
Faculty of Electrical and Computer Engineering Institute of Control Theory

Dresden, 2023-01-27

PYTHON FOR ENGINEERS
PYTHONKURS FÜR INGENIEUR:INNEN

Communication with External Hardware
Kommunikation mit externer Hardware

Carsten Knoll

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

https://tu-dresden.de/pythonkurs
https://python-fuer-ingenieure.de

Goal:
• which interfaces↔ which Python modules
• general recommendations

Structure:
• introduction
• interfaces

– serial interface
– parallel interface
– GPIB
– Ethernet

• using a DLL driver
• application examples

– USB Missile Launcher
– Mobile Robot (Arduino platform)

• general recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 2 of 24

Preliminary Remarks

Preliminary Remarks

Introduction

Interfaces

Third Party Drivers (e.g. DLL)

Examples of Application

General Recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 3 of 24

Outline

• measuring devices
• function generators
• controls for so called positioning units
• optical components (lamps, lasers, filters, ...)
• temperature controllers
• microcontroller (’µC’)
• other computers
• ...

• background: own experience

(
, ,

)

Dresden, 2023-01-27 Python for Engineers (13) slide 4 of 24

Possible Communication Targets?

• measuring devices
• function generators
• controls for so called positioning units
• optical components (lamps, lasers, filters, ...)
• temperature controllers
• microcontroller (’µC’)
• other computers
• ...

• background: own experience

(
, ,

)

Dresden, 2023-01-27 Python for Engineers (13) slide 4 of 24

Possible Communication Targets?

• top dog: LabVIEW (National Instruments)
• extensive (driver) library
• data flow oriented→ graphical programming
• intuitive parallelization, very easy creation of GUIs

Disadvantages (personal opinion):
• main input via mouse (= bottleneck compared to keyboard)
• modularization/encapsulation more complex
• tends to clutter quickly
• permanent scarcity of screen space→ tendency to to omit comments
• maintainability↘, extensibility↘
• ...

Dresden, 2023-01-27 Python for Engineers (13) slide 5 of 24

Python in the Laboratory? (I)

• top dog: LabVIEW (National Instruments)
• extensive (driver) library
• data flow oriented→ graphical programming
• intuitive parallelization, very easy creation of GUIs

Disadvantages (personal opinion):
• main input via mouse (= bottleneck compared to keyboard)
• modularization/encapsulation more complex
• tends to clutter quickly
• permanent scarcity of screen space→ tendency to to omit comments
• maintainability↘, extensibility↘
• ...

Dresden, 2023-01-27 Python for Engineers (13) slide 5 of 24

Python in the Laboratory? (I)

Desired Look

Reality: “LabVIEW Horror”

When is Python a possible alternative?

• ... no (almost) ready-to-use LabVIEW solution exists
• ... no special LabVIEW features are needed (FPGA, hard realtime)
• ... actual algorithms have to be implemented (not only moving data)
• ... license costs play a role

Dresden, 2023-01-27 Python for Engineers (13) slide 8 of 24

Python in the Laboratory? (II)

• two concepts: “hard” and “soft” real-time conditions
– hard: violation unacceptable (control of aircraft hydraulics)
– soft: violation unattractive but not tragic (DVD player)

• approx. 95% of applications: soft
• main criterion: deterministic execution time

• Python programs have non-deterministic execution time (autom. garbage collector)
→ only soft real-time possible

• sufficiently fast? → depending on task (oftentimes: yes)

Dresden, 2023-01-27 Python for Engineers (13) slide 9 of 24

Real-Time Capability

Preliminary Remarks

Introduction

Interfaces

Third Party Drivers (e.g. DLL)

Examples of Application

General Recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 10 of 24

Outline

• “serial”: data (bit sequence) is transmitted one after the other
• mostly meant: RS-232
• nowadays often emulated via USB (Universal Serial Bus)
• Windows: COM1, . . . Unix: /dev/ttyS1...
• many (measuring) devices equipped with it

• package serial (project pySerial)

import serial
ser = serial.Serial(0, 19200, timeout=2.5) # open first serial port
print(ser.portstr) # check which port was really used
ser.write("hello") # write a string
response = ser.readline() # wait for the response
ser.close()

Dresden, 2023-01-27 Python for Engineers (13) slide 11 of 24

Serial Interface

https://github.com/pyserial/pyserial

• “parallel”: multiple bits transmitted simultaneously over parallel lines transmitted
• also known as “printer output”
• simplest option for digital I/O
• hardly available today
• sensitive to overvoltage

and short circuit
• package parallel (also from project pySerial)

import parallel
p = parallel.Parallel() # open LPT1
p.setData(0x57) # write 0101 0111
responseBit = p.getInPaperOut()

Dresden, 2023-01-27 Python for Engineers (13) slide 12 of 24

Parallel Interface

• general purpose interface bus
(also: “HP-IB”, “IEC-625 bus”,...)

