
Python for Engineers TU Dresden WS 2022/23

Exercise 09: Symbolic Computation with Sympy
The aim of the exercise is to get acquainted with the package sympy using the example of derivation
of the equations of motion of a mechanical system (‘Euler-Lagrange equations’).

Prerequisites
Sympy: symbols, functions, differentiating, substituting, solving equations.
Python: loops, lists and tuples, dictionaries.

System under consideration: 2D crane with fixed rope length
The equations of motion are a system of differential equations which describe (for the depicted
mechanical system) the relation between the time-dependent quantities x(t), ẋ(t), ẍ(t), ϕ(t), ϕ̇(t),
and ϕ̈(t). They can be derived by evaluating the so-called Euler-Lagrange equations. The necessary
calculation steps are to be carried out with sympy . The parameters m1, m2, l and g are assumed
to be constant and known.

coordinates: q1(t) = x(t), q2(t) = ϕ(t)
auxiliary geometric quantities:
x2(t) := x(t) + l sin ϕ(t), y2(t) := −l cos ϕ(t)
constant parameters: m1, m2, l, g

kin. energy: T = 1
2 m1ẋ(t)2 + 1

2 m2
(
ẋ2(t)2 + ẏ2(t)2)

pot. energy: U = m2gy2(t)
Lagrange function: L(q(t), q̇(t)) = T − U

Lagrange equations

d

dt

∂L

∂q̇1
− ∂L

∂q1
= Q1 (1a)

d

dt

∂L

∂q̇2
− ∂L

∂q2
= Q2 (1b)

External forces and torques: Q1 = F, Q2 = 0

General Remarks:
• Physical understanding of the task and knowledge of the “Lagrange” method are helpful but
not mandatory.
The subtasks give the solution.

• Follow the given script (lagrange.py) and the comments contained in it.

• Pay attention to sys.exit() and move it down step by step. (The source code after that
is still incomplete for now).

• Choose variable names that are as meaningful as possible.

• If you find this exercise too complicated, you can safely skip it.

Tasks
1. Create all required symbols for the constant parameters (m1, ...).

2. Create time functions for x(t) and ϕ(t).

3. Form the time derivatives ẋ(t), ϕ̇(t), ẍ(t), and ϕ̈(t).

Python for Engineers TU Dresden WS 2022/23

4. Calculate the auxiliary geometric quantities x2(t), y2(t) (formulas: see above).

5. Calculate T, U and L (formulas: see above).

6. Generate the following four auxiliary terms: ∂L
∂q1(t) and ∂L

∂q̇1(t) and ∂L
∂q2(t) and ∂L

∂q̇2(t) .

7. Calculate d
dt

∂L
∂q̇i

(one term each for i = 1 and i = 2).

8. Now construct the two equations of motion

d

dt

∂L

∂ẋ
− ∂L

∂x
= F and d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= 0.

Note: These two equations form a linear algebraic system of equations with respect to the
accelerations ẍ and ϕ̈.

9. Solve the linear system of equations for the accelerations with res = sp.solve(..) , so that
two equations ẍ = . . . and ϕ̈ = . . . result (respectively the right sides of these equations).

10. Show the data type of res and the obtained expressions for ẍ and ϕ̈ e.g. using sp.pprint(...) .

11. For both expressions, use sp.lambdify(...) to generate a function to calculate the re-
spective acceleration.
Notes: First substitute

• the time functions and their derivatives by appropriately named symbols (starting with
the highest derivative order, see course slides resp. example-notebook).

• the system-parameters with the following numeric values:
[(m1, 0.8), (m2, 0.3), (l, 0.5), (g, 9.81)] .

→ The expressions then depend only on the following five symbols: the force F , the coordinates
(x, ϕ) and the velocities (ẋ, ϕ̇). The Pythonfunctions created by lambdify will be needed
to simulate the system in the next exercise.

../notebooks/course09-sympy-demo.html#Common-pitfall-when-substituting-derivatives-of-functions-(e.g.-in-differential-equations)

