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DATA  ANALYTICS WITH  

APACHE SPARK 
A short introduction 
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AGENDA 
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 Time Topic 

11:00-13:00 Brief introduction in Big Data 

Context and historical remarks 

Hands-On Part 1 (preparation and basics) 

13:00-14:00 Lunch Break 

14:00-16:00 Hands-On Part 2 (data manipulation) 

Further analytics concepts 

Big Data trends 



Big Data „too big for traditional methods“ 

 

BIG DATA  - 4VS 
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Volume 
Machinegenerated + Humangenerated + 
Businessdata 

Variety 
Text,  
Audio,  
Images, 
Video, 
Clickstreams,  
Logfiles 

Velocity 
Realtime 
Seconds 
Minutes 
Hours 
Days 

Veracity 
Weatherdata, Sensordata, Tradedata, ... 



BIG DATA? – SOME V‘S 

  

more important:  
     
   

extract new 
content from 

database 
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 Venue: distributed, heterogeneous data from multiple platforms, from 
different owners’ systems, with different access and formatting 
requirements, private vs. public cloud. 

 Vocabulary: schema, data models, semantics, ontologies, taxonomies, and 
other content- and context-based metadata that describe the data’s 
structure, syntax, content, and provenance. 

 Vagueness: “confusion” over the meaning of big data (Is it Hadoop? Is it 
something that we’ve always had? What’s new about it? What are the 
tools? Which tools should I use? etc.) 

 

EVEN MORE ASPECTS ?! 

Source: MapR blog by Kirk Borne:  

“Top 10 Big Data Challenges – A Serious Look at 10 Big Data V’s” [1] 
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HYPE VS. REALITY? 
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July 2013 



HYPE VS. REALITY? 
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July 2014 



HYPE VS. REALITY? 
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July 2015 

Big Data??? – Diversification!! 
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IS THERE A JACK OF ALL TRADES? 

Domain Expert 

Statistics & 
Analysis 

Technical 
Expert 

Digital Humanities Bio-Informatics 

Business Data 
Traffic Sciences 

Material Sciences 

Hadoop 

HDFS 

Spark 

Java 

Scala YARN 

Python 

Data Integration 

Cluster Management 

Flink 
Graph 

Clustering 

Machine Learning 

Data Modelling 

Statistics& Math (SPSS, 
R, Matlab) 

Deep Learning 

Visualization 

Visualisation 

“Data Scientist?" 

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/ 
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Lets have a team 
of experts! 

https://www.semrush.com/blog/community-manager-a-jack-of-all-trades/ 



 Project period: 4 years (10/2014 – 09/2018), option for  
+3 more years after evaluation 

 Many involved research groups  + many associated partners 

 Focal point for new research activities  

 Specialists from computer and domain sciences 

NATIONAL BIG DATA COMPETENCE CENTER  

12 

Max Planck Institute 
of Molecular Cell 
Biology and Genetics 
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http://www.tu-dresden.de/
http://www.mpi-cbg.de/
http://www.ioer.de/


STRUCTURE OF THE COMPETENCE CENTER 

Big Data Life Cycle Management und Workflows 

Efficient Big Data Architecture 

Data Quality/ 
Data Integration 

Visual Analysis Knowledge Extraction 

Life-Sciences 

Material Sciences 

Digital Humanities 

Environmental and Traffic Sciences 

Business Data 

Service 
Center 

W.E. Nagel E.Rahm 

W. Lehner 

K.-P. Fähnrich M. Bogdan C. Rother G. Scheuermann 

S. Gumhold 

P. Stadler G. Heyer 



 Trainings & Education 

 Big Data Consulting & 
Collaborative Research 

 Technical Infrastructure & 
Resources 

 

 

SERVICE CENTER AS FOCAL POINT 
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Trainings 

Education 

Events 

Consulting & Evaluation 

Technical Resources / Hosting 

Technical Service Offering 

 

Service Center Proposal Writing 

Service 
Center 

Customers 

Disciplinary 
Research 

Teaching and 
Qualification 

Computer Science 
Research 



SOME HISTORIC REMARKS 
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 Many machines (hundreds, thousands) 

 

 

 

 

 

 As opposed to scale-up, where one very powerful (single) 
server is used 

SCALE-OUT 



INFRASTRUCTURE FOR BIG DATA 

Server 
• CPUs 
• DRAM 
• Disks 

Rack 
• 40-80 Server 
• Ethernet Switch Cluster 



EXAMPLE: GOOGLE DATACENTER 

Source: http://www.google.com/about/datacenters/gallery/#/all/10 



HOW TO PROCESS AND STORE DATA ON 
THIS INFRASTRUCTURE?  