• up to 15 devices in parallel

• package visa (project pyvisa)

import visa
keithley = visa.instrument("GPIB::12")
ident = keithley.ask("*IDN?")
assert ident.startswith("KEITHLEY INSTRUMENTS INC.") # check consistency
keithley.write(":CONF:VOLT:DC")
v = keithley.ask(":READ?")
print(float(v))

Dresden, 2023-01-27 Python for Engineers (13) slide 13 of 24

GPIB

https://pyvisa.readthedocs.io/en/stable/

• modern devices: often with network connection
• internal web server (program) for communication
• socket:

= endpoint of a network connection
• → client-server architecture
• package socket (python standard library)

client program
import socket

HOST = "141.30.61.152" # ip address of remote host
PORT = 50007 # same port as used by the server
s = socket.socket()
s.connect((HOST, PORT)) # connect to server
byte_arr = bytes("Hello, world", "utf8")
s.send(byte_arr) # send something
data = s.recv(1024) # wait for answer
s.close()
print("Received:", repr(data))

background information: on Python datatypes bytes vs str and encoding and unicode.

Dresden, 2023-01-27 Python for Engineers (13) slide 14 of 24

Ethernet (Local Network)

https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Preliminary Remarks

Introduction

Interfaces

Third Party Drivers (e.g. DLL)

Examples of Application

General Recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 15 of 24

Outline

• device drivers sometimes supplied by the manufacturer as compiled code
Windows: .dll (“dynamically linked libray”); Linux .so; “shared object”

• access it with package ctypes (from Python standard library)
– required: knowledge about names and signature of functions
– data types need special attention

Example: read optical line sensor
(Communication via USB (with unknown protocol))

import ctypes
camdll = ctypes.windll.LoadLibrary("D:/devices/cam123.dll")
camdll.setIntegrationTime(5) # 5ms (value from docs)

create arry: length = 512, data type = unsigned sort
valuearray_type = ctypes.c_ushort * 512
valuearray = valuearray_type()

pass reference to array:
pixels = camdll.ReadData(ctypes.byref(valuearray))
assert pixels == 512 # check consistency
values = list(valuearray) # convert ctypes array -> python list

Dresden, 2023-01-27 Python for Engineers (13) slide 16 of 24

DLL Driver

https://docs.python.org/3/library/ctypes.html

Preliminary Remarks

Introduction

Interfaces

Third Party Drivers (e.g. DLL)

Examples of Application

General Recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 17 of 24

Outline

• application in optics laboratory
• task: interrupt laser beam (without time requirements)
• professional equipment: >500C (project budget already depleted)
• idea: misuse of ... toys
• → two-axis adjustable launcher
• control from PC by Windows GUI program→ doesn’t matter

• ∃ DLL→ Python wrapper (own development)→ task solved

Dresden, 2023-01-27 Python for Engineers (13) slide 18 of 24

Low-Cost Beam-Shutter

• project for student internship (7th/8th grade).
• abilities: driving, flashing, make sound,

detecting underground (brightness sensors),
communicate (display, RS-232)

Arduino:
• open-source µC development platform

simple and powerful
• Atmel AVR microcontroller + board
• USB, power supply, LEDs, reset button
• plug’n play
• digital + analog input and output (AO via pulse width modulation)

• software: IDE + libraries + examples
• → strongly simplified C++ programming

Dresden, 2023-01-27 Python for Engineers (13) slide 19 of 24

More on this:

Mobile Robot with Arduino Microcontroller (µC)

https://arduino.cc
http://www.roebenack.de/node/152

• project for student internship (7th/8th grade).
• abilities: driving, flashing, make sound,

detecting underground (brightness sensors),
communicate (display, RS-232)

Arduino:
• open-source µC development platform

simple and powerful
• Atmel AVR microcontroller + board
• USB, power supply, LEDs, reset button
• plug’n play
• digital + analog input and output (AO via pulse width modulation)

