@ python Python for engineers TU Dresden WiSe 2022/23

Exercise 03: numpy + scipy
Numerical Calculations with Python

The goal of the exercise is to get acquainted with the packages numpy and scipy by means of

simulation and identification of dynamical systems.

Exercise 03.1: Simulation with solve_ivp

We consider the following mechanical system:

F
x m1 Ul with coordinates: ¢1(t) = z(t), ¢2(t) = ©(t),
o 7 auxiliary geometric quantities:
: ‘ I xo(t) := x(t) + Isinp(t), y2(t) := —lcos p(t),
Y2
Pp
i) f mo

and with the following equations of motion:

5= F + gma sin () cos (¢) + Imap? sin (p)
my — mg cos? () + ma

_ Fcos(p) — g(my +mg)sin (@) — Imap? sin (@) cos ()

- Imy — Img cos? (¢) + lmg '

b

(1a)

(1b)

Note: In courseQ9 (symbolic computation) we will derive these equations with sympy based on the
so called “Euler-Lagrange-Equations”. For this exercise we will simply use their implementation as

executable functions (xdd_fnc , phidd_fnc) in the module equations_of_motion.py .

An analytical solution to these equations does not exist. With numerical integration methods, howe-
ver, an approximative solution (i.e. a time evolution of all motion quantities) for given initial values

can be determined.
Hints:

e Edit the given file skeleton-code/01_simulation.py (i.e. replace the occurences of XXX

and add your own code.

e Make sure that you have read and understood the contents of the notebook simulation_ of-

_dynamical_systems.ipynb.

1. Import the function solve_ivp from the appropriate sub package of scipy (see lecture

slides). Then import the functions for numerical calculation of accelerations i and ¢ from the

module equations_of_motion ,

2. Write a function rhs(t, z) which calculates the derivative z of the state vector z. Assume

the following definition of the state vecture:
T . N\T
z = (21722723724) = (m,%xﬁp)

Note: The right side of the (vectorial) ODE does not depend on time.

3. Create an array for the simulation time and define reasonable initial conditions (e.g. 2(0) = 0,

©(0) = 5, 2(0) = 0, $(0) = 0).

4. Use the function solve_ivp from the module scipy.integrate (see docs) to determine

(approximately) the time evolution of the four state variables in the time interval ¢ € [0, 10]s.
Specify the optional argument rtol=1e-5 as an upper bound on the relative error tolerance

to obtain sufficient accuracy.

5. Plot z(t) and ©(t) using the existing code.

../notebooks/simulation_of_dynamical_systems.html
../notebooks/simulation_of_dynamical_systems.html
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.integrate.solve_ivp.html

@ python Python for engineers TU Dresden WiSe 2022/23

Exercise 03.2: Parameter identification with minimize

Now assume the parameters mo and [are unknown, but measured values of the motion exist. Using
minimize (see docs) you shall find those values for mq and [, with which the measured values are
best reproducible by simulation..

Note: For these tasks you are supposed to edit the file sekeleton-code/identification.py
and use your knowledge from exercise 03.1!

1.

Import the necessary functions (solve_ivp, xdd_fnc, ...). Then load the (fictitious) mea-

sured values from the corresponding file using np.load(..) or np.loadtxt . Note: For
practicability reasons, this is also simulation data. Same sorting as in exercise 03.1, simulation
duration 10s.

. Create a function min_target(p) which expects a parameter array as argument. You can

assume that the array p has two elements. Inside min_target(p) create the local variables

m2, 1 and assign them the contents of p.

Define the function rhs(z, t) analogous to part 1, but this time inside of the function
min_target taking into account the parameter values for msy and [defined in the parent

(outer) function.
Note: Use nested namespaces, i.e., functions within function, see Course02.

For each call to min_target (i.e. within this function), run a simulation with the correspon-
ding parameter values for my and [. Select the initial values and sampling step size to match
the measured data. Use the rtol=1e-5 option for solve_ivp as in exercise 03.1.

. Calculate a squared measure of the carriage position error. (simulated values minus measured

values, squared and then summed using np.sum) and return this measure as the result of

the function min_target .

. Apply scipy.optimize.minimize to min_target with method="Nelder-Mead" as an

optional keyword argument to find the optimal values for my and [. Inside min_target print
status information or intermediate results to min_target if necessary. As starting estimate
for p you can use p0 = [0.5, 0.7] .

Note: The function scipy.optimize.minimize provides a unified interface to many dif-
ferent minimization algorithms with and without constraints, see docs. For the problem at

hand, the so-called “downhill simplex method” of Nelder and Mead is more suitable than the
standard method (“BFGS").

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

