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Author presentation

The lecture water management system analysis is based on foundation courses such as
mathematics, physics and informatics. And the chapters, which play a role in water management
task solutions, will be specially discussed in the lecture, such as vector analysis, solution of
equation systems, matrix calculation, and solution of differential equations as well as numerical

integration.

The following chapters are revisions of basic knowledge and will only be shown with

corresponding key points. Self study is strongly recommended during the revision.

The further chapters go beyond basic knowledge and indicate mathematical methods,

which are related to the water management practice.

The teaching contents of subject water management system analysis require an
advanced mathematical knowledge, including abstraction ability. In the exercise and computer
courses, some problem will be discussed combined with practically relevant cases in order to

develop a deeper understanding of this lecture.
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Abbreviations and Formula symbols

Symbol Unit Meaning
A m? area
a 5 - geohydraulic time constant
a m groundwater layer
B m feeding factor
b m width
C g-17':%  concentration
DGL differential equation
0 m through flow potency
d m layer thickness, spacing
E Vv electrode potential, voltage source
e C electron, elementary charge, e = - 1,60210 - 10"°C
F C faraday constant, F = 96491,6C
F FOURIER transpose
a g electric conductance
g P gravity acceleration, g ~ 9,832m- s*(pole), g ~ 9,780m- s (equator)
g weighting function
GF quality function
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Symbol  Unit Meaning

GW groundwater

GWBR groundwater observation well
GWL aquifer

GWU groundwater monitoring
GWPN groundwater sampling

GWER groundwater resource

H m water level, general

H m2 equivalent potential

h m groundwater level

h m. s step length

h transition function

I A electric current

k m -s—'  krvalue, permeability coefficient
L — LAPLACE transform

LGS system of linear equations

I m length

LF S -em~!  electric conductivity

M — frequency
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Symbol  Unit Meaning
ODE ordinary differential equation
PDE partial differential equation
N pressure
Q C electric charge
Q volume flow
R {2 electric resistance
R plant
Re - REYNOLD’s number
REV representative unit volume
S storage coefficient
S plant controlled system
m distance
T K temperature, 0[°C] = T[K] — 273,15K

transmissibility
time

electric tension
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Symbol

Unit

Meaning

Wio)

(WN]

volume

volume flow

velocity

THEIS well formula, power series
command variable

position coordinates

general signal variable

control variable, control factor
position coordinates

manipulated variable

potential difference (groundwater)
position coordinates, altitude

disturbance variable



Symbol  Unit Meaning

ik Grad angle

¥ - EULER's constant, y = 0,5772156649

a o temperature, 0 / °C=T/ K —273,15K

a — DIRAC Impulse

€ F-m-! dielectric constant

Eo F-m™! vacuum dielectric constant, gy = 8,855 - 102F - m”
£ — general error

A m wavelength

A* m effective boundary condition range

T H .- m-1 permeability

Lo H-m! vacuum permeability, s = 1,2566 * 10°H - m™'
o g-m density

o -m1 electrical resistivity

o — argument of THEIS well formula W(c)

T P delay time

P m2 GIRINSKIJ potential (groundwater)

© Vv electric potential

¢ g.m&m-!  electric conductivity

3¢ S . em-t electric conductivity

1 unit step
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Part 1

Mathematical fundamentals

XIII



The chapter mathematical fundamentals are directly based on the elementary learning of
mathematics and actually show some solutions of selected problems, which are important in the

water management subjects. After this review special, advanced topics will be discussed.

X1V



XV



Chapter 1

1 Algebra Fundamentals



1.1 Exponential- and logarithmic expressions

The most important transformations of exponential expressions are:

et = " (1.1)
I i
T
-II"

[ —]
— a

Y g = -
W0 1

In such cases, exponential expressions can be transformed by definition.

r = a8 specially = z = &™) (1.2)

For logarithmic expressions one can use the following rules to transform:

Inia-&=Inial +Inib (1.3)
In {r—JJ =Inial —Ini(hH

In .j_'_;»"' P =b-In(x) specially I {« ':"_) =b-lnfel=hb.da Inie) =1

In({Vzr)=—In(x)
’ i)

log, (r) =1 specially - lg(10) = 1. In(e) = 1




Task:

Simplify the following expressions:

(18a )" (15ax=) :

a) —— —
(2Tax=)" (20a3x)”
: 0,004 -102.0,2°%
D) - :
’ 0.2.10-*.14
— 35 10—
VIOV ES YT
c) —_—
v
d) 2ogyq " — 3logy,

e) (lnu+4Inv)

Transform the following formulas according to ¢:

o rmifen(4)

t
b) I=Jﬁ(b+ghgg?)

o) I=I5L{e"-1)




1.2 Matrices

1.2.1 Fundamentals

In the following the most important calculation rules for matrixes are to be specified.

e General Matrix
A system of m times n elements (e.g. numbers, functions), which is arranged in m rows and n
columns, is called matrix of type (m; n):

A= [a,] = - (14

Q) Qg o Qo ottt Qg ~—— i-throw

Jj-th column

e Square Matrix

If the number of rows m and columns » of a matrix are same, i.e. m = n, the matrix is square. The
elements a;;, az, aszs; = a,, form the main diagonal and a;,, 4201, @342 = a,.; are secondary
diagonal.

e Transpose of a matrix
A resultant matrix A” will be obtained by interchanging the rows and columns of matrix A, which

is called transpose of A.
In general it can be written as:

A = [ay] (1.5)

specially [2;;] = [ani]




The transpose of a square matrix is its reflection through the main diagonal.

The transpose of a symmetrical matrix is the same like the original matrix.

A, =AT

In a skew symmetrical or antimetrical matrix:

A, = AT

k] = — [ass]
las] =0

Each square matrix (Aq) can be decomposed in form of the sum of a symmetrical (As) and an

antimetrical (Aa) matrix.

A=A+ A
1
Ao=— (A4A])
1
A== (A,-AT

1.

I 2 -3
2 1 4

A = =A'=11 0
) 1 2
1 45 1 73

A=|725|=AT=]41 209
5 03 5 63

1 45

_\“ = 4 2 8 =_\-‘<_-,;.‘.'

(1.8)




A= 5 7 8|=A"=]_17 0
—4 0 5 4 5 5
A=A.+ A,
3 -1 4 3 5 —4 302 0
1
-4-_4=3‘ 5 7T 8|+ -1 7 0 =12 7 4
—4 ( 5 _1 b 5 1) __1 5
A _ ! (A —A'1)
—E l.__.‘;..— }
3 -1 4 3 5 —4 0 -3 4
1
%qzj 5 T 8| — | =17 0 = 3 0 4
—4 0 5 4 8 5 —4 —4 0

e Unit matrix
A square matrix, in which all elements of the main diagonal are equal to one and all other
elements are zero, is called unit matrix and designated as E.

F1 0 0 ﬂ_

01 0 0
E=|: : - : : (1.9)

0 0 1 0

0 0 0 1
A-E=E-A=A (1.10)

E"=E




¢ Diagonal matrix:
A matrix, in which all elements are zero except the elements of main diagonal, is called diagonal
matrix.

[as] =V # 0 (1.11)

The elements of the main diagonal [a;;] can be same and unequal to zero. And the diagonal
matrixes belong to symmetrical matrixes.

e Tridiagonal matrix
It is named tridiagonal matrix if a square matrix possesses such a characteristic that the
elements of the main diagonal and both of neighbouring diagonals are same and unequal to zero.