First approaches: HADOOP 



 The Google File System (Sanjay Ghemawat, H. Gobioff, S. 
Leung. SOSP 2003) 

 MapReduce: Simplified Data Processing on Large Clusters (Jeff 
Dean, S. Ghemawat. OSDI 2004) 

HISTORY 



 Hadoop is open-source software framework 

 supports data-intensive distributed applications and clones 
the Google‘s MapReduce 

 designed to process verly large amounts of unstructured and 
complex data 

 designed to run on a large number of machines 

APACHE HADOOP 



HADOOP 1.0 ECOSYSTEM 

Shared Nothing Cluster 

Distributed Storage 

Column Store 

Distributed Data Processing  
Model 
Job Scheduling 

Workflow Graph SQL/DWH Scripting … 

C
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MAP REDUCE EXAMPLE - COUNTING 



EXTENSIONS NEEDED 



BIG DATA 2.0 PROCESSING PLAFROMS 

General Purpose Big SQL Big Graph Big Stream 



Availability of sensors & Cyberphysical Systems 

DYNAMIC DATA 



 Toll collection, Speed control, traffic-jam detection, route 
planning 

 Toll stations, smart phones.. 

 

USE CASE: TRAFFIC MONITORING 



 stream of sensor data (30hz) 

GESTURE DETECTION 
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INTRODUCTION TO SPARK 
Overview + Hands On 

René Jäkel 



TUTORIAL REQUIREMENTS 
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For this tutorial, this will be the base: 

 Preparation: 

 Go to spark website and download latest base release: 
http://spark.apache.org/downloads.html 

 Unpack on your local machine (in user space; hint: use a unique 
location for this tutorial in your workstation) 

 Testing: run a small example - Pi-estimation 
 

$ ./bin/run-example SparkPi 10 
 

 Download code skeleton and example data from here: 
 

https://wwwpub.zih.tu-dresden.de/~jaekel/ 
 tutorial.zip (source code examples) 
 yellow_tripdata_2016-01_10k.csv (…100k – taxi data example)  
  

 

 

 

 

 

SPARK DEPLOYMENT ON LINUX 
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 Install Java JRE: 
http://www.oracle.com/technetwork/java/javase/downloads/index.html 

(check environment variables in ‘Path’ for ‘Java_Home’ on your system 

 Install Scala: http://www.scala-lang.org/download/ 

 Install SBT: http://www.scala-sbt.org/download.html 

 Install python 2.7.13 from here: https://www.python.org/downloads/windows/ 

and add location to ‘PATH’ environment variable 

 Add tool “winutils.exe” to path 

 Download from http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe 

 Create a directory on your system, e.g. ‘C:\Hadoop’ and copy “winutils.exe” 
into subdirectory ‘bin’ 

 Set environment variable on your system to point to the actual location 

(HADOOP_HOME=c:\Hadoop) 

SPARK WINDOWS DEPLOYMENT 
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 Download Spark (evtl. need for zipper, e.g. 7zip, to unpack release) 

 Go to spark website and download latest base release: 
http://spark.apache.org/downloads.html 

 Create tutorial directory somewhere and unpack release 

 Open command line and run example from the release home dir 

 Testing: run a small example - Pi-estimation 
 

$ .\bin\run-example SparkPi 10 
 

 

 

 

 

 

 

SPARK WINDOWS DEPLOYMENT (II) 

www.scads.de 33 

http://spark.apache.org/downloads.html
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INTRODUCTION TO SPARK 
Overview 

René Jäkel 



 Motivation/Overview 

 Some historic and general remarks 

 Alternatives 

 Use and scope 

 Spark and its core functionalities – examples for data manipulation 

 Running Spark 

 Handling and transforming data 

 RDDs – basic structures (the heart of Spark) 

 Additions to core – SQL example 

 Where to go from here? 

