
www.scads.de

DATA ANALYTICS WITH

APACHE SPARK
A short introduction

René Jäkel

AGENDA

www.scads.de 2

 Time Topic

11:00-13:00 Brief introduction in Big Data

Context and historical remarks

Hands-On Part 1 (preparation and basics)

13:00-14:00 Lunch Break

14:00-16:00 Hands-On Part 2 (data manipulation)

Further analytics concepts

Big Data trends

Big Data „too big for traditional methods“

BIG DATA - 4VS

www.scads.de 3

Volume
Machinegenerated + Humangenerated +
Businessdata

Variety
Text,
Audio,
Images,
Video,
Clickstreams,
Logfiles

Velocity
Realtime
Seconds
Minutes
Hours
Days

Veracity
Weatherdata, Sensordata, Tradedata, ...

BIG DATA? – SOME V‘S

more important:

extract new
content from

database

www.scads.de René Jäkel – 1st Big Data Fall School 2015 4

 Venue: distributed, heterogeneous data from multiple platforms, from
different owners’ systems, with different access and formatting
requirements, private vs. public cloud.

 Vocabulary: schema, data models, semantics, ontologies, taxonomies, and
other content- and context-based metadata that describe the data’s
structure, syntax, content, and provenance.

 Vagueness: “confusion” over the meaning of big data (Is it Hadoop? Is it
something that we’ve always had? What’s new about it? What are the
tools? Which tools should I use? etc.)

EVEN MORE ASPECTS ?!

Source: MapR blog by Kirk Borne:

“Top 10 Big Data Challenges – A Serious Look at 10 Big Data V’s” [1]

www.scads.de 5

HYPE VS. REALITY?

www.scads.de 6

July 2013

HYPE VS. REALITY?

www.scads.de 7

July 2014

HYPE VS. REALITY?

www.scads.de 8

July 2015

Big Data??? – Diversification!!

SHORT SCADS INTRODUCTION

www.scads.de

IS THERE A JACK OF ALL TRADES?

Domain Expert

Statistics &
Analysis

Technical
Expert

Digital Humanities Bio-Informatics

Business Data
Traffic Sciences

Material Sciences

Hadoop

HDFS

Spark

Java

Scala YARN

Python

Data Integration

Cluster Management

Flink
Graph

Clustering

Machine Learning

Data Modelling

Statistics& Math (SPSS,
R, Matlab)

Deep Learning

Visualization

Visualisation

“Data Scientist?"

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/

IS THERE A JACK OF ALL TRADES?

Domain Expert

Statistics &
Analysis

Technical
Expert

Digital Humanities Bio-Informatics

Business Data
Traffic Sciences

Material Sciences

Hadoop

HDFS

Spark

Java

Scala YARN

Python

Data Integration

Cluster Management

Flink
Graph

Clustering

Machine Learning

Data Modelling

Statistics& Math (SPSS,
R, Matlab)

Deep Learning

Visualization

Visualisation

Lets have a team
of experts!

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/

 Project period: 4 years (10/2014 – 09/2018), option for
+3 more years after evaluation

 Many involved research groups + many associated partners

 Focal point for new research activities

 Specialists from computer and domain sciences

NATIONAL BIG DATA COMPETENCE CENTER

12

Max Planck Institute
of Molecular Cell
Biology and Genetics

www.scads.de

http://www.tu-dresden.de/
http://www.mpi-cbg.de/
http://www.ioer.de/

STRUCTURE OF THE COMPETENCE CENTER

Big Data Life Cycle Management und Workflows

Efficient Big Data Architecture

Data Quality/
Data Integration

Visual Analysis Knowledge Extraction

Life-Sciences

Material Sciences

Digital Humanities

Environmental and Traffic Sciences

Business Data

Service
Center

W.E. Nagel E.Rahm

W. Lehner

K.-P. Fähnrich M. Bogdan C. Rother G. Scheuermann

S. Gumhold

P. Stadler G. Heyer

 Trainings & Education

 Big Data Consulting &
Collaborative Research

 Technical Infrastructure &
Resources

SERVICE CENTER AS FOCAL POINT

14 www.scads.de

Trainings

Education

Events

Consulting & Evaluation

Technical Resources / Hosting

Technical Service Offering

Service Center Proposal Writing

Service
Center

Customers

Disciplinary
Research

Teaching and
Qualification

Computer Science
Research

SOME HISTORIC REMARKS

www.scads.de

 Many machines (hundreds, thousands)

 As opposed to scale-up, where one very powerful (single)
server is used

SCALE-OUT

INFRASTRUCTURE FOR BIG DATA

Server
• CPUs
• DRAM
• Disks

Rack
• 40-80 Server
• Ethernet Switch Cluster

EXAMPLE: GOOGLE DATACENTER

Source: http://www.google.com/about/datacenters/gallery/#/all/10

HOW TO PROCESS AND STORE DATA ON
THIS INFRASTRUCTURE?