[ag] =v #0 (1.12)
[f=.-_1;] =v =10

[ai; 1] =V #0

Generally speaking, the tridiagonal matrices are also symmetrical.

¢ Band matrix

A band matrix contains a large number of zero elements. The diagonal and selected parallel
diagonals contain elements, which are different from zero. The extension of neighbouring
diagonal as many as desired (< n - 1) leads to band matrix.

o] = aga] = v 20

[r.‘:_...] = [":.-3.-] =" =)

The elements of a band matrix are all arranged on a diagonal band.
The band width is characterized by the occupied band. The "furthest distance" of an element from
the main diagonal is the width, and the main diagonal is counted as well.



Example of a band matrix:

-"ll 12 i 1k U U -
o Qo s () aiy [
[ a3z i (g U b2
A=
i 0 0 1 . U
D a2 ) i . 1
] ] Alyo i n-1 ¢

In this example the band width is k.

1.2.2 Calculation rules

e Matrix addition and subtraction
If A =[ay] and B = [b;] have the same orders, i.e. the same rows and columns, then:

A+ DB = [au] £ [ba] (1.13)

Example of matrix addition:

A+DB= =




e Matrix multiplication and division

If A = [aj] is a m x p matrix and B = [bj] 1s px n matrix, we define the product of A - B as matrix
C = [cjx), with order m x n. It means that matrix C has the same number of rows with matrix A
and the same number of columns with matrix B.

The product A - B is only defined, when the number of column of A (p of matrix m x p) matches
the number of row of B (p of matrix p x n).

We speak about multiplication as ’rows time columns”. The rows of A will be multiplied by the
columns of B. According to FALK’s scheme: C = [cix] = ). [a;] * [bu] withj=1-mand k=1 n.
The multiplication B - A forms a matrix C with order of p x p:

What should be noticed is that the commutative law is not applicable (A - B # B - A).

In case of square matrix, A, B and C are the same order m x m.

The division is reverse procedure of multiplication, as the inverse matrix (see page 10) is built.

Example of matrix multiplication:

21
1 2 4
Given: A= and k= 03
-1 0 3
-1 2
Find: A-B  and B-A
1-242-04(4-(-1)) 1-142-344-2 -2 15
A-B= _
[(—1-2}|+G-D+(3-(—1)] u:j—1-1;|+D-3+3-;zJ [_5 5J
2. 14(1-(=1)) 2.241-0 2.441-3
B-A= O-14+(3-(=1) 0-243-0 0-443-3
((=1)-1)4+(2-(=1)) ((=1)-2)4+2-0 ((=1)-4)4+(2-3)
1 4 11




Given: A= _ and D=
{ GO { -2 10

Find: A-D
1 6 3 =15 (3-4—-2-8) (4. {=15)46-10
6 9 —2 10 (3-6—-2.9) (G-(—15)49.10
(A
[T

Attention:

In contrast to the algebra of real numbers the commutative law is not applicable in the matrix
multiplication. A-B#B - A

The associative law A- (B- C) = (A - B) -C and the distributive law A- (B+C)=A-B+A-C
on the other hand are available in the matrices.

A square matrix can be multiplied by itself. A>= A - A. Then we get the exponentiation of
matrices.

The inverse Matrix

The inverse of a square matrix A is a matrix A such that:
AA =AY A=E (1.14)

The inverse matrix A™' can be exactly built if the determinant D = det A (Chapter 1.2.3 matrix
determinant, page13) of matrix A is unequal to zero (D # 0). The inverse matrix A™ is formed by
the subdeterminant Uj; for the element a;. With the determinant Uj; pertaining to element a;;:

N
= (=1L 1.15
ay = (~1)"W =3 (1.15)

The change between row and column must be considered. The matrix of subdeterminat is
transposed. Furthermore a change of sign takes place as a function of the distance to main
diagonals a;; of the matrix, i.e., when the sum i and j is odd number, the subdeterminant should be
multiplied by -1.

The construction of the inverse matrix is demonstrated on the basis of a two- and a three-row
matrix.

10



For a two-row matrix:

(L] I'.{I_‘- . )
A= (1.16)
azp  dzz
o) [ ]
A1 T D _ i a5 ez
@4 ".'-!'1] D
—F 3 —iz] oo
D=detA =ayy oy — s - a2

For a three-row matrix:

an diz 13
A= izl do2z Qo3 I\]' 17{'
gl iz daz
f"]] I-'?zl 't'?'_?.] , .
= I —Un Uy
D D D -
.'—\._l — _[.rl'_r' lt*:_' _I.-:ﬁ — i i T T
L_J D L_’ D 12 - 22 il 94
[ 13 ":'.-,‘3 ['- &l . -
e = R Ujs —Uyp  Uas
L D D Do L ' - o
Jr_-J = i1 Az2ilag + il pilogila) + a 1aloy gz — Aayddezi)s — Agadzail)] — Aazdzdlz
Example of inverse matrix calculation:
54
1. Wenn A = ist.danmmist D =52 -2 4 =2und
|2 2]
2 —4 1 -2
ATl = 1 =
A 5
-2 5 -1 2.5

11




2. Find the inverse matrix of

21 -1
A= 5 2 I
1 1 -2

1 —1 2 -1 21
D=— + 2 —0
1 -2 1 -2 1 1
= -5H(—-24114+2i—-44+11=-1
The subdeterminants are:
2 ( 5 0 5 2
U = =—4;: U= = —10: '3 = =3
1 -2 1 -2 1 1
1 -1 2 =1 21
7 21 = = ]_ |r a0 = = 5 ! 0y = = ]_
1 =2 1 =2 11
1 -1 ~-2 1 21
'r 'I == = 2' I‘:.-. = — "‘I r — =
2 ] 5 0 5 2
Then i
4 -1 -2
A'=1 _10 3 5




1.2.3 Matrix determinant

A number can be assigned to a square matrix A, whose value is determinant D = det A. The n-th
order determinant development can be defined recursively with the help of LAPLACE expansion

theorem.

@11 [0S 5] e

B — |]_£'|_' A= ! L2n [:118:'

The development can take place according to the elements of rows or columns.

1. Development according to the elements of i-th row

¢ fixed (1.19)

_I}:_J = .'ls'-r "—\_ = Yl’u'“_.."‘l_;“

=1
2. Development according to the elements of k-th column

D=det A=Y auds Kk fixed (1.20)

e

Here 4, means the adjunct belonging to the element ay, i.e. the subdeterminant Uy of the
element a; multiplied by factor (-1)’+k. We get the subdeterminant Uy, of the element aj;, from n-

th order determinant by deleting the i-th row and 4-th column; it has order »-1.

Thus the rank of the subdeterminant is always one order lower than the associated determinant.

The rank of a matrix is determined by the highest order.

For a three-row matrix A:

(1.21)

h 1
T 1= = Qoalgy — Qe3> |»1,_'_'.'

13




For three-row determinant the SARRUS’s rule can be also applied. The first two columns are
written fictitiously right beside the determinant and afterwards the sum of the diagonal products
of the "minor diagonal" are drawn off from that of the "main diagonals".

11 iz dag @ dgz

A=detd =

= @) Qg3 + @adagiia) + Q3o sy — A aloziy) — @iy — @1adza3

Tips:

For the development of the determinants it is always favourable to select the row or column with
most zero elements.

If the matrix consists of only one element A= [a], then: det A = a.