 

 

 

OVERVIEW 

www.scads.de 35 
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Now (~20a) 

 Hardware 

 RAM/Flash got cheaper and 
faster – tend to become primary 
storage, disk as fall-back 

 Network is faster / Virtualization 

 Multi core machines are 
dominating, different 
architectures 

 Software 

 More functional programming 
and frameworks 

 Multicore-programming and 
distribution 

 NoSQL alternatives 

 

2000  

 Hardware 

 Disk space cheap (primary 
storage solutions) 

 Network was costly 

 RAM was very expensive 

 Single core machines were 
dominant 

 

 Software 

 Object orientation and 
optimization for single core 

 SQL as primary analysis  
language; some specific 
frameworks (Mathlab) 

 

 

 

 

 

 

HISTORY / EVOLUTION OF BIG DATA 
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First generation of data processing frameworks (Big Data)  

 Purpose/Background  

 ONLY few companies had real big data need 

 Batch processing was still dominant way to distribute 
workloads 

 Primarily volume was biggest concern (not 5 V’s) 

 Mostly used for Search/basic behavior analysis (logging 
data) 

 Hadoop-implementation offered simple programming 
approach 

 Batch orientated 

 Underlying HDFS for data distribution 
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Second generation 

 Purpose/Background  

 Most companies have need to use Big Data technologies 

 Velocity now dominating, also “Value” 

 Diverse use cases 

 Real time processing of data 

 Learning approaches, iterations, interactions 

 Hadoop-approach not flexible enough any more 

 Need for in-memory processing (handle iterations 
efficiently) 

 Very flexible hardware options (Shared-Nothing vs. HPC?) 
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LIMITATIONS OF AND EXTENSIONS TO 
MAP/REDUCE 
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Geoffrey Fox:-  Lecture: Building a Library at the Nexus of High 

Performance Computing and Big Data, Indiana University 



 Blog post “HPC is dying, and MPI is killing it” by Jonathan Dursi 
(from April 2015, see http://www.dursi.ca/hpc-is-dying-and-mpi-
is-killing-it/) 

 

 

 

 

 

 

IS BIG DATA KILLING HPC? 
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Pictured: The HPC 
community bravely 

holds off the 
incoming tide of 

new technologies 
and applications. 

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 



 Blog post “HPC is dying, and MPI is killing it” by Jonathan Dursi 
(from April 2015, see http://www.dursi.ca/hpc-is-dying-and-mpi-
is-killing-it/) 
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Data based on  
Google trends 

results for MPI, 
Hadoop, and Spark 

Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 



 Jonathan Dursi addresses HPC in general 

 “This should be a golden age for High Performance Computing.” 
But it is not. Instead new technologies are developed by other 
communities. 

 Analysis of Internet data and DNA sequencing brought huge 
amounts of data in new areas. Why wasn’t HPC the logical 
solution? 

 Prevailing “Not invented here” or “this is not real HPC” attitudes. 

 HPC stayed with traditional concepts largely,  both in hardware 
and software. 

 Other communities developed their own solutions, re-inventing 
several wheels, producing many successful new technologies and 
software. 

 

WHERE HPC IS WRONG TODAY 
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Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 



 Jonathan Dursi addresses HPC in general 

 Used to be the “killer app” in HPC, particularly because it was a 
firm standard for 27 years 

 Very high quality implementations, highest speed, constantly 
adapting to newest hardware. 

 But also bloated and inflexible 

 Just left no room for alternatives inside the HPC community: 

 Chapel, X10, UPC, CoArray Fortran, Java, Scala, Python 

 GASPI and OpenSHMEM 

 Very slow and difficult standardization process today. 

 Quite backward oriented 

 stuck with 32bit variables 

 fault tolerance solution on the horizon 

 

WHERE HPC IS WRONG TODAY 
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Slide courtasy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 



 Compare implementation effort for 1D diffusion simulation in lines 
of code 

 Very simple example in MPI, Spark, and Chapel by Jonathan Dursi 

 

 

 

 

 (The Spark version is also fault-tolerant) 

 (The Chapel version includes command line parameter parsing) 

 Change of data distribution requires 

 Complete rewrite in MPI 

 Change hash function in Spark 

 Change declaration in Chapel 

 

WHERE HPC IS WRONG TODAY 
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Slide courtasy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 



 

WHERE HPC IS WRONG TODAY 
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Slide courtesy: A. Knüpfer (ZIH), ScaDS Big Data Fall Schlool 2015 
 MPI 

