@ python’ Python for Engineers TU Dresden WiSe 2022/23

Diff:

Differences between given skeleton and solution
In order to make the sample solution easier to understand, the differences between it and the given skeleton source
code were highlighted with the help of the program diff.

Legend:

e Gray: unchanged text (only excerpts).
e Green: new lines
e Yellow: changed lines

e Red: deleted lines

Note: Files not listed have not been changed.

This document was created with the help of diff2html erstellt.

http://git.droids-corp.org/gitweb/?p=diff2html

diff -u ../course@3-numerical-computation/exercise/code/01 simulation.py ../course03-numerical-computation/exercise/solution/01 simulation.py

../course03-numerical-computation/exercise/code/01_simulation.py ../course03-numerical-computation/exercise/solution/01_simulation.py
1 import sys 1 import sys
2 import numpy as np 2 import numpy as np
3 from numpy import r , pi 3 from numpy import r , pi
4 from matplotlib import pyplot as plt # used for the plotting at the end 4 from matplotlib import pyplot as plt # used for the plotting at the end
5
6
7 # Move the following line further down as you are advancing.
8 # Background: actively exiting the program here prevents errors,
9 # due to usage of undefined names like XXX .
10
11
12 sys.exit() # Ends the program here. Otherwise: error messages
13
14
15 5
16 6
17 # Task 1: 7 # Task 1:
18 8
19 # import the function solve ivp from the package scipy.integrate 9 # import the function solve ivp from the package scipy.integrate
20 from scipy.XXX import XXX 10 from scipy.integrate import solve ivp
21 11
22 # import two functions for calculating the accelerations 12 # import two functions for calculating the accelerations
23 # (look inside the file “equations of motion.py'!) 13 # (look inside the file “equations of motion.py'!)
24 from equations_of motion import xdd_fnc #, XXX 14 from equations_of motion import xdd_ fnc, phidd_ fnc
25 15
26 16
27 # Task 2: 17 # Task 2:
28 18
29 def rhs(XXX, XXX): 19 def rhs(t, z):
30 # This function calculates the time derivative z_dot from the state z 20 # This function calculates the time derivative z_dot from the state z
31 # the 1st argument (the time t) is not needed here 21 # the 1st argument (the time t) is not needed here
32 22
33 x, phi, xd, phid = z # unpacking (see overview slides in course01l) 23 X, phi, xd, phid = z # unpacking (see overview slides in course01)
34 F=0 24 F=0
35 25
36 xdd = xdd_fnc(XXX, XXX, ...) 26 xdd = xdd_fnc(x, phi, xd, phid, F)
37 phidd = XXX 27 phidd = phidd fnc(x, phi, xd, phid, F)
38
39 28
40 # Return the derivative of the state vector 29 # Return the derivative of the state vector
41 z _dot = r_[xd, phid, XXX, XXX] 30 z dot = r_[xd, phid, xdd, phidd]
42 return z dot 31 return z dot
43 32
44 33
47 36
48 # Task 3: 37 # Task 3:
49 38
50 zz0 = np.array([XXX, pi*0.5, XXX, XXXI) 39 zz0 = np.array([0, pi*0.5, 0, 0])
51 40
52 41
53 # Task 4: 42 # Task 4:
54 43
55 # do the numerical integration 44 # do the numerical integration

56 res = solve ivp(XXX, (tt[0], tt[-1]), XXX, t eval=tt, rtol=le-5) 45 res = solve ivp(rhs, (tt[0], tt[-1]), zz0, t eval=tt, rtol=le-5)

57 46

58 # res: result container 47 # res: result container
59 # res.y: result array with shape (4, 1001) 48 # res.y: result array with shape (4, 1001)
60 # rows -> state components, columns -> time steps. 49 # rows -> state components, columns -> time steps.
61 50
62
63 # Task 5: 51 # Task 5:
64 52
65 # Unpacking of individual state components. 53 # Unpacking of individual state components.
66 # Arrays are always unpacked along the 1st axis (rows). 54 # Arrays are always unpacked along the 1st axis (rows).
67 x, phi, xd, phid = XXX 55 x, phi, xd, phid = res.y
56
68 57
69 # visualization (more on this in course04): 58 # visualization (more on this in course04):
70 plt.plot(tt, x) 59 plt.plot(tt, x)
71 plt.plot(XYZ) 60 plt.plot(tt, phi)
72 plt.show() 61 plt.show()
62
63

64 ## The following code is not part of the exercise03.1 but conveniently stored here
65 ## by the supervisor. It is used to generate "pseudo-measurement data"

66 ## for exercise03.2.

67 ## The block will not be executed, but can be quickly converted to "active code"
68 ## by replacing "0 with "1° in the if-statement.