14



1.2.4 Task for calculation of matrices

, 2 1 -1 1
1. Given A= B =
1 3 2 -4
Find a) 2A + 3B A —2B—3C
d) (A -B)" ) B-A
2 (B-A)-C h) BYAT
2 Find matrix C=4.R7

a)A=[231 ﬂ E=[2_113]

1 0
1 3
b) A= B=|o 5
-2 1
3 —8
3 Find inverse matrix A ™!
3 5
a) A=
27
1 1 -1
b) A= 1 -1 1
-1 1 1
2 2 3
o A= 4 -2 3
4 3 2

15

1 4
C=

-2 -1
c)A-B
(A -B)-C
i) AT +BY



1.3 Linear Equation Systems (LGS)

Linear equation systems play an important role in the mathematical treatment of one-, two-, or
three dimensional field problem as well as in hydrology and hydrogeology. Such equation
systems with a large number of unknown quantities and equations, whose magnitudes of order
may reach million, originate from quantization methods. The continuous field problems are
decomposed in generally potential fields and discontinuous partial processes. And these can be
described by linear, non-linear or linearized equations. The equation systems have the following
figure:

appry Aagzrz Hagars 4y + e, =N
o)y Fgedy, gy + o5 + g7, =T
azprp Haazrz Hdazrz 4 dgpa; + daprn =3
(1.25)
agry Aaprz Fdaara 4 gy + adpr, =1
( 1.7 4 2.2 +"'I.‘." -+ i I 4 ¢ I =

In this equation system there are x;, with j = 1.....n, n unknown quantities and r;, with i =
1.....m, m known quantities at the right side. And a;; withi=1....m andj = 1.....n are
characterized as coefficients. So we have n unknown quantities and m equations.

If n = m, the equation system is definitely solvable, and it is determined. For n < m it is so called
overdetermined equation system, and mostly there are approximate solutions which fulfil all
equations. In the case n > m several solutions exist, i.e. the equation system is not clearly
solvable, and it is undetermined. By the introduction of the matrix notation we can write them
for short and the rules of the matrix calculus can also be used at the same time.

Thus the above equation systems can be noted in the following form:

AX=DR (1.24)

A means coefficient matrix, X the solution vector and R on the right side as column vector:

16



Different methods are used for the solution of such matrix equations or equation systems.

The relatively simple direct solution methods are mostly not treatable, since the construction of
the inverse coefficient matrix proves itself complicated with higher rank. We differentiate the
solution methods between the direct total step methods and iterative equation solutions. The
methods are just as their names imply. By the total step methods the equation system is separated
based on algebraic transformations until the equation with only one unknown quantity remaining.
In the following some representative examples of both methods are indicated.

1.3.1 Total step method

1.3.1.1 GAUSS Elimination

In the GAUSS elimination we try to get an equation with one unknown by successive
substitution.

The result of the elimination is the equation system:

AX=1R

In an equation system with an upper triangle matrix A’ and R’

17



apr dyz ds s e i |

The toppest row, or the toppest equation remains unchanged. The (j - 1)-equations are multiplied
by factor fak; and subtracted from the j-equation. For the second row or the second equation:

faky = == (1.26)

or in general

fak, = —2— (1.27)

The lowest row or equation can be solved. This solution is inserted backwards into all other
equations. This back substitution generally yields value x;:

Ty = —2 (1.28)

Thus the computation of vector x can be achieved.

18



Example to application of GAUSS elimination:
To solve this system:

lr —dy+32=122

_‘..“:. . .‘.I, + .'I =

The coefficients and absolute terms are shown in the following scheme:

The row serving for the elimination (in this example - first row) is marked by the letter £. A
variable should be eliminated under the help of £ i.e. how many multiples of £ should be added
on other rows. The added multiple of £ can be marked beside the corresponding rows:

I ; 1

E 2 -3 1 19
2| 4—-4 | 446 3-8 [22-38
3| —64+6]—-1-9 5412 7T+57

19



5 0 10410 (17 —25 | 64 — 30

The E-row and the last row contain the coefficients and absolute terms of the new system:

- 2 -3 4 | 1.1 - ll-
n 2 -5 v | T | —14
[ i S 16
2o — du+4r =19
2y —5x=18
8z = 16

The results of successive insertion

| 8]

20



1.3.1.2 CRAMER's Rule

According to the CRAMER's rule the solution of matrix equation is achieved by the determinant
computations. The elements of the solution vector X:

Dy
aTry= D
D; is for CRAMER's determinant. It is developed from the determinant D = det A of matrix A in

consequence of replacing the i-th column by the right side, the vector R. This method only has
practical meaning for small matrices or for the matrices which contain many zeros.

(1.29)

Example to application of CRAMER' rule:

Find solutions of linear equation systems (LGS) with CRAMER's rule:
24+ y—z= 1
Sr 4+ ;__’f; =~

r4 oy — 2= _§

LGS is written in matrix form as follows:

- 21 —1- ] - "-
5 2 0 v | = 8
1 1 -2 —5
or
A-X=R
with
2 1 -1
A=|5 2 q
1 1 -2

21



The determinant D = det A of matrix A can be developed according to second row:

=-5(-241)4+2(—-44+1)

D=-1

The coefficient determinants are:

0 1 -1
5 0 8 2
D.=|l 85 2 ¢ |=-1 —1 =_2
-5 =2 -5 1
-5 1 -2
2 0 =1
8 0 5 8
D,=|5 8 0 |=2 —1 =1
-5 -2 1 =5
1 -5 -2
21 0
2 8 5 8
D.=|5 2 § |=2 -1 =3
1 =5 1 —5
1 1 =5
Thus the solution is:
D, D, D
D =D ‘=D
I‘=2 y:—l 4:3



1.3.1.3 Construction of inverse matrix

The solution vector X of LGS is noted:
AX=R
(A='-A) X ={A" R)
X={A" R) (1.30)
with (A" A)=E
Example to application of inverse coefficient matrix Al

Find solution of the same LGS (see former example - LGS, page 21) with help of inverse matrix.

The inverse matrix of A is (see example - construction of inverse matrix, page 11):

[ 4 —1 _zq
Al=1| 10 3 5. (1.31)
-3 1 1
then
F 4 -1 —Q_ [ EJ_ _ 2_
X=1]-10 3 5 g1 =1 -1
-3 1 1 -5 3
=2 y=-1 =23



1.3.1.4 LU-Decomposition

The so called LU-decomposition method assumes that a symmetrical matrix A of equation
system can be dismantled

A-B=R
as product of two matrices L and U:
L-U=A (1.32)
And L (lower) is lower triangle matrix and U (upper) is upper one.
_ ly 0O 0 F t1 Uiz Uin _ _ 11 1z P1n q
e 0 0 o tan z1 oz T
o 0
lm1 Dz lnn o 0 T— ]l Gmz [T
Thus ‘;he matrix equation fo;ms Tthe following figure: ] ) )
AX=L Uy X=L-{U-Xi=L-Y=nR (1.33)

So the resultant equation can be decomposed into two equations, which contain the simple
solvable triangle matrices. First the equation about Y will be solved. This solution vector Y then
serves on the right side for the confirmation of the original solution vector X.

L-Y=R
(1.34)
U-X=Y
For the first solution the forward substitution is used:
i = ‘r‘] 1]3‘])
i1
1 i-1 3
U = — (;;.. - Y" g.'.) mit: =230
I 2
i=1
We can get the second as well as vector X by backward substitution:
Ty = 2 (1.36)
tmn

1 il
r; = — (y:- — Z U5 Ia) miti =n—1,n—2....1
(NN i i



Assume a definition equation for confirmation the elements of L- und U-matrix:

L-U=A or (1.37)
ST, I 1 Uz Uln an o diz An
3-,;[ 1"-,-- L a Wy U o ln Qo
= (1.38)
0 0
1 o l (U U, Myl s T—

If these two matrices are multiplied and an element comparison is made, a complicated equation
system with m - n unknown quantities appears. The difficulty can be avoided if the main diagonal
elements /;; of L-matrix are set to one.