 Spark 

Chapel 



SPARK OVERVIEW 
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Third generation – multi purpose frameworks and large diversity 
of analytics environments, e.g.: 

 Apache Spark  

 A fast and general engine for large scale data processing 

 Created by AMPLab (Berkeley/2009) now Databricks 

 Written in Scala and licensed under Apache Foundation 

 Strong international developer community and organized 
as open source 
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Blog post about history of Spark by Madhukara Phatak:  
http://blog.madhukaraphatak.com/history-of-spark/ 



 Apache Spark offers Directed Acyclic Graph 
(DAG) execution engine that supports cyclic 
data flow and in-memory computing 

 Offers over 80 high-level operators to build 
parallel applications; use it interactively  
from the Scala, Python and R shells 

 Offers stack of libraries including SQL and 
DataFrames, MLlib for machine learning, 
GraphX, and Spark Streaming; combine 
libraries seamlessly in the same application 

 Run Spark standalone or in cluster mode, on 
EC2, on Hadoop YARN, or on Apache Mesos; 
access data in HDFS, Cassandra, HBase, Hive, 
Tachyon, and any Hadoop data source 

 

 

 

 

SPARK OVERVIEW 
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Multi language API 

 Now completely written in Scala but versatile API offered 

 Scala 

 Java 

 Python 

 R-interface 

 SparkSQL provides tool to analyze data in SQL-like manner 

 Supports batch-, stream-, and in-memory-processing 

 Fully integrate with Hadoop and HDFS 

SPARK OVERVIEW 
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 Deployment  

 Local / Standalone 

 On Hadoop-Cluster, Yarn 

 Mesos, EC2 
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 For this tutorial, this will be the base: 

 Preparation: 

 Go to spark website and download latest base release: 
http://spark.apache.org/downloads.html 

 Install on your local machine (in user space, platform independent) 

 Exercise: run a small example - Pi-estimation 
 

$ ./bin/run-example SparkPi 10 
 

 Have a look into example subdirectory 

 Exercise: run a different example of your own choice from the base package 

 Have a look in web frontend after starting Spark 
http://localhost:4040 

 

 

 

 

 

 

 

 

 

SPARK IN LOCAL MODE 
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 You might want to change general behaviour of Spark settings in 
configurations 

 E.g. alter log-level for output 

 Go to ./config‘- sub-directory 
 
cp conf/log4j.properties.template conf/log4j.properties 

 

 Change log level: 

 log4j.rootCategory=INFO, console 

 to: 

 log4j.rootCategory=WARN, console 

 Re-run small example and watch output 
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 Quick intro into python programming interface 

 Running the Python-Spark shell on 2 cores 

  
 $./bin/pyspark –master=local[2] 
 

 To quit, use quit()function call 

 Simple and efficient ways to try things in quick-mode and interactively  

 Exercise: write very simple python example and execute via spark  

 Make a local working directory e.g. tutorial 

 Write a minimal python “Hello World” example:' 

 Run your first example using ‘spark-submit’ with your python 
input file as argument (exchange pyspark-executable with ‘spark-
submit’) 
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 Quick intro into python programming interface 

 Running the Python-Spark shell on 2 cores 

  
 $./bin/pyspark –master=local[2] 
 

 Make a local working directory e.g. tutorial 

 Write a minimal python “Hello World” example: 

 Run your first example (watch output) 

  
 $./bin/spark-submit –master=local[2] tutorial/hello.py 

 

  

 

 Hello, world! 
 

 

 

 

 

 

 

INTERACTING WITH SPARK 
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 First analysis example to find interesting tags in text-based documents 

 Find some text file on your system 

 Running the Python-Spark shell with 2 cores in interactive mode: 

  $./bin/pyspark –master=local[2] 
 

 Load text file via spark context 
 

  localInputFile = "myLocalFile.txt“ 

  logData = sc.textFile(localInputFile) 

  

 Apply filter-transformation on input (filter for some string pattern) 

  letterAs = logData.filter(lambda s: 'a' in s).count() 

 

 

 

 

TEXT HANDLING EXAMPLE 
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transformation action 

What is your observation? 