First approaches: HADOOP

 The Google File System (Sanjay Ghemawat, H. Gobioff, S.
Leung. SOSP 2003)

 MapReduce: Simplified Data Processing on Large Clusters (Jeff
Dean, S. Ghemawat. OSDI 2004)

HISTORY

 Hadoop is open-source software framework

 supports data-intensive distributed applications and clones
the Google‘s MapReduce

 designed to process verly large amounts of unstructured and
complex data

 designed to run on a large number of machines

APACHE HADOOP

HADOOP 1.0 ECOSYSTEM

Shared Nothing Cluster

Distributed Storage

Column Store

Distributed Data Processing
Model
Job Scheduling

Workflow Graph SQL/DWH Scripting …

C
o

o
rd

in
at

io
n

Se
ri

al
iz

at
io

n

MAP REDUCE EXAMPLE - COUNTING

EXTENSIONS NEEDED

BIG DATA 2.0 PROCESSING PLAFROMS

General Purpose Big SQL Big Graph Big Stream

Availability of sensors & Cyberphysical Systems

DYNAMIC DATA

 Toll collection, Speed control, traffic-jam detection, route
planning

 Toll stations, smart phones..

USE CASE: TRAFFIC MONITORING

 stream of sensor data (30hz)

GESTURE DETECTION

www.scads.de

INTRODUCTION TO SPARK
Overview + Hands On

René Jäkel

TUTORIAL REQUIREMENTS

www.scads.de

For this tutorial, this will be the base:

 Preparation:

 Go to spark website and download latest base release:
http://spark.apache.org/downloads.html

 Unpack on your local machine (in user space; hint: use a unique
location for this tutorial in your workstation)

 Testing: run a small example - Pi-estimation

$./bin/run-example SparkPi 10

 Download code skeleton and example data from here:

https://wwwpub.zih.tu-dresden.de/~jaekel/
 tutorial.zip (source code examples)
 yellow_tripdata_2016-01_10k.csv (…100k – taxi data example)

SPARK DEPLOYMENT ON LINUX

www.scads.de 31

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
https://wwwpub.zih.tu-dresden.de/~jaekel/
https://wwwpub.zih.tu-dresden.de/~jaekel/
https://wwwpub.zih.tu-dresden.de/~jaekel/
https://wwwpub.zih.tu-dresden.de/~jaekel/
https://wwwpub.zih.tu-dresden.de/~jaekel/

 Install Java JRE:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

(check environment variables in ‘Path’ for ‘Java_Home’ on your system

 Install Scala: http://www.scala-lang.org/download/

 Install SBT: http://www.scala-sbt.org/download.html

 Install python 2.7.13 from here: https://www.python.org/downloads/windows/

and add location to ‘PATH’ environment variable

 Add tool “winutils.exe” to path

 Download from http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe

 Create a directory on your system, e.g. ‘C:\Hadoop’ and copy “winutils.exe”
into subdirectory ‘bin’

 Set environment variable on your system to point to the actual location

(HADOOP_HOME=c:\Hadoop)

SPARK WINDOWS DEPLOYMENT

www.scads.de 32

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.scala-lang.org/download/
http://www.scala-lang.org/download/
http://www.scala-lang.org/download/
http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/download.html
https://www.python.org/downloads/windows/
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe

 Download Spark (evtl. need for zipper, e.g. 7zip, to unpack release)

 Go to spark website and download latest base release:
http://spark.apache.org/downloads.html

 Create tutorial directory somewhere and unpack release

 Open command line and run example from the release home dir

 Testing: run a small example - Pi-estimation

$.\bin\run-example SparkPi 10

SPARK WINDOWS DEPLOYMENT (II)

www.scads.de 33

http://spark.apache.org/downloads.html

www.scads.de

INTRODUCTION TO SPARK
Overview

René Jäkel

 Motivation/Overview

 Some historic and general remarks

 Alternatives

 Use and scope

 Spark and its core functionalities – examples for data manipulation

 Running Spark

 Handling and transforming data

 RDDs – basic structures (the heart of Spark)

 Additions to core – SQL example

 Where to go from here?