(L] =1 (1.39)

Ly

Then we get the following simple calculation scheme for the elements:

1 0 - 0 Uyl Wz v U app @iz ccc A
ln 1 0 0 ux Uz az Az az
0 1) -
Il L2 1 0 L u Aml QAmz a,
(1.40)
L-un L-upz e 1wy, typ a1z - Qln
lyy - uy I a1 o0 gy oy, + 10 uy, Gz Qzz *** Q2
‘f:::l LB "Ir.-_-l L ¥ + ‘;:7:‘.' "Uzz v “}.‘:.‘1 s Uyp + - AQm1 mz """ Omn
(141)



Example of solving an equation system with LU-decomposition method:

—3r1 4212 — 323 =6

Il
|
—

Oy — 222 + 1025

61 + Sxz + 1da3 = 22

with [, =1

We know from the element comparison:

1 .'J‘“-l-':l |:'+|:' [l = —3 —— -‘:11: 3
itz ,‘.-'“ + 1 )] -|- h-t="u —— I —3
(e ,_'_-'” + t3o D41-0=10hH ——— iy = —2

1 -G 4+0-F.40-0=2 = fa = 2
it .'."|-__Jr 4 1 "';:'_' + = —'__' — -‘;_.-__Jr =4
g Az azz - Jn+1-0=3 = Cap =3




By the same way we find:

1o 4+0Fn 04y =—-3 = Jy3 = —3
k3 -'-"|_', _+_ 1 -‘-"_-1- + '..' "JI_.__-_; —_ 1'] = .'-'I_u',‘ == ]
E5] "f:l:,l + k37 .-.ll_-" + 1 _7_._,’_{ = 1-1 — __.'l_:,‘ =5
e —

Then the triangle matrices with following figures:

1 00 F -3 2 -3 _
L= 310 U=1 04 1
-2 31 00 5
The solution vector X can bé computed: ] ] _
In general:
A-X=N
A=L-U

l-mn+0-y240-y3 =6

—3-m+1-y24+0-y3 =-10

-2 +3-u+1-y; =22

wm==0 i
vz =8 Y=1| s
¥y = 10 10




—-3-x,+2-

Ty—3-

b 2

3

O-zy+4d- 224123

0.2y 4+0-

i i I

|
oo

=10

[

[ ]




1.3.1.5 CHOLESKY method

With the CHOLESKY method the solution of the matrix equation for the special case of the
symmetrical coefficient matrix can be traced back by the solution of two subsystems, as the
coefficient matrix is decomposed into an upper and a lower triangle matrix. This dismantling is
also called decomposition.

The CHOLESKY method is not generally applicable, and it presupposes that the coefficient
matrix A of equation system must be symmetrical i.e. A = A", and positive definite.

A-X=R
Positive definite means that all elements of the main diagonals must be greater than zero a; > 0,
for example simulation of groundwater flow in the quantization methods (FDM, FEM or FVM).
In the CHOLESKY method the symmetrical matrix A of equation system is written as product of

two matrices, a lower triangle matrix B and an upper B’, which is equal to the transpose of the
lower,

B-B'=A (1.42)
B is an upper triangle matrix, whose elements b; = 0 if 1 > k. The equation system:
A-X=R
B-B"X=R

We set

B'X =Y UHJ

and determine the elements of B by element comparison:

so Y can be computed:

B-Y=IR (144 |

The solution of X results from the back calculation according to equation 1.43.



Generally the following algorithm can be indicated for the computation of the elements of B:

w—1 1
(‘ > 5,}_:.-‘,,&,) bre fir b4+ 1< < n. j=2bisn
by = i bick (1.45)
0 fur b =
b, = fur j = 1 bisn
1 |
Hy = fiir j = 1 bis n

CHOLESKY method possesses some advantages compared with the Gauss procedure. Thus e.g.
the method is characterised by the fact that it works numerically very stably, since the dominance
of the main diagonals is strengthened by extraction of the square root from very small elements.
If the coefficient matrix A possesses a band structure, this is also transferred to the triangle
matrix. The algorithm is independent of the values on the right side. Thus the solution equation
system can be repeated with small expenditure for different values on the right side (boundary
and initial values), which makes variant calculations very effective.

For an equation system with three equations and three unknown quantities:

a1 + dzdz + apds =
o |+'_'_.3"‘_-+‘-;J =113
"| |+"-’."Ib_'+‘:‘- =‘1

A-X=I

We must check whether the conditions, the symmetrical coefficient matrix (A = A") and positive
definite (a; > 0), are given, before CHOLESKY method may be used.



The equation system can be written also in the following form.

1 1z i3 Iy LS|
1z dzz Qzz | T | x2 | T | 2

1z dzz a3 I3 L

According to regulation for the CHOLESKY method the triangle matrix B is introduced and the
pertinent transpose is formed:

B=1 4, by 0 (1.46

"j’:’sl ":’:u ":"*._J.

r
L

]
J

|;J1 1 |;J] » Il.r‘l 3

0o g

by 00

B: Ie’1_' "j’_'_' 0
bia baa baa
According to equation 1.42:
an a1z A bu 0 0 bin bz bz
12 Az (o3 = ':"l: f;_u 1) 0 029 IPJ__:J
13 Qzz Az3 bz baz baa 0 0 b




The determination of the elements of the matrix B takes place according to multiplication of B -
B via an element comparison with the matrix A:

by b +0-0 +0-0  =ap
byp bz 0Dy, 4+0-0 =ap
by b +0 - bas +0 b3z = as
big b1y Hbay - 0 4+0-0 =ap.
bra bz +baz - bag +0-0 = da2
bz b Abuz by A0 bz =an
biz by 4bza- 0 +b3z -0 = as
bay ~biz  Abga by +baa -0 = ag

bas - bia Hbea- bea 4baz - bas = aas

We recognize that some equations are redundant in the developed equation system due to the
symmetry characteristics of the coefficient matrix. Thus only six of these equations are needed
for the determination of the matrix B.

ay = by - by = b =/an
) Q)12 a
a2 = ;‘]J“ -."‘.I|_- —— Oz = - =
b1 v a1
) ay: a
ayz = by - b3 = b=1—=—
o v aA11
—_— aZ
gy = ;‘]J‘i e E:“_, = .FJ__--: = \..-"'f_f-__-__- — rIJ‘i = \_.' gy — —
' an
n g ER S K
L 4 S —
, azz — bz - ba - a1 (1.48)
Ugq = |211 y * F’l"’- + O55 - 'i'_,“: = f;:.,,_ = - — - :
) i o i D22 / ay
Ve
p FI]I
33 = \ ay — h‘l"‘{ —_ |J:({
y D 7.2 / r:n'l-__j'-"-\'l_j_\ -
Ay = f!'l:,' + 055 + 034 == . Aog — ————
f.{'T-}- a1
- azy — — — -
an a7
Aoy — ——
o |'_='|1




After the matrix B and its transpose B were determined, the auxiliary matrix Y from the
equation 1.44 can be computed:

