
Python for Engineers TU Dresden WiSe 2022/23

Exercise 08: Nested Functions, Functional Programming, Exceptions,
Imports
Given are four files with numerical data. From each of these data files a square matrix (i.e. a
2d-numpy-array) is to be generated. This matrix, A, defines a linear dynamic system (cf. course 3):

ẋ = Ax with x =
(

x1
...

xn

)
and A ∈ Rn×n (1)

which is to be simulated for random initial values. The dimension n of the state vector results in
each case from the number of entries in the file. The time course of the first state component x1 is
to be represented graphically.
Use the code snippets given in the simulation.py file.
Spyder Tip 1: Remove comment characters block by block: Edit→Comment/Uncomment
Spyder Tip 2: Use ALT +↑ and ALT +↓ for moving one or more lines. (If this does not work, see
Tools → Preferences)→ Keyboard Shortcuts and search for move line up and move line down.

Tasks
1. Use np.loadtxt to load the contents of data1.txt into an into an array.

2. Loop load the contents of all data*.txt files and output the corresponding arrays. What
error occurs during this process? Complete the given try - except - else -structure to catch
the error. After outputting an error message, continue with the next file.

3. From the arrays now the rhs-function needed for the simulation (rhs: „right hand side“ of
equation (1)) is to be generated. Use the functions create_rhs_from_1darr(..) and
rhs_factory(...) . The latter must be adapted in such a way that it returns a function
object. To do this, move the rhs(...) inside the function to the rhs_factory(...) .

4. At the beginning of the rhs_factory(...) function, use assert to make sure that the
matrix is square. (Note: shape attribute of array).

5. Before returning the rhs function object create an attribute rhs.state_dimension for
the number of state components.
Background: in the dataset bot cases, 2×2 and 3×3 matrices, occur, corresponding to systems
with state dimension n = 2 and n = 3 respectively. The respective number is required for an
initial state of the right size.

6. Make sure you understand where the rhs function objects get their data (matrix A) from
(namespaces).

7. Using the simulation(...) function, run the simulation first for the first rhs object.

8. Use list(map(...)) to apply the simulation(...) function to all elements of your
rhs list.

Desired result:

9. Use filter and a suitable lambda function to restrict the simulation to systems of the state
dimension 2. Use the attribute generated in Task 5 for this purpose.

Python for Engineers TU Dresden WiSe 2022/23

10. Store the functions create_rhs_from_1darr(...) and rhs_factory to a new module
named data_tools . Add the required import statements to simulation.py (which is
your main module).

11. Replace the calls to map and filter with list comprehension (see slide 3).

12. (addition): For each A matrix, determine the eigenvalues (np.linalg.eig(A)) and add
them as label to the curves using plt.text(x, y, txt)