OVERVIEW

www.scads.de 35

SPARK – A SHORT INTRODUCTION

www.scads.de

Now (~20a)

 Hardware

 RAM/Flash got cheaper and
faster – tend to become primary
storage, disk as fall-back

 Network is faster / Virtualization

 Multi core machines are
dominating, different
architectures

 Software

 More functional programming
and frameworks

 Multicore-programming and
distribution

 NoSQL alternatives

2000

 Hardware

 Disk space cheap (primary
storage solutions)

 Network was costly

 RAM was very expensive

 Single core machines were
dominant

 Software

 Object orientation and
optimization for single core

 SQL as primary analysis
language; some specific
frameworks (Mathlab)

HISTORY / EVOLUTION OF BIG DATA

www.scads.de 37

First generation of data processing frameworks (Big Data)

 Purpose/Background

 ONLY few companies had real big data need

 Batch processing was still dominant way to distribute
workloads

 Primarily volume was biggest concern (not 5 V’s)

 Mostly used for Search/basic behavior analysis (logging
data)

 Hadoop-implementation offered simple programming
approach

 Batch orientated

 Underlying HDFS for data distribution

HISTORY / EVOLUTION OF BIG DATA

www.scads.de 38

Second generation

 Purpose/Background

 Most companies have need to use Big Data technologies

 Velocity now dominating, also “Value”

 Diverse use cases

 Real time processing of data

 Learning approaches, iterations, interactions

 Hadoop-approach not flexible enough any more

 Need for in-memory processing (handle iterations
efficiently)

 Very flexible hardware options (Shared-Nothing vs. HPC?)

HISTORY / EVOLUTION OF BIG DATA

www.scads.de 39

LIMITATIONS OF AND EXTENSIONS TO
MAP/REDUCE

www.scads.de 40

Geoffrey Fox:- Lecture: Building a Library at the Nexus of High

Performance Computing and Big Data, Indiana University

 Blog post “HPC is dying, and MPI is killing it” by Jonathan Dursi
(from April 2015, see http://www.dursi.ca/hpc-is-dying-and-mpi-
is-killing-it/)

IS BIG DATA KILLING HPC?

www.scads.de 41

Pictured: The HPC
community bravely

holds off the
incoming tide of

new technologies
and applications.

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015

 Blog post “HPC is dying, and MPI is killing it” by Jonathan Dursi
(from April 2015, see http://www.dursi.ca/hpc-is-dying-and-mpi-
is-killing-it/)

IS BIG DATA KILLING HPC?

www.scads.de 42

Data based on
Google trends

results for MPI,
Hadoop, and Spark

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015

 Jonathan Dursi addresses HPC in general

 “This should be a golden age for High Performance Computing.”
But it is not. Instead new technologies are developed by other
communities.

 Analysis of Internet data and DNA sequencing brought huge
amounts of data in new areas. Why wasn’t HPC the logical
solution?

 Prevailing “Not invented here” or “this is not real HPC” attitudes.

 HPC stayed with traditional concepts largely, both in hardware
and software.

 Other communities developed their own solutions, re-inventing
several wheels, producing many successful new technologies and
software.

WHERE HPC IS WRONG TODAY

www.scads.de 43

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015

 Jonathan Dursi addresses HPC in general

 Used to be the “killer app” in HPC, particularly because it was a
firm standard for 27 years

 Very high quality implementations, highest speed, constantly
adapting to newest hardware.

 But also bloated and inflexible

 Just left no room for alternatives inside the HPC community:

 Chapel, X10, UPC, CoArray Fortran, Java, Scala, Python

 GASPI and OpenSHMEM

 Very slow and difficult standardization process today.

