
Faculty of Electrical and Computer Engineering Institute of Control Theory

Dresden, 2022-11-11

PYTHON FOR ENGINEERS
PYTHONKURS FÜR INGENIEUR:INNEN
Object-Oriented Programming in Python
Objektorientierte Programmierung in Python

C. Statz, D. Pataky, C. Knoll

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

• desired: reusability of already implemented functionality
• copy & paste?

– frequent source of errors
(forgetting some necessary changes)

– later changes in many places required → effort

→ problem can be addressed with different paradigms

• What is a programming paradigm?
– set of rules for formal and structural code design
– so far: procedural programming
– here: object-oriented programming
– also existing: functional programming (Lisp ♥ recursive functions calls)

• What is it used for?
– support for creation of good code
– suggest/prioritize a certain approach

• No dogma!
– paradigm application depending on concrete problem (u. taste)
– unlike e.g. Java, Python does not enforce a certain paradigm
– combinations possible

Dresden, 2022-11-11 Python for Engineers (5) slide 2 of 13

Programming Paradigms (Overview)

• desired: reusability of already implemented functionality
• copy & paste?

– frequent source of errors
(forgetting some necessary changes)

– later changes in many places required → effort

→ problem can be addressed with different paradigms

• What is a programming paradigm?
– set of rules for formal and structural code design
– so far: procedural programming
– here: object-oriented programming
– also existing: functional programming (Lisp ♥ recursive functions calls)

• What is it used for?
– support for creation of good code
– suggest/prioritize a certain approach

• No dogma!
– paradigm application depending on concrete problem (u. taste)
– unlike e.g. Java, Python does not enforce a certain paradigm
– combinations possible

Dresden, 2022-11-11 Python for Engineers (5) slide 2 of 13

Programming Paradigms (Overview)

• description of a complex system as an interaction of objects
• objects consist of

– data (“attributes”)
– associated functions (“methods”)

• objects are instances of a class
i.e. an object is the concrete variable, the class is the data type

object-orientation is a large field
• enough details for a whole semester

• here: only clarify most important terms and principles

Dresden, 2022-11-11 Python for Engineers (5) slide 3 of 13

Object-Oriented Programming (OOP)

Suppose, you own a personal soccer ball

• The ball has the properties (attributes)
– radius
– material
– color
– ...
– (nouns)

• The ball provides certain actions (methods)
– throw ball (in direction (x, y, z)
– roll ball (in direction x, y)
– ...
– (verbs)

Dresden, 2022-11-11 Python for Engineers (5) slide 4 of 13

Simple Example

Your personal soccer ball is a particular sphere
Listing: example-code/ex01_sphere.py

class Sphere ():
"""A class modeling a spherical objects """

def __init__ (self , radius , midpoint =(0 , 0, 0)):
"""
Initialization method . Automatically executed when an object is created .
Corresponds (approximately) to the ' constructor ' in other programming
languages .
"""

set attributes :
self. radius = radius
self. midpoint = midpoint

def calc_volume (self):
r = self. radius
return (4/3) *np.pi *(r**3)

Dresden, 2022-11-11 Python for Engineers (5) slide 5 of 13

Object Orientation in Python

Other balls are spheres, too:

Definition of the class
class Sphere ():

def __init__ (self , radius , midpoint =(0 ,0 ,0)):
...

instantiation of the class (create variables of that type)
(arguments are passed to the `__init__ ` method)
soccer_ball = Sphere (radius =21)
tennis_ball = Sphere (3)
rubber_ball = Sphere (1)

print (" radius of soccer :", soccer_ball . radius) # access to attribute
V = tennis_ball . calc_volume () # access to method

• class Sphere only is the “construction plan” or “blueprint”
• instantiation: creation of concrete objects according to the blueprint
• each object gets its own memory section
→ attribute values are independent of each other

(each sphere instance has its own radius, center, ...)
• each object has unique memory address (readable with id(..))