• software: IDE + libraries + examples
• → strongly simplified C++ programming

Dresden, 2023-01-27 Python for Engineers (13) slide 19 of 24

More on this:

Mobile Robot with Arduino Microcontroller (µC)

https://arduino.cc
http://www.roebenack.de/node/152

• project for student internship (7th/8th grade).
• abilities: driving, flashing, make sound,

detecting underground (brightness sensors),
communicate (display, RS-232)

Arduino:
• open-source µC development platform

simple and powerful
• Atmel AVR microcontroller + board
• USB, power supply, LEDs, reset button
• plug’n play
• digital + analog input and output (AO via pulse width modulation)

• software: IDE + libraries + examples
• → strongly simplified C++ programming

Dresden, 2023-01-27 Python for Engineers (13) slide 19 of 24

More on this:

Mobile Robot with Arduino Microcontroller (µC)

https://arduino.cc
http://www.roebenack.de/node/152

Goal:
• Control the robot from the PC

Implementation: (see exercise/external_code/robot/robot.ino)
• C++-program on µC waits for commands

and then executes certain actions
• Python program to send the commands
• each command consists of two bytes:

– command (’F’=Forward, ’B’=Backward, ...)
– argument (numeric value of the byte, [0, 255])

• inclusion of ipython shell⇒ interactive text interface

Dresden, 2023-01-27 Python for Engineers (13) slide 20 of 24

Python Application: remote control

• Python interpreter that runs directly on microcontrollers
• “as compatible as possible”
• including interactive prompt (“REPL”)
• no own experience yet

• ∃ online live demo:
http://www.micropython.org/live

Dresden, 2023-01-27 Python for Engineers (13) slide 21 of 24

MicroPython

https://en.wikipedia.org/wiki/Read-eval-print_loop
http://www.micropython.org/live
http://www.micropython.org
http://www.micropython.org/live

• Python interpreter that runs directly on microcontrollers
• “as compatible as possible”
• including interactive prompt (“REPL”)
• no own experience yet

• ∃ online live demo:
http://www.micropython.org/live

Dresden, 2023-01-27 Python for Engineers (13) slide 21 of 24

MicroPython

https://en.wikipedia.org/wiki/Read-eval-print_loop
http://www.micropython.org/live
http://www.micropython.org
http://www.micropython.org/live

Preliminary Remarks

Introduction

Interfaces

Third Party Drivers (e.g. DLL)

Examples of Application

General Recommendations

Dresden, 2023-01-27 Python for Engineers (13) slide 22 of 24

Outline

• thoroughly think through the (automation) task→ make written notes
(use cases, devices, relevant quantities, variables, ...)

• use as much existing as possible

• object orientation: one device↔ one class (↔ one file)

• modularization: own package (e.g. devices)
• for every device: initialization phase and proper shutdown if necessary
• provide simulation mode (allows program testing without devices connected)
• consistency tests (check actually known information)
• check of permissible value ranges
• logging functionality (log to screen and to file, see

https://docs.python.org/3/howto/logging.html)

Dresden, 2023-01-27 Python for Engineers (13) slide 23 of 24

General Recommendations

https://docs.python.org/3/howto/logging.html

• https://github.com/pyserial/pyserial

• https://pyvisa.readthedocs.io/en/stable/

• http://docs.python.org/library/socket.html

• http://docs.python.org/library/ctypes.html

• https://docs.python.org/3/howto/logging.html

• http://www.arduino.cc

• http://www.arduino.cc/playground/Interfacing/Python

• http://www.micropython.org

• http://wiki.python.org/moin/BitwiseOperators

• Python data types bytes vs str (short)
• general information on encodings and Unicode (longer)

Dresden, 2023-01-27 Python for Engineers (13) slide 24 of 24

Links

https://github.com/pyserial/pyserial
https://pyvisa.readthedocs.io/en/stable/
http://docs.python.org/library/socket.html
http://docs.python.org/library/ctypes.html
https://docs.python.org/3/howto/logging.html
http://www.arduino.cc
http://www.arduino.cc/playground/Interfacing/Python
http://www.micropython.org
http://wiki.python.org/moin/BitwiseOperators
https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

	Preliminary Remarks
	Introduction
	Interfaces
	Third Party Drivers (e.g. DLL)
	Examples of Application
	General Recommendations