 Quite backward oriented

 stuck with 32bit variables

 fault tolerance solution on the horizon

WHERE HPC IS WRONG TODAY

www.scads.de 44

Slide courtasy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015

 Compare implementation effort for 1D diffusion simulation in lines
of code

 Very simple example in MPI, Spark, and Chapel by Jonathan Dursi

 (The Spark version is also fault-tolerant)

 (The Chapel version includes command line parameter parsing)

 Change of data distribution requires

 Complete rewrite in MPI

 Change hash function in Spark

 Change declaration in Chapel

WHERE HPC IS WRONG TODAY

www.scads.de 45

Slide courtasy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015

WHERE HPC IS WRONG TODAY

www.scads.de 46

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015
 MPI

 Spark

Chapel

SPARK OVERVIEW

www.scads.de

Third generation – multi purpose frameworks and large diversity
of analytics environments, e.g.:

 Apache Spark

 A fast and general engine for large scale data processing

 Created by AMPLab (Berkeley/2009) now Databricks

 Written in Scala and licensed under Apache Foundation

 Strong international developer community and organized
as open source

HISTORY / EVOLUTION OF BIG DATA

www.scads.de 48

Blog post about history of Spark by Madhukara Phatak:
http://blog.madhukaraphatak.com/history-of-spark/

 Apache Spark offers Directed Acyclic Graph
(DAG) execution engine that supports cyclic
data flow and in-memory computing

 Offers over 80 high-level operators to build
parallel applications; use it interactively
from the Scala, Python and R shells

 Offers stack of libraries including SQL and
DataFrames, MLlib for machine learning,
GraphX, and Spark Streaming; combine
libraries seamlessly in the same application

 Run Spark standalone or in cluster mode, on
EC2, on Hadoop YARN, or on Apache Mesos;
access data in HDFS, Cassandra, HBase, Hive,
Tachyon, and any Hadoop data source

SPARK OVERVIEW

www.scads.de 49

Multi language API

 Now completely written in Scala but versatile API offered

 Scala

 Java

 Python

 R-interface

 SparkSQL provides tool to analyze data in SQL-like manner

 Supports batch-, stream-, and in-memory-processing

 Fully integrate with Hadoop and HDFS

SPARK OVERVIEW

www.scads.de 50

 Deployment

 Local / Standalone

 On Hadoop-Cluster, Yarn

 Mesos, EC2

SPARK ON A HADOOP-LIKE CLUSTER

www.scads.de 51

 For this tutorial, this will be the base:

 Preparation:

 Go to spark website and download latest base release:
http://spark.apache.org/downloads.html

 Install on your local machine (in user space, platform independent)

 Exercise: run a small example - Pi-estimation

$./bin/run-example SparkPi 10

 Have a look into example subdirectory

 Exercise: run a different example of your own choice from the base package

 Have a look in web frontend after starting Spark
http://localhost:4040

SPARK IN LOCAL MODE

www.scads.de 52

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://localhost:4040/
http://localhost:4040/
http://localhost:4040/

 You might want to change general behaviour of Spark settings in
configurations

 E.g. alter log-level for output

 Go to ./config‘- sub-directory

cp conf/log4j.properties.template conf/log4j.properties

 Change log level:

 log4j.rootCategory=INFO, console

 to:

 log4j.rootCategory=WARN, console

 Re-run small example and watch output

SPARK CONFIGURATION

www.scads.de 53

 Quick intro into python programming interface

 Running the Python-Spark shell on 2 cores

 $./bin/pyspark –master=local[2]

 To quit, use quit()function call

 Simple and efficient ways to try things in quick-mode and interactively

 Exercise: write very simple python example and execute via spark

 Make a local working directory e.g. tutorial

 Write a minimal python “Hello World” example:'

 Run your first example using ‘spark-submit’ with your python
input file as argument (exchange pyspark-executable with ‘spark-
submit’)

INTERACTING WITH SPARK

www.scads.de 54

 Quick intro into python programming interface

 Running the Python-Spark shell on 2 cores

 $./bin/pyspark –master=local[2]

 Make a local working directory e.g. tutorial

 Write a minimal python “Hello World” example:

 Run your first example (watch output)

 $./bin/spark-submit –master=local[2] tutorial/hello.py

 Hello, world!

