Developing Privacy-respecting E-ticketing Systems

Ivan Gudymenko
Outline

- E-ticketing Systems Under Concern:
 - E-ticketing: A General Application Scenario
 - Fare Collection Approaches
 - Underlying Technology and Standards
 - Main Use Cases

- Security Issues Affecting Privacy

- Specific Privacy Threats

- Dissertation Goals and Their Achievement

- Privacy Preservation

- Challenges

What to protect

Dis. Focus

Klausurtagung II/2012
What Should Be Protected
E-ticketing Systems Under Concern

- Part of UbiComp
- Focus on E-ticketing in Public Transport
- E-ticketing Systems [1]:
 - Account-based
 - Card-based
 - E-ticket:
 - Online-based
 - “Smart ticket”
E-ticketing Systems Under Concern (2)

1. Online ticket
2. Smart ticket

- Public transport
 - Sport events
 - Concerts
- Event ticketing
 - Fitness & leisure
 - Fitness studious
 - Ski pass
E-ticketing: A General Application Scenario

E-ticket Distribution

Trip Begin
- Check-in
 - E-ticket
 - On-board Reader (Terminal)

Event Processing Unit (e.g. GPS-based)

Trip End
- Check-out
 - E-ticket

Back-end System
- Event Storage
- Distance Calculation
- Billing
- Customer Accounts Management
- Statistics

Klausurtagung II/2012
Fare Collection Approaches

1. Electronic Paper Ticket (EPT)

2. Check-in/Check-out based (CICO)
 a) Pure CICO
 b) Seamless CICO
 i. Walk in/Walk out (WIWO)
 ii. Be in/Be out (BIBO)
Underlying Technology and Standards

<table>
<thead>
<tr>
<th>Architecture</th>
<th>ISO EN 24014-1 (conceptual framework)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Interfaces</td>
<td>EN 15320 (logical level, abstract interface, security)</td>
</tr>
<tr>
<td></td>
<td>EN 1545 (data elements)</td>
</tr>
<tr>
<td></td>
<td>ISO/IEC 7816-4 (commands, security)</td>
</tr>
<tr>
<td>Communication Interface</td>
<td>ISO 14443 (parts 1-3 required)</td>
</tr>
</tbody>
</table>

RFID-based E-Ticketing Stack

- **E-ticket**
- **Smartcard**

The NFC Forum Architecture

The NFC Forum Specifications
Main Use Cases (Front-end)

- Java Cards
- NFC Smart Phones
Main Use Cases: Java Cards

• “Secure by design and tamper-resistant” [2]

• Java Card Platform
 ▪ Response-based communication (C/R-APDUs)
 ▪ Two component JCVM (off-card, on-card)
 ▪ Memory: ROM, RAM, EEPROM
 ▪ Constrained resources
 • reused exception objects
 • optional Garbage Collection, etc.
Main Use Cases: NFC Smart Phones

- An extremely promising concept
- P2P and Card Emulation modes for e-ticketing
- Trusted execution environment provided by the SE (e.g. a SIM card)
- SE ↔ NFC front-end: via SWP or S²P
- No need for phone battery (card emulation, SWP)
- Secure updates through OTA possible (flexibility)
Further Focus: User Privacy
Security Issues Affecting Privacy

Real System

E-ticket Distribution

Trip Begin

Event Processing Unit (e.g. GPS-based)

On-board Reader (Terminal)

Trip End

Back-end System

- Travel Records Storage
- Distance Calculation
- Billing
- Customer Accounts Management
- Statistics

1) Eavesdropping

2) Compromising the Reader

3) Compromising the Back-end Database

Check-in

E-ticket

Check-out

E-ticket

(user_ID, terminal_ID, in(time, cooridn), out(time, cooridn))
Specific Privacy Threats