 Exercise: transform test code to external python program  

 Need to include ‘SparkContext’ 

 Add explicit definition of context object  
 

 

 

 from pyspark import SparkContext  

 

 localInputFile = “./myLocalFile"  # some file on your system 

  

 sc = SparkContext("local", "Simple App") 

 logData = sc.textFile(localInputFile) 

 

 #…some more code here… 

 

 sc.stop() 
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 Connection of the client to the available cluster 

 Master defines cluster connection 

 Local / Spark standalone / Mesos / EC2 
 

./bin/spark-shell –master=mesos://HOST:PORT myAPP 
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Client/Driver 
(SC) 

Cluster 
Manager 

Worker Node 
 Executor 

Cache 

Task Task 

Worker Node 
 Executor 

Cache 

Task Task 



 Master workflow 

 Connects to a cluster manager which allocates resources across 
applications 

 Acquires executors on worker nodes to processes computations 
on stored data 

 Sends driver application code to executors 

 Distributes tasks for the executors to run separately 
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Client/Driver 
(SC) 

Cluster 
Manager 

Worker Node 
 Executor 

Cache 

Task Task 

Worker Node 
 Executor 

Cache 

Task Task 



 Simple text example 
 
./bin/spark-submit --master=local[2] ../02_SimpleApp.py 

  
 """SimpleAppV1.py""" 

 from pyspark import SparkContext 

 

 localInputFile = "myLocalFile.txt"  # Should be some file on your 

 system                                                                                      

 sc = SparkContext("local", "Simple App") 

 sc.setLogLevel("WARN") 

 logData = sc.textFile(localInputFile) 

 

 numAs = logData.filter(lambda s: 'a' in s).count() 

 numBs = logData.filter(lambda s: 'b' in s).count() 

 

 print("Lines with 'a': %i, lines with 'b': %i" % (numAs, numBs)) 
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Solution 



 Exercises: update program to load collection of files 

 E.g. from logging directory ‘/var/log/’ 

 1) all files with .log extension 

 2) all files in given directory 

 Add elements to data distribution 
 

 addInputFile = "/var/log/kern.log" 

 logDataAll = sc.textFile(addInputFile) 

 

 Or by simply using python notation 
 

 sc.textFile(“ /my/dir1, 

     /my/paths/part-00[0-5]*, 

     /another/dir, 

     /a/specific/file“) 
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 Exercises: update program to load collection of files 

 E.g. from logging directory ‘/var/log/’ 

 1) all files with .log extension 

 2) all files in given directory 
 

 localInputFile = "/var/log/syslog"  # some file on your system 

 sc = SparkContext("local", "Simple App") 

 logDataAll = sc.textFile(localInputFile) 

 

 addInputFile = "/var/log/kern.log" 

 logDataAll = sc.textFile(addInputFile) 

 #logDataAll = sc.textFile("/var/log/*.log") 

 

 numKs = logDataAll.filter(lambda s: 'kernel' in  s).count() 

 numWs = logDataAll.filter(lambda s: 'warning' in  s).count() 

 

 print("Lines with kernel: %i, lines with warnings: %i" % (numKs, numWs)) 

 sc.stop() 
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Solution 
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 RDD is a resilient and distributed collection of records  

 Resilient, i.e. fault-tolerant with the help of RDD lineage graph and so able to 
recompute missing or damaged partitions due to node failures 

 Distributed with data residing on multiple nodes in a cluster. 

 Dataset is a collection of partitioned data with primitive values or values of 
values, e.g. tuples or other objects 

 Represents core data manipulation methods of Spark 

 immutable, partitioned collection of elements that can be operated on in 
parallel 

 distributed memory abstraction that lets programmers perform in-memory 
computations on large clusters in a fault-tolerant manner 

 Motivation: previous computing frameworks handle specific patterns 
inefficiently 

 Iterative algorithms in machine learning and graph computations 

 Interactive data mining tools as ad-hoc queries on the same dataset 
(repetitions) 
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 RDD and its basic features: 

 In-Memory - RDD-data is stored in memory if possible (size/time) 

 Immutable or Read-Only, i.e. it does not change once created and can 
only be transformed using transformations to new RDDs. 

 Lazy evaluated, i.e. the data inside RDD is not available or transformed 
until an action is executed that triggers the execution. 

 Cacheable, i.e. you can hold all the data in a persistent "storage" like 
memory (default and the most preferred) or disk (the least preferred 
due to access speed). 