INTERACTING WITH SPARK

www.scads.de 55

 First analysis example to find interesting tags in text-based documents

 Find some text file on your system

 Running the Python-Spark shell with 2 cores in interactive mode:

 $./bin/pyspark –master=local[2]

 Load text file via spark context

 localInputFile = "myLocalFile.txt“

 logData = sc.textFile(localInputFile)

 Apply filter-transformation on input (filter for some string pattern)

 letterAs = logData.filter(lambda s: 'a' in s).count()

TEXT HANDLING EXAMPLE

www.scads.de 56

transformation action

What is your observation?

 Exercise: transform test code to external python program

 Need to include ‘SparkContext’

 Add explicit definition of context object

 from pyspark import SparkContext

 localInputFile = “./myLocalFile" # some file on your system

 sc = SparkContext("local", "Simple App")

 logData = sc.textFile(localInputFile)

 #…some more code here…

 sc.stop()

TEXT HANDLING EXAMPLE

www.scads.de 58

 Connection of the client to the available cluster

 Master defines cluster connection

 Local / Spark standalone / Mesos / EC2

./bin/spark-shell –master=mesos://HOST:PORT myAPP

SPARK - CONTEXT

www.scads.de 59

Client/Driver
(SC)

Cluster
Manager

Worker Node
 Executor

Cache

Task Task

Worker Node
 Executor

Cache

Task Task

 Master workflow

 Connects to a cluster manager which allocates resources across
applications

 Acquires executors on worker nodes to processes computations
on stored data

 Sends driver application code to executors

 Distributes tasks for the executors to run separately

SPARK - CONTEXT

www.scads.de 60

Client/Driver
(SC)

Cluster
Manager

Worker Node
 Executor

Cache

Task Task

Worker Node
 Executor

Cache

Task Task

 Simple text example

./bin/spark-submit --master=local[2] ../02_SimpleApp.py

 """SimpleAppV1.py"""

 from pyspark import SparkContext

 localInputFile = "myLocalFile.txt" # Should be some file on your

 system

 sc = SparkContext("local", "Simple App")

 sc.setLogLevel("WARN")

 logData = sc.textFile(localInputFile)

 numAs = logData.filter(lambda s: 'a' in s).count()

 numBs = logData.filter(lambda s: 'b' in s).count()

 print("Lines with 'a': %i, lines with 'b': %i" % (numAs, numBs))

TEXT HANDLING EXAMPLE

www.scads.de 61

Solution

 Exercises: update program to load collection of files

 E.g. from logging directory ‘/var/log/’

 1) all files with .log extension

 2) all files in given directory

 Add elements to data distribution

 addInputFile = "/var/log/kern.log"

 logDataAll = sc.textFile(addInputFile)

 Or by simply using python notation

 sc.textFile(“ /my/dir1,

 /my/paths/part-00[0-5]*,

 /another/dir,

 /a/specific/file“)

READING IN COLLECTION OF FILES

www.scads.de 62

 Exercises: update program to load collection of files

 E.g. from logging directory ‘/var/log/’

 1) all files with .log extension

 2) all files in given directory

 localInputFile = "/var/log/syslog" # some file on your system

 sc = SparkContext("local", "Simple App")

 logDataAll = sc.textFile(localInputFile)

 addInputFile = "/var/log/kern.log"

 logDataAll = sc.textFile(addInputFile)

 #logDataAll = sc.textFile("/var/log/*.log")

 numKs = logDataAll.filter(lambda s: 'kernel' in s).count()

 numWs = logDataAll.filter(lambda s: 'warning' in s).count()

 print("Lines with kernel: %i, lines with warnings: %i" % (numKs, numWs))

 sc.stop()

READING IN COLLECTION OF FILES

www.scads.de 63

Solution

SPARK – RDD

www.scads.de 64

 RDD is a resilient and distributed collection of records

 Resilient, i.e. fault-tolerant with the help of RDD lineage graph and so able to
recompute missing or damaged partitions due to node failures

 Distributed with data residing on multiple nodes in a cluster.

 Dataset is a collection of partitioned data with primitive values or values of
values, e.g. tuples or other objects

 Represents core data manipulation methods of Spark

 immutable, partitioned collection of elements that can be operated on in
parallel

 distributed memory abstraction that lets programmers perform in-memory
computations on large clusters in a fault-tolerant manner

 Motivation: previous computing frameworks handle specific patterns
inefficiently

 Iterative algorithms in machine learning and graph computations

 Interactive data mining tools as ad-hoc queries on the same dataset
(repetitions)

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 65

 RDD and its basic features:

 In-Memory - RDD-data is stored in memory if possible (size/time)

 Immutable or Read-Only, i.e. it does not change once created and can
only be transformed using transformations to new RDDs.