B:-Y=R
by 00 h "
bz b 0 2 = 2
0 14 "'l'_':.\ ""‘. i3 \u 3 3
I a — ;.]
] ."1'1 =N . 'Ir'll —
- - 7
M1
"y — 1;-'] g f.'l
by + by =1y = h=— (1.49)
|'.'-_, '
: : , ra—bis - —baa -
Ma - + 022 Y2+ 033 3 =711 = 3=

F.’ g

With known matrix B and the auxiliary matrix Y the solution of equation system X can be
computed now by means of equation 1.43:

B X =Y
Oy iz g ] i1
[ ,:_l + ) 3 = i
[} 0 ::II ] T s
i3
)93 = Ly = U3 — Iy = —
[P
4z — boa - X3 PP
bog oo 4 boy -y = Y2 = Inp=— (1.50)
a9
y . _|'.'] — ';'.1"’ ."-;., — I
|f_lll ,1‘1—}—,';'.;; _._}_-’I_; I's = i —— r = 7
I.'l I
Attention:

The equations 1.48 to 1.50 can be accordingly applied for the determination of the elements of
the matrix B, the auxiliary matrix Y, and the solution vector X in all equation systems with three
rows and three unknown quantities, if they fulfil the conditions for the CHOLESKY method. For
each case the elements of the coefficient matrix and those on the right side must be accordingly
used. These algorithms can be extended easily to any size of equation system.



Examples of CHOLESKY method application:

1. The method is to be demonstrated exemplary in the equation system, which can be used in
other cases:

2r4+y—2=0
Sr+4+2y=28

r+uy—2z=-5

Here however the prerequisites for the application of the CHOLESKY method, positive definite
(a;; > 0) and the symmetry (A = A”), are not given, thus this method is not applicable (a3; = -2)
und A £ A”.

2. As the second example the following equation system is given:

9X1 + 2X2 + 3X3 =6
2x1 + 8%y +4x3=-10

3X3 + 4X2 + 10X3 =22

WithA-X=R
[ 3 I 0
j al —1 i = — ]_ ()]
304 10 22
According to equation 1.42:
23 m U0 by b b
_3 - _1 = o 199 1) LW 22 ?'__

Y
o
=

b1z By b 0 0




The determination of the elements of the matrix B takes place according to multiplication of B -
B’ via an element comparison. Since only six unknown elements must be determined, only six of
these equations are needed:

L‘ = .':.l“ E.-“ — -F?“ = uj
o)
3 — 1 } — } —
Z2=10y 2 = 012 = j
._‘; = Il:r'll ":"l.i — 'E’]. 3 = ]_
— o
; - 4 v DL
N = ,'pl + e — .‘;_‘..‘_; = \ N — |_] — 3
L L . 4-3-1 10
d=0by b3+ by -boy = by = — = —
RVAEN] \ [a11}
. : / 100 44
10 = fJ[ + 8,4+ i = by, = 1‘;‘ 10— 1 — oy = —
3 23 / ) o

After the matrix B and its Transpose B" were determined, the auxiliary matrix Y can be
computed according to equation 1.44:

B-Y=L
S I 'I f'l 1]
2 /60
a a U [ - —1'-5
O [
10 44
1 — — 2 )2
L el 4 | 7 L |
0
3o =6 = i =—-= 2
— .}I o
2 V6l —-10-2.2 -3
- 'r."] + - iy = — ].II — e = — =
Vo 3 - - VG0 Hi
. -— v b
, r o 1.9 1o — 21 o -
J_ + 1I‘] 2 £ S T ) _ - 1 - W bkl Vel i le _ -—I I‘
AT T T ' I 140~ 220



With the known matrix B and the auxiliary matrix Y the solution of the equation system X can be
computed now by means of equation 1.43:

B X =Y
3 E 1 I 2
VB0 10 —34
D o Iz = b
3 V6D V60
0 o M N 207
L s 4 L1 L 220
; T 207 a-
o mo_ g
6 ¢ 220 40
V& 10 -3 T~ Ve e
3 z NG 3 /60 Z ]

|

I

_ Y — g xe — by

-II'E

B b1



1.3.1.6 Task of solving equation systems

Determine the solution vector X in five ways with the following equation system (A -

- GAUSS elimination,

- CRAMER's rule
-AT-R
- LU-decomposition
- CHOLESKY method
r—2 w42 -2y
a) — = b) e fy— z=2
—u  3y+2 — 2{n—1) 5 1o =1
— = - 2o —y+ 4z =0
+ fl.{;' —_— = l_
2 0 —1 1
<) 2 4 -1 a | =11
-1 & 3 2
d r4+y+zx=23 e) 20 —dy 4+ Sw =25
Je4du 4 8x=13 3o — du— 3z + 11w =27
e 4 0n 427 =34 dor + 6y — 152 + 5w = =5

3 + o — 4z + 12”' = -:;:




1.3.2 Iterative method

In the iterative method firstly an approximate solution is assumed for equation system. This
solution will be inserted into the system, and by means of optimisation method the components of
solution vector are best adapted. After n iteration steps the approximation will approach to the
accurate solution with a residue. The iterative methods play a dominating role for large equation
systems, since they are usually substantially faster than the directly solving equation.

Further common applications are the CG method (Conjugate gradient Method) and the multi-
grid method. These methods are particularly subject to further development in connection with
applications of simulation in field problems. In the CG method the use of additional
preconditioning became generally accepted in recent years, with which the search strategy of the
iterative optimisation steps is specified. Generally the kind of the preconditioning substantially
determines the optimisation speed or the number of optimisation steps.

We assume the general matrix notation of a linear equation system as below; X is designated as
unknown solution vector,

A-X=R (1.51)

So we can insert a known approximation solution X + 8X into this equation. This yields an
unknown oR on the right side, which deviates from the given value.

AIX4+0XT=R+4R |_1.?-‘3_'}|

If we subtract equation 1.51 from equation 1.52, then:

A0X =0R

—_
i ]
(]

Or with above equation 1.52:
A X =A -(X+4iX)—-R (1.54)

The right side of this equation is known, since X + 60X is the approximation solution. The goal
now is to make the right side equal to zero while a new 6X will be found. This can be done via
solving the matrices equation (see section 1.3.1, page 17) or by means of purposeful optimisation,
e.g. with the CG method.

Generally the CG method can be well used for linear, square, symmetrical matrices (m = n). The
basic idea is to minimize a function.

1 . :
f[.l']::.\-.—\.‘x—li-x



The function possesses a minimum if the gradient (see section 2.2) is equal to zero:

Viiri=A-X=R=10 (1.55)

This minimum can be found, if we formulate a function f (x; +oupx) by means of a search
direction p;. The index k means the number of continuous search loop.

1.3.3 Overdetermined equation system (m > n)

In contrary to the methods described so far solutions for overdetermined equation system are to
be demonstrated here. In this case there are more equations than unknown quantity, i.e., m is
larger than n (m > n). This occurs when mathematical models are to be adapted to measured data.
A typical case is thereby the application of the quantized (discrete) faltung integral (see section
12.3 faltung integral, page 355).

A usual method is to regard this task as optimisation, and we try to make that, the free
parameters, i.e. the solution vector X adapting to the measured values. Thereby most methods
differ in the conditioning of the optimisation problem and in the choice of the optimisation
strategy.

The SVD method (Singular Value Decomposition) proceeds in the following way. The matrix
equation is given:

AX=R  bzw.  [ay] [s]=[b] m o

In this case the coefficient matrix A can be decomposed into

A=U-[uy]-VH (1.56)

Whereby the matrix U has the same figure as A, w;; a square diagonal matrix with rank n and V*

is a transpose with rank n. This decomposition employed on the equation above and solve
according to solution vector, shows that:

X=V. [cliag (LH UT LR (1.57)

This equation can be solved with the HOUSEHOLDER routine.






