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What is performance?
• runtime
• memory requirements (RAM, hard disk)
• power consumption

→ In this lecture: only execution time considered
(most important in most cases, easy to measure, correlated with power consumption)

Facts
• Python: slower than compiled languages (interpreters)
• in many applications: difference not even perceptible (0.1s vs. 0.01s)
• runtime optimization of code itself often very time consuming

→ conflict of goals: execution vs. development time

⇒ general tips to follow from the start

⇒ specific optimization of runtime for critical algorithm parts
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• module time

• time.time() returns “epoch-time” (also called “UNIX-timestamp”)

time =̂ seconds since 01/01/1970 00:00:00.00
• advantage: very simple
• disadvantage: additional (“boilerplate”) code distributed in the program

import time

s = 0
start = time.time()

for i in range(100000):
s += i**(0.5)

print("Duration [s]:", time.time() - start)
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• module timeit

• runtime measurement of a statement (mostly function call)
• good for comparison of code snippets for special problem
• statement must be passed as string or callable
• advantages: non-invasive, averaging of multiple runs

Listing: example-code/time-example.py

import timeit
import math

def root1():
return math.sqrt(2)

def root2():
return 2**0.5

print(timeit.timeit("2**0.5", number=100000))
print(timeit.timeit("math.sqrt(2)", setup="import math", number=100000))
print(timeit.timeit(root1, number=100000))
print(timeit.timeit(root2, number=100000))

• See also: “magic macros” for both IPython and Jupyter: %time and %timeit
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• module cProfile: detailed runtime analysis of a (possibly very large) program→
Find bottleneck.

• profiling creates overhead - program runs slightly slower than without it
• results as print output or to file for use in analysis tools
• argument is passed as string

Listing: example-code/profile-example.py

import cProfile
import math

def main():
s = 0
for i in range(100000):

s += math.sqrt(i)

cProfile.run("main()")

alternative: command line call:
python -m cProfile -s cumtime test.py > test.txt

– sorted by cumulative time
– ... > test.txt redirects output to file: test.txt

– with option -o test.prfl will redirect results in binary format to file

test.prfl (can then be evaluated with pstats).
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Output of the example

• shows which function was called how often and how much time it needed

→ find starting points for optimization
• interesting here: only ≈ 1

3 of the runtime for sqrt needed

• rest: overhead (function call, loop)

• Further analysis: module pstats
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100004 function calls in 0.021 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.021 0.021 <string>:1(<module>)
1 0.014 0.014 0.021 0.021 profile-example.py:4(main)
1 0.000 0.000 0.021 0.021 {built-in method builtins.exec}

100000 0.006 0.000 0.006 0.000 {built-in method math.sqrt}
1 0.000 0.000 0.000 0.000 {method ’disable’ of ’_lsprof.Profiler’ objects}
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• optimize code only when there is an actual need
(“Premature optimisation is the root of all evil.”)

→ use profiling and identify only the worthwhile jobs.

• optimize only correct code
• use unit tests to ensure correctness of the code during/after rework

• order: „Make it run. Make it right. Make it fast.“

• use appropriate libraries for respective problem
• e.g. numpy for numerics

– is written in C/Fortran→ much faster than pure Python
• Python scripts usually faster than Jupyter Notebooks (rendering overhead)
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• use appropriate data types: tuple or dict instead of list .

example: “element Lookup”

res = 3 in {1: True, 2: True, 3: True} # effort: O(1) (= const)
res = 3 in [1, 2, 3] # effort O(n)

• in (nested) loops: move functionality “from inside to outside”.
– initializations of variables
– calculations→ intermediate results save/cache
→ execute statements only as often as necessary, but as rarely as possible
– “loops in functions” are faster than “functions in loops”

(every function-call costs time)

• create auxiliary local variables to avoid “points” (e. g. from object orientation):
• each point ( obj.attr ) means attributes/member lookup,
• local caching is worthwhile especially in loops

root = math.sqrt
# ...
root(2) # inside a loop avoid name-lookup
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Often recommended but not so effective (anymore) w.r.t speedup

• use iterators (e.g. range(4) instead of [0, 1, 2, 3])
– background: iterators generate function to calculate next element,
– more memory-efficient than generating whole sequence in advance

• use list comprehension instead of for -loops

r = [ str(k) for k in [1, 2, 3] ]

# instead of

r = []

for k in [1, 2, 3]:

r.append(str(k))

• vectorize functions for array operations ( numpy.vectorize ), see docs

def f(x):

if x > 2: return x*100

else: return x

xx = np.arange(5)

# f(xx) # -> ValueError

f_vect = np.vectorize(f)

f_vect(xx) # -> array([ 0, 1, 2, 300, 400])

Outdated Tips (III)

https://docs.python.org/3/library/stdtypes.html#range
https://leadsift.com/loop-map-list-comprehension
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html