 Lazy evaluated, i.e. the data inside RDD is not available or transformed
until an action is executed that triggers the execution.

 Cacheable, i.e. you can hold all the data in a persistent "storage" like
memory (default and the most preferred) or disk (the least preferred
due to access speed).

 Parallel, i.e. process data in parallel.

 Typed, i.e. values in a RDD have types, e.g. RDD[Long] or RDD[(Int,
String)].

 Partitioned, i.e. the data inside a RDD is partitioned (split into
partitions) and then distributed across nodes in a cluster (one partition
per JVM that may or may not correspond to a single node).

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 66

 data distribution

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 67

individual
records

individual
partition

 parallelism

 Parallelism controlled by RDD using ‘repartition’ method

 Spark tries to distribute computing to already partitioned data, avoiding
data exchange

 RDDs support two kinds of operations:

 transformations - lazy operations that return another RDD

 actions - operations that trigger computation and return values

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 68

 Start Sparks python shell and create a RDD

 >>> data = [1, 2, 3, 4, 5]

 >>> data

 [1, 2, 3, 4, 5]

 >>> distData = sc.parallelize(data)

 >>> distData

 ParallelCollectionRDD[0] at parallelize at

 PythonRDD.scala:475

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 69

 “Actions” and “Transformations”

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 70

 Transformations:
http://spark.apache.org/docs/latest/programming-
guide.html#transformations

 Actions
http://spark.apache.org/docs/latest/programming-
guide.html#actions

RDD – TRANSFORMATIONS AND ACTIONS

www.scads.de 71

http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://spark.apache.org/docs/latest/programming-guide.html#actions

 Exercises: map input to some function

 In pyspark-shell:

 distFile = sc.textFile(“test.txt”) #creates RDD of lines of text

 distFile.map(lambda x: x.split(' ')).collect()

 distFile.flatMap(lambda x: x.split(' ')).collect()

 Redo with LogLevel set to “INFO” and watch output
(sc.setLogLevel("INFO"))

 What is the collect() – action doing – run with and without this
action

 What is the difference between map()and flatMap() ?

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 72

 Simple live-mapping example:

 In pyspark-shell:

 distFile = sc.textFile(“README.md”)

 d = distFile.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))

 from operator import add

 d.reduceByKey(add).collect()

 # or via lambda definition

 # d.reduceByKey(lambda x,y: x+y)

 Exercise: find most common word and sort output in descending
order

 Go to Spark API – Documentation and find definition of
sortBy()method of RDD

 Hint: https://spark.apache.org/docs/2.1.0/api

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 73

 Simple live-mapping example :

 In pyspark-shell:

 distFile = sc.textFile(“README.md”)

 d = distFile.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))

 from operator import add

 d.reduceByKey(add).collect()

 # or via lambda definition

 # d.reduceByKey(lambda x,y: x+y)

 Exercise: find most common word and sort output in descending order

 Go to Spark API – Documentation and find definition of
sortBy()method of RDD

 rdd.reduceByKey(lambda x, y: x+y).sortBy(lambda x: x[1],

 ascending=False).collect()

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 74

Solution

RDD ON NUMERIC DATA

www.scads.de

 Download parts of the ’KDD data set’

 From source:
wget

http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz

 Or direct from within spark-shell:

import urllib

f = urllib.urlretrieve("http://kdd.ics.uci.edu/databases/

kddcup99/kddcup.data_10_percent.gz", "kddcup.data_10_percent.gz")

 Create a RDD from input

data_file = "./kddcup.data_10_percent.gz"

raw_data = sc.textFile(data_file)

 Count all elements using the count() action and take first 5 elements

raw_data.count()

raw_data.take(5)

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 76

 Exercise: Write a program and apply a filter-transformation on the label
‘normal’ and count elements of the new RDD

normal_raw_data = raw_data.filter(lambda x: 'normal.' in x)

 Use skeleton script for additions (04_rdd_basics_skeleton.py)

 Compare number of elements in both datasets

 What’s your observation?