Chapter 2

2 Vector algebra and analysis



On the basis of simple, well-known representations of vector calculus the basic rules of the vector
algebra are specified. Subsequently, the rules of vector differentiation with descriptive examples

are discussed.

2.1 Unit vector

Different unit vectors of vector representations are dependent on the use of coordinate system.
Then the vector @ can be expressed the sum of multiples of unit vector. The unit vectors possess
the length (modulus) one | e| = 1, and are always parallel to the coordinate system axles.

For the practical work in water management three coordinate systems, the Cartesian, the
cylindrical and the spherical, are generally used. The same unit vector @ can be described in table

2.1 (also see figure 2.2 and 2.1).

Table 2.1: coordinate system of vector representation

Koordinaten- Einheits- . -
] Vektor @
system vektoren
Kartesisch i3, i @ =asi+ a_h-} +a.k
Zylindrisch .z d=ar +asd+a,z
Sphirisch F?E‘E a =apr +agf +asd
'y
P{x, v. z)
(r,9,z)
L Z
5 .
y -
d]. X

Figure 2.1: vector representation in Cartesian coordinate system

In two-dimensional space polar coordinate system will be used (see Figure 2.3).

Since the vector @ is independent of the used coordinate system, the following conversion is
applicable between the Cartesian and the polar coordinate system:



P(x, v, 7)
(Pp. 0. 2)

=tana, ) - da,

=cosla,)-|d

-

X




2.2 Calculation rules

In the following some important basic arithmetic rules for vectors are to be demonstrated by
examples in the Cartesian coordinate system.

e Addition
The arguments of the Cartesian unit vectors are respectively added in the vector addition:

a + .‘_; =ia,+ b, T+ l:.n'_-‘ + r'f;':._' | T +ia. +5b.) : (2.2
Notice:

This relationship applies only to the Cartesian coordinate system and can not be transferred to
other coordinate systems.

In the vector algebra the following laws apply:

commutative law TJ: + § = E + Tf (2.3)

distributive law m (ﬂ?f) = (mn) A =n (m?f) (24)

distributive law (m+n)4d=m4d+nd (2.5)

distributive law m (Tf + ﬁ) =mA+mB (2.6)

associative law A + (ﬁ + F) = (TJ: + E) + c (2.7)
e Modulus

The modulus of a vector is equal to its length and thus a scalar, which is direction-independent:

()
[#.a]

@ = \_,.f'la-;'. + a2 + a? (2.8)

In particular it applies that the modulus of the unit vectors is equal to one:




e Product

We differentiate two kinds of products with respect to the vector algebra, the scalar product
(point product) and the vector product (cross product).

The scalar product between two vectors is defined:

a-b=|a H cos (@ 7) (2.10)

Hence the scalar product between two vectors is equal to zero, if they stand perpendicularly to
each other. In particular it applies that the scalar product of a vector with itself; i.e. the square, is
equal to the square of the modulus:

( f_"___u':;

_ a b ah
a-b=¢ 211

—|a b allh

k i Bl - cos { .F.-’_ ."_;;\ beliebig
Particularly for the unit vectors:
i-3=0, i-k=0; j-k=0; F.a=0 7 7=0;

(2.12)

L)

i-i=1: 55= 1. kk=1 7F7=1 a&-a=1 7-7=1:
The formation of the scalar product in Cartesian coordinate in following way according to above
rules:

a-b = [Pi;_i..'_-l- r..'_.J:E--I- a. E‘] [{'J_».?+ E’;,I-I- f_’s.__i:)

(2.13)
= a ..|i.' - + II".'JE:I.'-' + [ 1:.‘-
From this and the equation stated above the angle between two vectors:
S b+ ayh, 4 oasb.
oS [ﬁ"_ .'_‘:4) = — o t‘ "_‘ . - 1 — (2.14)
/ \ r.':'_ + r'.-:: -+ f.'?\_,.-" .'»; + ,'r; -+ b
The vector product between two vectors yields a vector:
Axb="7T (2.15)

its modulus is equal to stretching parallelogram by @ and b:

|;'| = ’u 5 .'.l‘ = |r: |-'!

111 {" :}]



and its direction stands perpendicularly to @ and b:

vla
vLlh
in general:
0 al|b
. || b alb
g ) - (2.16)
|| b bla
la| - b - sin (r?; F_'-) beliebig
For the Cartesian coordinate system applies:
R
ax b= dw a (2.17)
r;:' E'J__J ]
Especially for unit vector:
i }‘:1; |T---:'T—|=1; ’" =1 |[Fxal=1 |Fx7=1
ixj=k ixk=] Jxk=1 Fxa=I FxI=a
:.‘.;1=“; N -|=H ’: -',|=|| _-':T|=I| || .T|=ll |_ =1
(2.18)
Attention:
For the vector product commutative law is not applicable, but:
Fxb=—bxa (2.19)
In contrast however the distributive law applies.
i x (F+—) —axb4+ax e (2.20)

e Differentiation




In the vector analysis we speak of three different kinds of the differentiation, gradient (grad),
divergence (div) and rotation (rot). For the all three methods a uniform differential vector,
NABLA-Operator V applies (see table 2.2). Table 2.3 shows the ways of writing of the different
kinds of differentiation in the overview as a function of the used coordinate system. For further
simplification the LAPLACE differential operator A can also be used as the way of writing. This
is double application of the NABLA-Operator

A=V.V (2.21)

Table 2.2: Description of NABLA-Operator in different coordinate systems

Koordinatensystem
kartesisch ‘ zvlindrisch ‘ sphirisch

[

" +
e + 2|2
+ PSS =
.y —

D | e .

- + i

| JP ) lee [} )

I [ [

' l

In the gradient formation
Vig = grad (2.22)

Skalar o = Vektor Vi

v (i‘ix€+5y“}+ci';: )l"u O +Ciy‘?+r.fiz
the NABLA-operator is applied to a scalar potential field . The result of the gradient formation
is a vector. The gradient formation can be regarded as the formal multiplication of the NABLA-
operator with a scalar quantity. In the field of the hydrogeology this quantity can be groundwater
level A, temperature fields 7, concentration distributions C, evaporation or groundwater

10



regeneration rates vy and others. These scalar quantities (potentials) are nondirectional and have
thereby no vector character. However they are location dependent. The most important
application of the gradient formation is the DARCY law for the computation of the groundwater
flow velocity (see section 7.1, page 184).

r=-k L:].'-flfl h 'I.:;._'.":'

Example of gradient formation application:

The groundwater level of an aquifer is indicated by function:
|"f ‘J.j..l.l' - :;»"- + :

We compute the groundwater flow speed, if the permeability coefficient of the aquiferis k=2 -
10°m- s

It applies:

v = —k gradih)

D20y — 30 +4+2)—  d{2ry—3r4+2)— w‘l.?..-z.'—.J.r-l-__l.—-\m
- .

= -2 ]_'..l_" f;\ - S r + - - :. - J + - : - IS

={6— 4f,-y1-;;r—"i T o0 g

It is be recognized that
a) there is no vertical stream

b) the speed is dependent on the coordinates. The current in the aquifer is thus not constant.

