python for Engineers (8) slide 13 of 17

https://cython.readthedocs.io/en/latest/index.html

TECHNISCHE
@uEES cython ()

® Cython is a separate programming language, installation: pip install cython
® Very close to Python but with explicit static type information

— can be compiled to C automatically — compilable — faster
® details: see docs

® procedure:
» Develop algorithm in pure Python (“Make it run” + “Make it right”)
» Translate Python to Cython manually
» Translate Cython code to C
» Compile C code
» Import / use module created this way “as usual” (— “Make it fast”)

Dresden, 2022-12-02 Python for Engineers (8) slide 13 of 17

https://cython.readthedocs.io/en/latest/index.html

TECHNISCH.E
() ghiverenar Cython (1)

® Cython is a separate programming language, installation: pip install cython
® Very close to Python but with explicit static type information

— can be compiled to C automatically — compilable — faster
® details: see docs

® procedure:
» Develop algorithm in pure Python (“Make it run” + “Make it right”)
» Translate Python to Cython manually
» Translate Cython code to C
» Compile C code
» Import / use module created this way “as usual” (— “Make it fast”)

Typically 3 files, e.g.
— mandel-cython.pyx : cython source code
— mandel-cython-setup.py : for compiling
— mandel-cython-main.py : to import and call compiled code

Dresden, 2022-12-02 Python for Engineers (8) slide 13 of 17

https://cython.readthedocs.io/en/latest/index.html

Listing: example-code/mandel-cython.pyx

Cyt source code

cimport numpy as np #

cdef inline int mandel (double real, double imag, int max_iterations=20):

complex number x + y* if it is part of the

wnn

set

given a fixed number

cdef double z_real = 0., z_imag = 0.
cdef int i

for i in range (0, max_iterations):
z_real, z_imag = (z_realxz_real - z_imagxz_imag + real,
2+xz_real+z_imag + imag
if (z_realxz_real + z_imagxz_imag) >= 1000:
return i

n -1

ret 1
return 255

def create_fractal(double min_x, double max_x, double min_y, int nb_iterations,
np.ndarray[np.uint8_t, ndim=2, mode="c"] image not None) :

cdef int width, height, x, y, start_y, end_y
cdef double real, imag, pixel_size

width = image.shape[0]
height = image.shape[1l]

pixel_size = (max_x - min_x) / width

for x in range (width):
real = min_x + x*pixel_ size
for y in range (height) :
imag = min_y + y*pixel_size
image[x, y] = mandel (real, imag, nb_iterations

DM Cython (1)

® script for conversion Cython — C:
Listing: example-code/mandel-cython-setup.py

"script for conversion of cython-code to c-code"

from distutils.core import setup

from distutils.extension import Extension
from Cython.Distutils 1mport build_ext
import numpy # to get

setup (
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("mandelcy", ["mandel-cython.pyx"],)1,
include_dirs = [numpy.get_include(),],

® Command: python mandel-cython-setup.py build_ext --inplace
— C code is compiled and an importable library is created

Dresden, 2022-12-02 Python for Engineers (8) slide 15 of 17

G Iniversiiiar Cython (1V)

DRESDEN

® Calling the compiled code and visualization of Mandelbrot set:
Listing: example-code/mandel-cython-main.py
import numpy as np

import matplotlib.pyplot as plt
import mandelcy # our Cython module (for the real work)

nb_iterations = 255
dataarray = np.zeros((500, 500), dtype=np.uint8)

execution of the compiled code

mandelcy.create_fractal (min_x, max_x, min_y, nb_iterations, dataarray)

Transpose and reverse
dataarray = dataarray.T[:

plt.imshow(dataarray, extent=(min_x, max_x, min_y, max_x), cmap=plt.cm.plasma)
plt.savefig("mandel-cython.png")
plt.show ()

TECHNISCHE
@ UNIVERSITAT
DRESDEN

® Calling the compiled code and visualization of Mandelbrot set:
Listing: example-code/mandel-cython-main.py
import numpy as np

import matplotlib. pyplot as plt
import mandelcy # our Cythc module (for the real work)

min_x = -1.5

max_x = 0.15
min_y = -1.5

max_y = min_y + max_x - min_x

nb_iterations = 255

-150 -125 -100 -075 —0.50 -025 0.00

dataarray = np.zeros((500, 500), dtype=np.uint8)
(— 500x speedup (Py vs Cy))

mandelcy.create_fractal (min_x, max_x, min_y, nb_iterations, dataarray)

dataarray = dataarray.T[:

plt.imshow(dataarray, extent=(min_x, max_x, min_y, max_x), cmap=plt.cm.plasma)
plt.savefig("mandel-cython.png")
plt.show ()

TECHNISCHE
UNIVERSITAT Summary

DRESDEN

® 3 many ways to tweak Python code to make it faster
e |f that is not enough:
— identify bottle necks using profiling
® replace critical program parts with compiled code
— just-in-time compilation numba (effort: low)
— manual port to cython (effort: moderate)
— custom C code using ctypes (effort might be considerable)

Dresden, 2022-12-02 Python for Engineers (8) slide 17 of 17

https://docs.python.org/3.5/library/profile.html#module-cProfile
http://numba.pydata.org/
http://docs.cython.org/en/latest/
https://docs.python.org/3.9/library/ctypes.html
https://www.pypy.org/index.html
https://docs.python.org/3/library/concurrency.html

TECHNISCHE

UNIVERSITAT Summary

DRESDEN

3 many ways to tweak Python code to make it faster
If that is not enough:
— identify bottle necks using profiling
replace critical program parts with compiled code
— just-in-time compilation numba (effort: low)
— manual port to cython (effort: moderate)
— custom C code using ctypes (effort might be considerable)

— (3 more possibilities, e.g. PyPy)

not covered here: threading/multiprocessing

Dresden, 2022-12-02 Python for Engineers (8)

slide 17 of 17

https://docs.python.org/3.5/library/profile.html#module-cProfile
http://numba.pydata.org/
http://docs.cython.org/en/latest/
https://docs.python.org/3.9/library/ctypes.html
https://www.pypy.org/index.html
https://docs.python.org/3/library/concurrency.html