<table>
<thead>
<tr>
<th>Threats</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unintended customer identification:</td>
<td></td>
</tr>
<tr>
<td>a) Exposure of the customer ID:</td>
<td></td>
</tr>
<tr>
<td>i. Personal ID exposure (direct)</td>
<td>Privacy-respecting authentication; ID encryption/randomization; access-control functions [6]</td>
</tr>
<tr>
<td>ii. Indirect identification</td>
<td>ID encryption</td>
</tr>
<tr>
<td>b) Unencrypted ID during anti-collision</td>
<td>Randomized bit encoding [7]; bit collision masking [8, 9] (protocol dependent)</td>
</tr>
<tr>
<td>c) PHY-layer identification</td>
<td>Shielding; switchable antennas [10]</td>
</tr>
<tr>
<td>2. Information linkage</td>
<td>Anonymization (in front-end and back-end): threat 1 countermeasures; privacy-respecting data processing</td>
</tr>
<tr>
<td>3. Illegal customer profiling</td>
<td>Privacy-respecting data storage (back-end); the same as in threat 1</td>
</tr>
</tbody>
</table>
Main Goal of the Dissertation

- Targeting the user privacy from the outset
- In a holistic way across the system components
- A cross-layer approach is desirable
Goal Achievement

- Clearly define the system architecture
 - Online/Off-line e-ticket authentication, *etc.*
- Assign trust levels to the system components
 - Honest, semi-honest, malicious
- State-of-the-art (against the defined architecture)
- Concept development
- Validation

Klausurtagung II/2012
Concept Validation

- Theoretical Evaluation
- Experiments (labor set up, equipment)
- Student assignments
 - Lightweight crypto (Hauptseminar Techn. Datensch., finished)
 - Kryptografische Methoden auf einer Javacard (Praktikum, finished)
 - Abgesicherte Kommunikation von Android-basierten Smartphones mit Hilfe der NFC-Schittstelle (KP, planned for WS 2012)
 - Nicht-triviale Kryptoverfahren auf einer Java-Karte (KP, planned for WS 2012)
 - Joint E-ticket Application for JCP and NFC (Master Thesis, WS ’12)
 - ...
Privacy Preservation

• Privacy/performance trade-off
 ▪ Full privacy preservation
 • Blind Bill Computation (e.g. our paper [3])
 • “Optimistic payment” [4]
 ▪ Partial privacy preservation
 • One of the system components is fully trusted (typically, the back-end)
 • Based on the protocol of [5], for example
 • Secure Computations in the back-end
Full Privacy Preservation: Blind Bill Computation [3]

- Flexibility for a customer
- Requires bill processing in the back-end
- Based on partial homomorph. encr. (Paillier)
- Special bit encoding scheme
- Allows logical operations on ciphertexts: \(\Lambda, == \)
- Additionally, Negation Service required: \(\neg \)
 - Full functional basis in the end (\(\Lambda, \neg \))
Full Privacy Preservation (2)

- Two parts:
 - E-ticket authentication on Entry/Exit
 - ZKP of ID possession due to Schnorr
 - Database look up
 - Additional k-anonymous ID for search speed up
 - Bill Computation in the back-end
 - Travel Records creation
 - Travel Records Processing
 - Using the homomorph. properties and encryption scheme
Challenges (Blind Bill Comp.)

- Efficiency
 - Back-end
 - Front-end (proprietary encryption)
 - Processing cost can be prohibitive...
- Necessity to have a TTP for key mgmmt.
General Challenges

• Non-trivial Crypto on Java Card:
 ▪ Running arithmetic ops at the app. layer is a significant performance limiting factor
 ▪ The necessity to tunnel computations the cryptographic co-processor

• Securing the NFC communication interface

• Back-end efficiency
 ▪ During the look up for blind bill computation
 ▪ General look up
Plan For The Near Future

- Focus on the specified systems
- Define and stick to a certain system architecture (mobile/fixed terminals, etc.)
- Devise a privacy-preserving concept
- A paper for a doctoral symposium
 - Concept discussion
Thank You Very Much For Your Attention!

Questions? Comments? Suggestions?
References