 Parallel, i.e. process data in parallel. 

 Typed, i.e. values in a RDD have types, e.g. RDD[Long] or RDD[(Int, 
String)]. 

 Partitioned, i.e. the data inside a RDD is partitioned (split into 
partitions) and then distributed across nodes in a cluster (one partition 
per JVM that may or may not correspond to a single node). 

 

 

 

 

 

RDD – RESILIENT DISTRIBUTED DATASET 

www.scads.de 66 



    data distribution 
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individual 
records 

individual 
partition 



     parallelism 

 

 

 

 

 

 

 
 Parallelism controlled by RDD using ‘repartition’ method 

 Spark tries to distribute computing to already partitioned data, avoiding 
data exchange 

 RDDs support two kinds of operations: 

 transformations - lazy operations that return another RDD 

 actions - operations that trigger computation and return values 
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 Start Sparks python shell and create a RDD 

 
 >>> data = [1, 2, 3, 4, 5] 

 >>> data 

 [1, 2, 3, 4, 5] 

 

 >>> distData = sc.parallelize(data) 

 >>> distData 

 ParallelCollectionRDD[0] at parallelize at 

 PythonRDD.scala:475 
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 “Actions” and “Transformations” 
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 Transformations: 
http://spark.apache.org/docs/latest/programming-
guide.html#transformations 

 Actions 
http://spark.apache.org/docs/latest/programming-
guide.html#actions 

 

RDD – TRANSFORMATIONS AND ACTIONS 
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 Exercises: map input to some function 

 In pyspark-shell: 
 

 distFile = sc.textFile(“test.txt”) #creates RDD of lines of text 

 distFile.map(lambda x: x.split(' ')).collect() 

 distFile.flatMap(lambda x: x.split(' ')).collect() 

 

 Redo with LogLevel set to “INFO” and watch output 
(sc.setLogLevel("INFO")) 

 What is the collect() – action doing – run with and without this 
action 

 What is the difference between map()and flatMap() ? 
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 Simple live-mapping example: 

 In pyspark-shell: 
 

 distFile = sc.textFile(“README.md”) 

 d = distFile.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)) 

 

 from operator import add 

 d.reduceByKey(add).collect() 

 # or via lambda definition 

 # d.reduceByKey(lambda x,y: x+y) 

 

 Exercise:  find most common word and sort output in descending 
order 

 Go to Spark API – Documentation and find definition of  
sortBy()method of RDD 

 Hint: https://spark.apache.org/docs/2.1.0/api 
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 Simple live-mapping example : 

 In pyspark-shell: 
 

 distFile = sc.textFile(“README.md”) 

 d = distFile.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)) 

 

 from operator import add 

 d.reduceByKey(add).collect() 

 # or via lambda definition 

 # d.reduceByKey(lambda x,y: x+y) 

 

 Exercise:  find most common word and sort output in descending order 

 Go to Spark API – Documentation and find definition of  
sortBy()method of RDD 

 

 rdd.reduceByKey( lambda x, y: x+y).sortBy(lambda x: x[1], 

      ascending=False).collect() 
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Solution 



RDD ON NUMERIC DATA 
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 Download parts of the ’KDD data set’ 

 From source: 
wget 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz 

 

 Or direct from within spark-shell: 
 

import urllib 

f = urllib.urlretrieve("http://kdd.ics.uci.edu/databases/ 

kddcup99/kddcup.data_10_percent.gz", "kddcup.data_10_percent.gz") 
 

 Create a RDD from input 
 

data_file = "./kddcup.data_10_percent.gz" 

raw_data = sc.textFile(data_file) 
 

 Count all elements using the count() action and take first 5 elements 
 

raw_data.count() 

raw_data.take(5) 
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 Exercise:  Write a program and apply a filter-transformation on the label 
‘normal’ and count elements of the new RDD 
 

normal_raw_data = raw_data.filter(lambda x: 'normal.' in x) 

 

 Use skeleton script for additions (04_rdd_basics_skeleton.py) 

 Compare number of elements in both datasets 

 What’s your observation? 
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 Sampling-Transformation: 

 “simple” statistical method for approximate results, e.g. statistical ML 

 Three parameters: with/without replacement; sample size as fraction; 
random seed 

 raw_data_sample = raw_data.sample(False, 0.1, 1234) 
 