Python source code
• Compiled into so called bytecode and executed by the Python interpreter at runtime.
→ high flexibility, but comparatively low execution speed

Compiled code
• Compiled into machine language and processed directly by the processor
→ high execution speed, low flexibility (e.g. static data types, memory management)

Possible combinations (embedding compiled code in Python):
• ctypes

– Can load external libraries into Python (e.g. *.dll on Windows, *.so on Unix)
→ very powerful and flexible
– Not considered here, see if necessary.

https://github.com/cknoll/python-c-code-example
– mostly useful if C-library already exists

(or is needed anyway, e.g. for target hardware)
• “Just in Time” compilation of certain code sections (e.g. module numba)

• compile Python code into cython

– very similar to Python but statically typed and compiled
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• Significant acceleration potential for mathematical operations.

• Necessary: pip install numba

• Example: "‘Mandelbrot set"’
– (simple math, high numerical effort, visual result).

Listing: example-code/numba1.py (14-29)

# Decorator for just-in-time comp. (-> 30x speedup)
@jit
def mandel(x, y, max_iters):

"""
Given a complex number x + y*j, determine
if it is part of the Mandelbrot set given
a fixed number of iterations.
"""
i = 0
c = complex(x, y)
z = 0.0j
for i in range(max_iters):

z = z*z + c
if (z.real*z.real + z.imag*z.imag) >= 1e3:

return i
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• Cython is a separate programming language, installation: pip install cython

• Very close to Python but with explicit static type information

→ can be compiled to C automatically→ compilable→ faster
• details: see docs

• procedure:
• Develop algorithm in pure Python (“Make it run” + “Make it right”)
• Translate Python to Cython manually
• Translate Cython code to C
• Compile C code
• Import / use module created this way “as usual” (→ “Make it fast”)

Typically 3 files, e.g.

– mandel-cython.pyx : cython source code

– mandel-cython-setup.py : for compiling

– mandel-cython-main.py : to import and call compiled code
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Listing: example-code/mandel-cython.pyx

# Cython source code
cimport numpy as np # for the special numpy stuff

cdef inline int mandel(double real, double imag, int max_iterations=20):
"""Given a complex number x + y*j, determine if it is part of the
Mandelbrot set given a fixed number of iterations. """

cdef double z_real = 0., z_imag = 0.
cdef int i

for i in range(0, max_iterations):
z_real, z_imag = ( z_real*z_real - z_imag*z_imag + real,

2*z_real*z_imag + imag )
if (z_real*z_real + z_imag*z_imag) >= 1000:

return i
# return -1
return 255

def create_fractal( double min_x, double max_x, double min_y, int nb_iterations,
np.ndarray[np.uint8_t, ndim=2, mode="c"] image not None):

cdef int width, height, x, y, start_y, end_y
cdef double real, imag, pixel_size

width = image.shape[0]
height = image.shape[1]

pixel_size = (max_x - min_x) / width

for x in range(width):
real = min_x + x*pixel_size
for y in range(height):

imag = min_y + y*pixel_size
image[x, y] = mandel(real, imag, nb_iterations)



• script for conversion Cython→ C:
Listing: example-code/mandel-cython-setup.py

"script for conversion of cython-code to c-code"

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy # to get includes

setup(
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("mandelcy", ["mandel-cython.pyx"], )],
include_dirs = [numpy.get_include(),],

)

• Command: python mandel-cython-setup.py build_ext --inplace

→ C code is compiled and an importable library is created
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• Calling the compiled code and visualization of Mandelbrot set:
Listing: example-code/mandel-cython-main.py

import numpy as np
import matplotlib.pyplot as plt
import mandelcy # our Cython module (for the real work)

# define section of the Gaussian number plane
min_x = -1.5
max_x = 0.15
min_y = -1.5
max_y = min_y + max_x - min_x

# to have same section like numba script
# min_x = -2; max_x = 1; min_y = -1.5

nb_iterations = 255

dataarray = np.zeros((500, 500), dtype=np.uint8)

# execution of the compiled code
mandelcy.create_fractal(min_x, max_x, min_y, nb_iterations, dataarray)

# Transpose and reverse first axis
dataarray = dataarray.T[::-1, :]

plt.imshow(dataarray, extent=(min_x, max_x, min_y, max_x), cmap=plt.cm.plasma)
plt.savefig("mandel-cython.png")
plt.show()

Cython (IV)
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• ∃ many ways to tweak Python code to make it faster
• If that is not enough:

– identify bottle necks using profiling
• replace critical program parts with compiled code

– just-in-time compilation numba (effort: low)
– manual port to cython (effort: moderate)
– custom C code using ctypes (effort might be considerable)

– (∃ more possibilities, e.g. PyPy )

• not covered here: threading/multiprocessing
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