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 77

 Sampling-Transformation:

 “simple” statistical method for approximate results, e.g. statistical ML

 Three parameters: with/without replacement; sample size as fraction;
random seed

 raw_data_sample = raw_data.sample(False, 0.1, 1234)

 Exercise: Get an approximation (e.g. 10%) of the amount of ‘normal’-datasets
in distribution and apply sampling method on dataset

 Count elements in sample and measure time for this action

 Use time function to measure difference in counting elements of different
datasets (sampled, not-sampled)

 Use skeleton: 05_rdd_sampling_skeleton.py

 What is your observation?

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 79

 Hints:
rawData = sc.textFile(data_file)

rawData_sample = rawData.sample(False, 0.1, 1234)

sample_size = rawData_sample.count()

total_size = rawData.count()

print("Sample size is {} of {}").format(sample_size, total_size)

transformations to be applied

sample_normal_tags = rawData_sample.map(lambda x:

x.split(",")).filter(lambda x: "normal." in x)

from time import time

t0 = time()

sample_normal_tags_count = sample_normal_tags.count()

tt = time() - t0

sample_normal_ratio = sample_normal_tags_count / float(sample_size)

print "The ratio of 'sample' interactions is

{}".format(round(sample_normal_ratio,3))

print "Count done in {} seconds".format(round(tt,3))

RDD – RESILIENT DISTRIBUTED DATASET

www.scads.de 80

SPARK SQL

www.scads.de

 Spark SQL is a Spark module for structured data processing

 Provide framework with more information about the structure of
both the data and the computation being performed

 Used internally for optimization

 Primary usage: execute SQL queries

 Basis of Spark SQL are ‘data frames’

 Distributed collection of data

 new interface since Spark 1.6 (couples benefits of RDDs (strong
typing, ability to use powerful lambda functions) with optimized
SQL-execution engine

 API is available in Scala and Java, modules for R and Python

SPARK SQL

www.scads.de 82

 Documentation for Python

 http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html

 New data set: NYC taxi transportation data – aka TLC Trip Record Data

 Go to webseite:
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

SPARK SQL

www.scads.de 83

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

 Download smaller test data sample from online location

 Have a look into code example ‘sql_basics.py’

 Run the code and watch output:

 Create data frame via:

from pyspark.sql import SparkSession

spark = SparkSession \

 .builder \

 .appName("Python Spark SQL basic example") \

 .config("spark.some.config.option", "some-value") \

 .getOrCreate()

SPARK SQL – EXAMPLE

www.scads.de 84

 Print the schema of the data frame and show elements

 (have a look into documentation for function description)

taxiDF.groupBy().avg().collect()

taxiDF.dtypes

taxiDF.schema

taxiDF.groupBy("ID").count().show()

 Exercise: correct and extend the input RDD to get also the average
amount of tip per trip

 Some basic SQL-statements

taxiDF.registerTempTable("taxi")

sqlContext.sql("SELECT ID, COUNT(*) FROM taxi GROUP BY

ID").show()

SPARK SQL – EXAMPLE MANIPULATIONS

www.scads.de 85

WHERE TO GO FROM HERE?

www.scads.de 86

No. 1: By 2020, information will be used to reinvent, digitalize
or eliminate 80% of business processes and products from a
decade earlier.

No. 2: By 2017, more than 30% of enterprise access to broadly
based big data will be via intermediary data broker services,
serving context to business decisions.

No. 3 By 2017, more than 20% of customer-facing analytic
deployments will provide product tracking information
leveraging the IoT.

GARTNER: BIG DATA TRENDS FOR BI

„8 New Big Data Projects To Watch“

„Sneak peek – latest trends in Big Data Analytics“

„5 Big Data Technology Predictions for 20XX“

„Five Big Data Trends for 20XX“

A Shift Towards Data-Driven Cultures

WHAT DO THE BLOGGERS SAY?

• Big Data Platform Consolidation

• A Shift Towards Data-Driven Cultures

• Owning Up to Your Own Identity – Claiming Your Personal Data

• Data Agility Emerges as a Top Focus

• Organizations Move from Data Lakes to Processing Data Platforms

• Self-Service Big Data Goes Mainstream

• Hadoop Vendor Consolidation: New Business Models Evolve

• Enterprise Architects Separate the Big Hype from Big Data (High availability,
mission creatical needs)

• Big Data Security Analytics Gaining Traction

• Time to Experiment with Data Lakes

• Explosion of Demand for Big Data Talent

• Predictive analtytics

• Machine learning / Deep Learning

• Analytics in NLP

UPCOMING TRENDS

ROAD AHEAD TECHNOLOGY PROLIFERATION!