 Exercise: Get an approximation (e.g. 10%) of the amount of ‘normal’-datasets 
in distribution and apply sampling method on dataset 

 Count elements in sample and measure time for this action 

 Use time function to measure difference in counting elements of different 
datasets (sampled, not-sampled) 

 Use skeleton: 05_rdd_sampling_skeleton.py 

 What is your observation?  
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 Hints: 
rawData = sc.textFile(data_file) 

rawData_sample = rawData.sample(False, 0.1, 1234) 

sample_size = rawData_sample.count() 

total_size = rawData.count() 

 

print("Sample size is {} of {}").format(sample_size, total_size) 

# transformations to be applied                                                                                                                          

sample_normal_tags = rawData_sample.map(lambda x: 

x.split(",")).filter(lambda x: "normal." in x) 

 

from time import time                                                                                                                                    

t0 = time()                                                                                                                                              

sample_normal_tags_count = sample_normal_tags.count() 

tt = time() - t0                                                                                                                                         

 

sample_normal_ratio = sample_normal_tags_count / float(sample_size) 

print "The ratio of 'sample' interactions is 

{}".format(round(sample_normal_ratio,3)) 

print "Count done in {} seconds".format(round(tt,3)) 
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SPARK SQL 
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 Spark SQL is a Spark module for structured data processing 

 Provide framework with more information about the structure of 
both the data and the computation being performed 

 Used internally for optimization 

 Primary usage: execute SQL queries 

 Basis of Spark SQL are ‘data frames’  

 Distributed collection of data  

 new interface since Spark 1.6 (couples benefits of RDDs (strong 
typing, ability to use powerful lambda functions) with optimized 
SQL-execution engine 

 API is available in Scala and Java, modules for R and Python 
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 Documentation for Python 

 http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html 

 

 New data set: NYC taxi transportation data – aka TLC Trip Record Data 

 Go to webseite: 
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml 
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 Download smaller test data sample from online location 

 Have a look into code example ‘sql_basics.py’ 

 Run the code and watch output: 

 Create data frame via: 

 
from pyspark.sql import SparkSession 

spark = SparkSession \ 

    .builder \ 

    .appName("Python Spark SQL basic example") \ 

    .config("spark.some.config.option", "some-value") \ 

    .getOrCreate() 
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 Print the schema of the data frame and show elements 

     (have a look into documentation for function description) 
 

taxiDF.groupBy().avg().collect() 

taxiDF.dtypes 

taxiDF.schema 

taxiDF.groupBy("ID").count().show() 
 

 Exercise: correct and extend the input RDD to get also the average 
amount of tip per trip 

 Some basic SQL-statements 
 

taxiDF.registerTempTable("taxi") 

sqlContext.sql("SELECT ID, COUNT(*) FROM taxi GROUP BY 

ID").show() 
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WHERE TO GO FROM HERE? 
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No. 1: By 2020, information will be used to reinvent, digitalize 
or eliminate 80% of business processes and products from a 
decade earlier. 

 

No. 2: By 2017, more than 30% of enterprise access to broadly 
based big data will be via intermediary data broker services, 
serving context to business decisions. 

 

No. 3 By 2017, more than 20% of customer-facing analytic 
deployments will provide product tracking information 
leveraging the IoT. 

GARTNER:  BIG DATA TRENDS FOR BI 



„8 New Big Data Projects To Watch“ 

„Sneak peek – latest trends in Big Data Analytics“ 

„5 Big Data Technology Predictions for 20XX“ 

„Five Big Data Trends for 20XX“ 

A Shift Towards Data-Driven Cultures 

 

 

 

 

WHAT DO THE BLOGGERS SAY? 



• Big Data Platform Consolidation 

• A Shift Towards Data-Driven Cultures 

• Owning Up to Your Own Identity – Claiming Your Personal Data 

• Data Agility Emerges as a Top Focus 

• Organizations Move from Data Lakes to Processing Data Platforms 

• Self-Service Big Data Goes Mainstream 

• Hadoop Vendor Consolidation: New Business Models Evolve 

• Enterprise Architects Separate the Big Hype from Big Data (High availability, 
mission creatical needs) 

• Big Data Security Analytics Gaining Traction 

• Time to Experiment with Data Lakes 

• Explosion of Demand for Big Data Talent 

• Predictive analtytics 

• Machine learning / Deep Learning 

• Analytics in NLP 

 

UPCOMING TRENDS 



ROAD AHEAD TECHNOLOGY PROLIFERATION! 