Dresden, 2022-11-11 Python for Engineers (5) slide 6 of 13

Instantiation

• creation of a new class based on an existing one
• only limited analogy to biological inheritance
• typical case: inheritance from the abstract to the specific
• representation: base class ← child class (“←” =̂ “inherits from”)
• example: animal ← mamal ← dog

• child class has all attributes/methods of base class
– value/implementation can be overridden

• additional attributes/methods possible in child class

What is inheritance good for?
• sharing structure and code (attributes and methods)
→ reduces implementation effort

• documentation of similarities between classes

Dresden, 2022-11-11 Python for Engineers (5) slide 7 of 13

Inheritance (in General)

The sphere is a special kind of ellipsoid
class Ellipsoid ():

def __init__ (self , r1 , r2 , r3):
...

class Sphere (Ellipsoid):
def __init__ (self , radius):

In the constructor of child class we call the
constructor of the parent class :

Sphere is a Ellipsoid where all radii are equal
Ellipsoid . __init__ (self , radius , radius , radius)

• class Sphere here is derived from class Ellipsoid

• attributes and methods are inherited (if not specified explicitly in the child class)
• constructor __init__ is overridden so that it accepts only one radius

Dresden, 2022-11-11 Python for Engineers (5) slide 8 of 13

Inheritance (in Python)

class GeometricObject : # (topmost) base class
...

class Cuboid (GeometricObject): # level 1 subclass
...

class Ellipsoid (GeometricObject): # level 1 subclass
...

class Sphere (Ellipsoid): # level 2 subclass
...

soccer_ball = Sphere (21) # instance

• base class GeometricObject implicitly is derived from object (builtin type)

• illustration with the help functions isinstance(...) und issubclass(...)

isinstance (soccer_ball , Sphere) # True
isinstance (soccer_ball , GeometricObject) # True
isinstance (soccer_ball , Cuboid) # False
issubclass (Sphere , Ellipsoid) # True
issubclass (Sphere , Cuboid) # False

Dresden, 2022-11-11 Python for Engineers (5) slide 9 of 13

Inheritance Hierarchy

• a method is a function belonging to an object
• when executed, it must be known to which instance this method belong
→ passing the instance as implicit first argument.
• Usually named (convention): self
• in other words:

self is placeholder for the concrete instance at a time when it does not exist yet

Listing: exampl-code/ex02_self.py

Note : the id (...) function returns a unique identity - number for each object .
Same number means : same object .

class ClassA ():
def m1(self):

print (id(self))

def m2(x): # !! self argument missing
print (x)

a = ClassA () # create an instance

a.m1 () # no explicit argument (but implicitly a is passed)
print (id(a)) # this gives the same number

a.m2 () # no error (corresponds to print (id(a)), because x takes the role of self)
a.m2 (123) # Error : too many arguments passed (a (implicitly) and 123 (explicitly))

Python-Speciality (1): self

• no “primitive data types” (as in Java or C++)
• everything∗ is an object (i. e. an instance of a class):

– numbers (instances of int , float , complex , ...)
– strings (instances of str , bytes , ...)
– functions and classes:

class ClassA ():
pass

def function1 ():
pass

type (ClassA) # -> classobj
type (function1) # -> function

• keywords, operators and other syntax elements are not objects!

type (while) # SyntaxError
type (def) # SyntaxError
type (class) # SyntaxError
type (+) # SyntaxError
Dresden, 2022-11-11 Python for Engineers (5) slide 11 of 13

Speciality (2): everything is an object

presented terms

• class
• instance (= object)
• attribute
• method
• constructor
• base class
• inheritance

presented Python constructs
• class , isinstance(...) ,

issubclass(...) , self ,
id(...) , type(...)

other OOP related topics:

• multiple inheritance
• static methods
• operator overloading and "magic methods"
• ducktyping
• polymorphism
• encapsulation
• meta class programming
• difference between __init__ and __new__

• class methods
• class variables
• data classes

Dresden, 2022-11-11 Python for Engineers (5) slide 12 of 13

Summary

https://dbader.org/blog/python-dunder-methods

• official Python doc on classes, instances, self etc.
• demystifying self
• introductory blog post

Dresden, 2022-11-11 Python for Engineers (5) slide 13 of 13

OOP-Related Links

https://docs.python.org/3/tutorial/classes.html
https://www.programiz.com/article/python-self-why
https://realpython.com/python3-object-oriented-programming/

	Motivation
	Objektorientierte Programmierung
	Grundlagen der Objektorientierung