 Lots of resources and projects
available for data analytics

 Not just the Hadoop-style,
also additional modern
frameworks

 Apache.org lists 37
projects with tag
‘big data’

TOOLS AND EXPERTISE

www.scads.de 91

Apache Zeppelin

• Data visualization

• spark integration

• Collaboration

KNIME

• Visual programming of Big
Data Workflows

ROAD AHEAD: SIMPLIFICATION

Docker for Cluster/Task Management

Docker is an open-source project started 2013, combining
existing technologies for a lightweight virtualization with
modularization and portability in mind.

“If it can run on the host, it can run in the container”
(Source: Docker Introduction Slides November 2013)

ROAD AHEAD: SIMPLIFICATION(2)

ROAD AHEAD: UNIFICATION

ROAD AHEAD: DEEP LEARNING

 Deep Learning wins all competitions: Regognition, Segmentation Handwriting

 Exactly same neuronal networks as before, just BIGGER

 Combination of three factors:

 Big Data, Better algorithms, Parallel computing (GPU)

ROAD AHEAD: DEEP LEARNING (2)

 Emerging frameworks for DL – ‘the new big data’

 Good blog post for further references -
https://deeplearning4j.org/compare-dl4j-torch7-pylearn

 Frameworks tend to interconnect

 Spark+Hadoop, Spark+Cassandra, DL4J+Spark,
Keras+Theano/TensorFlow, …

TOOLS AND EXPERTISE

www.scads.de 97

https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn
https://deeplearning4j.org/compare-dl4j-torch7-pylearn

Have you access to own cluster? Of what size?

RUN BIG SCALE ANALYSIS

ZIH HPC AND BIG DATA INFRASTRUCTURE

100 Gbit/s Cluster

Uplink

Home

HTW, Chemnitz, Leipzig, Freiberg

Erlangen, Potsdam

Archiv TU Dresden

ZIH-

Backbone

other clusters

Megware Cluster

IBM iDataPlex

Storage

High Throughput

BULL Islands

Westmere, Sandy Bridge,

und Haswell processors,

GPU-Nodes

700 Nodes

~15.000 Cores

Shared Memory

SGI Ultraviolet 2000

512 cores SandyBridge

8 TB RAM NUMA

Parallel Machine

BULL HPC

Haswell processors

2 x 612 Nodes

~ 30.000 Cores

www.scads.de Spark and HPC 100

Comparison of Spark in normal and HPC environment

Spark Spark on HPC

Cluster started Once For each HPC job

Nodes selected by User Job scheduling system
(SLURM)

Configuration requires
changes

no For each HPC job

Distributed filesystem HDFS required Lustre available

Problem, because nodes must be specified in configuration!

Problem, because Master‘s address

needs to be known for job submission!

www.scads.de Spark and HPC 101

When you want to run Spark

Shutdown cluster

Submit script

Start cluster

Configure Spark (+Install on nodes)

www.scads.de Spark and HPC 102

The master script – Example: JavaWordCount

www.scads.de Spark and HPC 103

Spark on HPC workflow

 Combine Spark workflow with HPC workflow

 Job in a job: HPC job starts Spark and submits a job
to it

 Avoid problems by using a configuration
template

 User can define what is needed

 Place holders for nodes, directories

 Place holder can be replaced with values once they
are known

 Modifies also scripts, e. g. spark-submit

www.scads.de Spark and HPC 104

Spark on HPC workflow – what SLURM does

Configure Spark,

 Update Spark scripts

Allocate nodes

Submit Spark job

Start Spark cluster

Stop Spark cluster

Nodes are known, now!

→ Fill template!

Specified in

master script

www.scads.de 105

OPEN DATA REPOSITORIES

 Lots of data out there to be analyzed

 Authorities tend to promote or even demand access to open data

 EU open data initiative: https://data.europa.eu

https://data.europa.eu/
https://data.europa.eu/

 Lots of data out there to be analyzed

 Authorities tend to promote or even demand access to open data

 U.S. Government’s open data: http://data.gov

OPEN DATA REPOSITORIES

www.scads.de 106

http://data.gov/

THANK YOU!!!