 Lots of resources and projects  
available for data analytics 

 Not just the Hadoop-style,  
also additional modern  
frameworks 

 Apache.org lists 37 
projects with tag  
‘big data’ 
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Apache Zeppelin 

• Data visualization 

• spark integration 

• Collaboration 

 

KNIME 

• Visual programming of Big 
Data Workflows 

 

ROAD AHEAD: SIMPLIFICATION 



Docker for Cluster/Task Management 

Docker is an open-source project started 2013, combining 
existing technologies for a lightweight virtualization with 
modularization and portability in mind. 

 

“If it can run on the host, it can run in the container” 
(Source: Docker Introduction Slides November 2013) 

 

 

ROAD AHEAD: SIMPLIFICATION(2) 



ROAD AHEAD: UNIFICATION 



ROAD AHEAD: DEEP LEARNING 



 Deep Learning wins all competitions: Regognition, Segmentation Handwriting 

 Exactly same neuronal networks as before, just BIGGER 

 Combination of three factors: 

 Big Data, Better algorithms, Parallel computing (GPU) 

 

ROAD AHEAD: DEEP LEARNING (2) 



 Emerging frameworks for DL – ‘the new big data’ 

 Good blog post for further references - 
https://deeplearning4j.org/compare-dl4j-torch7-pylearn 

 Frameworks tend to interconnect 

 Spark+Hadoop, Spark+Cassandra, DL4J+Spark, 
Keras+Theano/TensorFlow, … 
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Have you access to own cluster? Of what size? 

RUN BIG SCALE ANALYSIS 



ZIH HPC AND BIG DATA INFRASTRUCTURE 

100 Gbit/s Cluster 

Uplink 

Home 

HTW, Chemnitz, Leipzig, Freiberg 

Erlangen, Potsdam 

Archiv TU Dresden 

ZIH-

Backbone 

other clusters 

Megware Cluster 

IBM iDataPlex 

Storage 
 

High Throughput 

BULL Islands 

Westmere, Sandy Bridge, 

und Haswell processors, 

GPU-Nodes 

700 Nodes 

~15.000 Cores 

Shared Memory 

SGI Ultraviolet 2000 

512 cores SandyBridge 

8 TB RAM NUMA 

Parallel Machine 

BULL HPC 

Haswell processors 

 

2 x 612 Nodes 

~ 30.000 Cores 
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Comparison of Spark in normal and HPC environment 

Spark Spark on HPC 

Cluster started Once For each HPC job 

Nodes selected by User Job scheduling system 
(SLURM) 

Configuration requires 
changes 

no For each HPC job 

Distributed filesystem HDFS required Lustre available 

Problem, because nodes must be specified in configuration! 

 

Problem, because Master‘s address 

needs to be known for job submission! 
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When you want to run Spark 

Shutdown cluster 

Submit script 

Start cluster 

Configure Spark (+Install on nodes) 
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The master script – Example: JavaWordCount 
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Spark on HPC workflow 

 Combine Spark workflow with HPC workflow 

 Job in a job: HPC job starts Spark and submits a job 
to it 

 Avoid problems by using a configuration 
template 

 User can define what is needed 

 Place holders for nodes, directories 

 Place holder can be replaced with values once they 
are known 

 Modifies also scripts, e. g. spark-submit 
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Spark on HPC workflow – what SLURM does 

Configure Spark, 

 Update Spark scripts 

Allocate nodes 

Submit Spark job 

Start Spark cluster 

Stop Spark cluster 

Nodes are known, now! 

→ Fill template! 

Specified in 

master script 
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OPEN DATA REPOSITORIES 

 Lots of data out there to be analyzed 

 Authorities tend to promote or even demand access to open data 

 EU open data initiative: https://data.europa.eu 
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 Lots of data out there to be analyzed 

 Authorities tend to promote or even demand access to open data 

 U.S. Government’s open data: http://data.gov 

 

 

 

 

 

 

 

OPEN DATA REPOSITORIES 

www.scads.de 106 

http://data.gov/


THANK YOU!!! 