We understand the application of NABLA-Operator on a vector by divergence:

Vr=div Vektor ¥ == Skalar (2.24)

T_l‘.__ d—'~+£-;_x+d? (l‘—'~+ —'~+ T)—ﬁt‘r_‘_ﬁtlg_‘_ﬁ}t‘:
TvElart tayd tE )\ v dek f=ar gt G

The result of divergence formation is a scalar quantity. The divergence can be regarded as the
formal application of the scalar product formation between the NABLA-Operator and a vector.
According to the rule of scalar product formation the divergence of a vector is a scalar quantity.
The divergence, also as productivity of an area G noted, indicates, that whether source or sink in

this area. If the divergence of a vector field is equal to zero(V# = div & = 0] the area is neither
source nor sink.

11



According to GAUSS law the entire source and sink activity of an area G can be computed by
the volume integral of the divergence. At the same time it is known from the balance laws that
the difference between the source and sink activities, i.e. the flow rates of the surface must:

For the two-dimensional area similarly:

[[ div 7 dA = ?ﬂf-r dL (2.26)

A L
1 is a normal (perpendicularly standing) unit vector to the surface or to the circumference. With
Gauss' theorem volume integral can be converted into integral over the surface and area integral
can be converted into integral over the bound. Also the divergence plays a fundamental role in
the hydrogeology, since all processes must be balance in the mathematical description. In
particular a large number of further derivatives is based on the following relation:

div ¥ =divi—k grad h) =g (2.2

Example of divergence calculation:

We compute the divergence of the velocity vector T lin the previous example:

& ] .
Vo =—(3-24)107° + — (—4-107°z) =0
Oz y

This area is neither source nor sink.

In the rotation formation the NABLA-operator is linked by means of cross product with a
vector:

rot T=N = U (2.28)
57 F
i i i ( If}t-‘: -ff?z-,u_ — at': If}t-‘r) — If}t-‘h- lf}t-‘i-) .
wtv=) — — — |\ =l V571 5T = k
dr Oy Oz dy Oz dr  dz Oz Oy
Ugp t':u. U,

The result represents again a vector.
If ot & = 11 we speak of irrotational field. We can also deduce from it, that rot grad ¢ = 0 is
always applicable for irrotational potential field ;.

12



Further arithmetic rules in connection with the vectorial differentiation yield as a result of
application of other vector rules and the extended rules for the differentiation of products:

v I:.'r-l ) =
Violplad) =
N o .._h.‘e_f:I =

2 Vios + 0.V = ) grad s + @, grad
SNa4+a- Ve=pdivia)+ a-gradipg)

oV X

a

+

[T

Vi = wrot (d) +a =

orad (2]

If we examine the source and sink activity of an aquifer, we can write the DARCY law as

follows:
clivi &) = «liv i — & - cracd fr) = o
THE =N (kN ) = g
Ney =N —&)y-N N kNN =g
NHay =N {—~k)- N — & AR =g
ivid ) = grad( Ao mrowlio B fo-chivigrad{ ) = o
iny fqr the . =
isotropic aquifer N | | _
Tea e & Te. o
(-k) =0, and S SEESTIE + — " —
Lo o e S I e N (S = | O~
equation: + | FIRE IR e e RIS
div (7) = —k div(grad h) =gq
= -+ = k=s —_ o= " = | e .
= T_'_ o S |SPR s N D s
~ = - [ [
= [T — | | T e
@ I — = = S~
z I - I I = n
S [ = : [
= Ol
g > | <«
51—
T .
= S o T = Lo T L o NI R
= N e I [T r‘rsc) oy .
e A |"';\ - D D T
B} N S =] = N
+ + Bl &8 Z|8
Table 2.3: = . s | s e [T R ]
I I | oS | ‘ = | | [ =
system Z ES SRS SRS . 7
7 g + o |28 P e
gl + |.* T RIS |n & |IS|E
= = {_T.:"“H%L‘ r--\H = \--.___./\-.___/\_____/FTT
L . . Tl
- r-g‘o |f-”-:.\ [a=T E<~ BT -+ + |
T =
| = < = =
- = <a b
. T—.
= T= Il . =
= > - == x
= ~ (= <]
= I [ﬁ = ﬂ >
= : =
5 > = o P Il ~=
] =~ oy T T
== = - — =
- g = | = [ S
= = = =
3 S
en|| S =
= = = = 5 = =
= 2 | 8| B 2 S <
= | = £n = =
AR ERE A Z s
- — T ] - 5 —y
2 = = = o = =
2| = = | = = =
A= =
e
-~ =

Y]
I
-

homogeneous

may be set grad
then the aquifer

(2.33)

coordinate
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2.3 Examples of Vector calculus

1. The filter velocity Tlconsists of components vy =3 - 107 s'l, v,=-5" 10*- s! and vy = 0.
Outline and compute the filter speed and indicate the modulus and the angle.
The modulus of a vector:

7l =i i 4o

With the given values we get the modulus:

|51 =1/(3-10-%)% 4 (5. 10-4)* = 3,04 10°2

5

The angle is calculated by the slope, which is equal to the tangent of the angle:

= arctan () = ncn (S212)
arctan l\ o .}I arctan 3 103 |

= arctan ( —0. 1661 = 350,527 = 6,12 rad

Thus the vector of tasks in Cartesian and polar coordinates:

=23 1-:1—*'3 T4+5 1n:r‘ﬁ =304 1|:-—-’£ _,7+|-_,_1.-_.ﬁ a

~ S -~ =

2. A pollutant particle moves by convection (Pkenv ) and by the hydrodynamic dispersion (Zdis»).
Plot and compute the back way and the end point, if the particle is transported from the origin of
the coordinates with the following part

T = 1- 107157 4 lll""i_.-T

-

- F =10 — =
Udiop = 3 107 —7F 4+ 0, 7854

=

In the task two different coordinate representations are used. Since the natural processes are
independent of the type of representation, the task can be solved with the use of the Cartesian
coordinate representation or by means of polar coordinates. In both cases a conversion between
the two systems is necessary.

For the existing two-dimensional case the following relations are available:

14



a = ayt + ayd

a = a4 a,a

{2 -2 — |7
o, = \.'l'"‘_, + a- = |u'

ay
1y = arctan —"
[
|
Ay = COS iy ) * dy
y = = dy ) - de b,
a, =tan(a,)-a,

It is to be noted that a« is usually indicated in radian measure and the following relation applies

With the given numerical values we find:

U= Upony + Ed:'sp

According to the above definition:

Upkony — %.HE'E —+ t,'g = 1|l‘.-"ll|::|_|:|—‘1:|2 4 Elﬂ—&:lz — ID—T?

U kony = arctan (1—) = 03,657
s
3. Design and compute the end point of a pollutant particle after one day, if it moves from the
point x = Om; y = Om by a convection due to a potential gradient of Ah = 1m between the points x
= Om; y = Om and x =30m; y = 40m with a k-value & = 5 - 10" 'm - s~
As basis of convection the filter speed is set U'. The field velocity must be used in accurate way,

Ug = —. mit: @ Filtergeschwindigkeit. n durchstrémtePorositit

7= —k grad b (DARCY-Gesetz)

il AR
D, = Il*-, —_— = ', =T N e—
ar ' Ay
r=ailr — e w — ) = U 30mA + (40 m2 = 50m
A Vi 2l i 4z VLSl ) 4 ) '

Ty Y Y

L Ll e
v — B |'|—|-I ! o (i '
3 | —_— —_— ) —_—

T
s all 5

however not in this task. The mean transit velocity ' ks equated thereby the pore velocity.