69
70 if 0O:
71 # binary format:
72 np.save('measurement-data.npy', res.y)
73 # text fomat (human readable, but needs more memory):
74 np.savetxt('measurement-data.txt', res.y)
75
76 print ("Files written.")
diff -u ../course@3-numerical-computation/exercise/code/02 identification.py ../course@3-numerical-computation/exercise/solution/02 identification.py
../course03-numerical-computation/exercise/code/02_identification.py ../course03-numerical-computation/exercise/solution/02_identification.py
1
2 # Move the following line further down as you are advancing.
3 # Background: actively exiting the program here prevents errors,
4 # due to usage of undefined names like XXX .
5
6
7 sys.exit() # Ends the program here. Otherwise: error messages
8
9
10
11
12
13
14
15 import sys 1 import sys
16 import numpy as np 2 import numpy as np
17 3
19 # Task 1: 5 # Task 1:
20 6
21 # import the function solve ivp from the package scipy.integrate 7 # import the function solve ivp from the package scipy.integrate
22 8 from scipy.integrate import solve ivp
23 9

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
51
52
53
54
55
56
57
58
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
90
91
92
93
94
95
96
97
98
99
100
101

import two functions for calculating the accelerations
(look inside the file ‘equations of motion.py'!)
from equations_of _motion import xdd_fnc, XXX

load pseudo measurement data in binary format
zz_res_target = np.load(XXX)

-> this is a 2d array with shape = (4, 1001), i.e. 4 rows, 1001 cols.
meaning of rows: x, phi, xd, phid
meaning of cols: time instant

alternatively: load data in text format:
zz res target = np.loadtxt(XXX)

Task 2:

rreturns: err — non-negative real valued error measure
(how "wrong the simulation result is")

m2, 1 = XXX # unpacking the parameter vector

Task 3:

Righthand side of the equations of motion

(Note: this depends on m2 and 1 from the surrounding namespace).
x, phi, xd, phid = XXX # unpacking
F=20

m2 and 1 come from the namespace one level higher

(you might want to look again into ‘egations_of motion.py"
to check the signature of these functions:)

xdd = xdd_fnc (XXXXXXXX, m2, 1)

phidd = phidd_ fnc (XXXXXXXXX, = XXX, XXX)

return derivative of the state vector
return XXX

end of the inner function definition of rhs

them here:

array with evaluation times (should be consistent with the measured data)
tt = np.linspace(0, 10, XXX)

select a consistent initial state (4 values) for the simulation
from the measurement data (-> choose the first column)
zz0 = XXX

do the simulation (get result container)
sim res = solve ivp (XXX, (XXXX, XX), YYY, t eval=tt, rtol=le-5)

10 # import two functions for calculating the accelerations

11 # (look inside the file ‘equations of motion.py'!)
12 from equations of motion import xdd fnc, phidd fnc

13

14 # load pseudo measurement data in binary format
15 zz res_target = np.load('measurement-data.npy')

16

21
22
23
24
25
35
36

37
38

39
40
41
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
73
74
75
76
77
78
79
80
81
82
83
84

-> this is a 2d array with shape = (4, 1001), i.e. 4 rows, 1001 cols.
meaning of rows: x, phi, xd, phid
meaning of cols: time instant

alternatively: load data in text format:
zz res target = np.loadtxt('measurement-data.txt')

Task 2:
:returns: err — non-negative real valued error measure
(how "wrong the simulation result is")
m2, 1 = p # unpacking the parameter vector
Task 3:
Righthand side of the equations of motion
(Note: this depends on m2 and 1 from the surrounding namespace).
x, phi, xd, phid = z # unpacking
F=0
m2 and 1 come from the namespace one level higher
(you might want to look again into ‘egations_of motion.py"
to check the signature of these functions:)
xdd = xdd_fnc(x, phi, xd, phid, F, m2, 1)
phidd = phidd_fnc(x, phi, xd, phid, F, m2, 1)
return derivative of the state vector
return np.array([xd, phid, xdd, phidd])
end of the inner function definition of rhs
them here:
array with evaluation times (should be consistent with the measured data)
tt = np.linspace(0, 10, 1001)
select a consistent initial state (4 values) for the simulation
from the measurement data (-> choose the first column)
zz0 = zz_res_target[:, 0]
do the simulation (get result container)
sim res = solve ivp(rhs, (tt[@], tt[-1]), zz0, t eval=tt, rtol=le-5)

102 # select the state vector (which we call "z" but scipy calls "y")
103 zz_res = XXX.y

104

105 # Task 5:

106

107 # Calculate the difference of the x-positions (first line in each case)
108 # then square (...**2),

109 # then add up (applying np.sum)

110 err = np.sum((XXX[YYY, ZZZ] - XXX[YYY, ZZZ])**XXX)

111

112 # Status message and output (to assess progress of optimization)
113 print("simulation ready. p =", p, " equation error:", err)

119

120 # Task 6:

121

122 p0 = np.array([.5, .7]) # Startschatzung fir m2 und 1

123

124 # import the function minimize from the module scipy.optimize

125 from XXX.XXX import XXX

126

127 # do the optimization (call the algorithm, which internally repeatedly calls min_target)
128 min_res = minimize (XXX, XXX, method="Nelder-Mead")

129
130 print("\n", "minimization result (data structure):", min res, "\n")
131 print("estimated paremeters (m2, 1):", min_res.x, "\n")

85 # select the state vector (which we call "z" but scipy calls "y")
86 zz_res = Sim res.y

87

88 # Task 5:

89

90 # Calculate the difference of the x-positions (first line in each case)

91 # then square (...**2),
92 # then add up (applying np.sum)

93 err = np.sum((zz_res[@®, :] - zz res target[0, :])**2)

94

95 # Status message and output (to assess progress of optimization)
96 print("simulation ready. p =", p, " equation error:", err)

102

103 # Task 6:

104

105p0 = np.array([.5, .7]) # initial guess for m2 and 1

106

107 # import the function minimize from the module scipy.optimize

108 from scipy.optimize import minimize

109

110 # do the optimization (call the algorithm, which internally repeatedly calls min_target)
111 min_res = minimize(min_target, p0, method="Nelder-Mead")

112

113

114 print("\n", "minimization result (data structure):", min res, "\n")

115 print("estimated paremeters (m2, 1):", min_res.x, "\n")