With: ¢ filter velocity n’ seep through porosity
(Darcy law)

15



Distance: s =uv, -t = l[]_ﬂ% - 86400 s =10, 864 m

Position:

~
(3]

1 — Yo ¥o— Ho

1 — A0 =0

1 40 u| .
Ji:EZE bm"-yZE.t':m-.r
-yz =—m? -t =m?. [az — yg]
2 2
m- - s
'3)’2 = T, a2
(L + m~)

- 2 I1 2992 (0 = 2
[ m=* - s /1,333 (0,864 m) — ;
=y — = / - — = /0. 4777 = 0,680 m
TN T e T ar Lo o "

1
r =2 —0517m
i
We can insert y immediately into the equation of the length s:
=
] = —j-'
= \II-J + _|'_|'1
R
5 = \ =+ Ew—

With s = 0.864m we get the value:

16



S

L, SGA4

V
4

A

(1+3)

= (. GY

1.5275

= 1,51~ m
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2.4 Task of vector calculus

5
b,

1. The vectors - |are given in the coordinates:

=25 b,=3 ¢c,=-—0

ay =7 b,=—-4 ¢, =-0

a,=8 b,=0 e, =-5
Determine the length of vector @ = @ + b + 7.
2.Givenvectors @ =21 =3 J +9kgnd b =37 —w i +2k. Compute w such that the

two vectors stand perpendicularly to each other.

3. Calculate for ¥ = ¥ +¥2 + 2% gpq A = Py r d g 45k

a) 4.V
b) - ('\_j} und
c) (Vi) x A

4. A particle moves along a space curve in the coordinates x = t* + 2t, y =-3e™, z =2 sin 5t.
Compute the velocity and the acceleration of the particle at any time ¢. Indicate the distances for ¢
=0andr=1.

5. Design and compute the end point of a pollutant particle after one day, if it moves from the
point x = Om; y = Om by a convection due to a potential gradient of Ah = 1m between the points x
= Om; y = Om and x =30m; y = 40m with a k-value k=5 - 10" m - s

6. The scalar potential field is given in a filter 2 =xy + yz + xz.

a) Determine the filter velocity (vector and modulus).
b) The activity is source or sink in the filter?

c) Is this irrotational flow in the filter?

Given k= 10"*ms™ and grad (-k) = 0.

7. A pollutant plume spreads underground. The distribution of the pollutant varies in the range of
values x::= 0 to 10 and y::= 0 to 10 with the following figure:

C@ =50~ ((x=5"+@r-57
a.) Outline the equipotential lines for the concentration values in range of C (x, y) = Omg to 50mg

with an increment AC (x, y) = 10.
b.) Compute the gradient at the point P (3, 4) and determine the modulus and the direction angle.

18



8. A pollutant plume spreads underground. Die The distribution of the pollutant varies in the
range of values x::= 0 to 10 and y::= 0 to 10 with the following figure:

Cla,y) = 125 — (22 — 10)* + (y — 5)%)

a.) Outline the equipotential lines for the concentration values in range of C (x, y) = Omg to
125mg with an increment AC (x, y) = 25.

b.) Compute the gradient at the point P (5, /0) and determine the modulus and the direction
angle.

9. The groundwater level of an aquifer which one side is limited by a barrier and a well are to be

described by the following geometrical figure:

1(y — 10)*
T2 T
a.) Outline the hydro isohypses in range of zz = 1m to zg = Sm with an increment Azz = 1m for
coordinate 0 <x < 10.
b.) Compute the filter velocity with k= 0.001ms ™' at the point P (5, 5); determine the modulus
and the direction angle.
c.) Is this field source or sink?

ZR
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Chapter 3

3 Interpolation method



Problem:

Some measured values (dependent variable) are dependent on independent variables in one -, two
-, three or four dimensional space measurement, and generally they are represented by the three
space coordinates (depending upon coordinate system €.g. X, Vi, Z, O 7y, Gy, Zy OF ¥, O, O, (SCC
chapter 2 vector analysis, page 41)) and the time #,. We have a discontinuous value tables in this
case. For one dimensional case e.g.:

independent dependent
value value
T o = ||r (a0
Ty =[x}
Ty e = [ (1)

The places xy, x;...., x, are so called supporting places, and the yy, y,....,y, are basic values.

If function values, whose arguments lie within the range (xo, X,), we name it interpolation. In
contrast the searched function values for independent variable outside of the range (xo, x,) will be
called extrapolation. A continuous substitute function w = p(x) is found by the interpolation or
extrapolation, which reflects the original function as exactly as possible y, = f'(x,) (see figure
3,1). It is always assumed that the substitute function only matches the original function on the
supporting places. The accuracy of intervals, i.e. the agreement of the both functions, depends on
the number and the distribution of the supporting places. According to the sample theorem the
quantization error increases proportionally to the rise of the function.

Attention:

No interpolation algorithm can be used as replacement for an enlargement of the measured value
density. By means of the interpolation algorithms one receives in each case approximate values.
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Original function

. Sample value
Original function

Figure 3.1: representation of the discontinuous measured data acquisition

sample function

Linear interpolation
Spline interpolation

interpolation function



Example for the application of interpolations:

The pollutant concentration C(x), which runs out from a refuse dump, is measured at the points
X0, X1, X2 (see figure 3.2). The pollutant concentration at the point xz;, which flows into the river to
cause danger, is to be estimated by interpolation. A conclusion is to be given whether this value
exceeds the limiting value.

Refuse dump Well Flow Waterworks

aquifer
N X Kg Xa
C/[mg/]
L 3 +
+ S
limiting value
"':.l o
+
xi, X ‘-:I'j, xi._ >

Figure 3.2: representation of an interpolation problem

Ty o = [ (z0)
iy Oy = fim)
Fry 7

g Cy = fizg)

For the solution of this problem an interpolation function w = (p) is to seek for as "replacement”
for the function C, = f'(x,). This function should fulfil the following condition:

23



i.e.

(g

ad

Then it is supposed that the intermediate values of the function w = (p) are good approximation
of the intermediate values of the function C, = f (x,).

For the determination of the function w = (p) different interpolation methods can be used. We
differentiate thereby one- and multi-dimensional procedures. The multidimensional methods play
an important role in connection with the geographical information systems (GIS) and are also
often applied in connection with geostatistics.

In the following some methods will be introduced in connection with water economical
questions.

+ Polynomial interpolation
+ Polynomial interpolation (spline)

+ Kriging method
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3.1 Polynomial interpolation

In this method p (x) has the form of an algebraic polynomial of n order:

This possesses such an advantage that intermediate values can be computed as easily as possible.

It is assumed a measured value table with n+1 pairs, and then maximally an n-th order
polynomial can be exactly determined:

U= palxr) = Tf.‘;. - J"". (3.4)
with the character:

/ i y £ SN
Ylic; ) = plr;l = an - r, =iy (2.2)
-

This polynomial is the interpolation polynomial to the given system of interpolation supporting
places.

In the rules for low order polynomials (n < 3), the value pairs are sought at least piecewise to

match:

p(x)=ap+ ax linear interpolation

p (x)=aop+ aix + axyx; quadratic interpolation
p (x) =ao+ aix + ax; + asxs cubic interpolation

The application of polynomials with higher orders makes the arithmetic work more difficult and
leads to very large fluctuations.

The different display formats for polynomials also yield the different interpolation procedures for
the determination of the coefficients a; of n-th polynomial. These different procedures all lead to
the same polynomial. Thus interpolation formulas are differentiated according to:

- analytical power function
- LAGRANGE

+ AIKEN

- NEWTON

25



3.1.1 Analytical power function
This method assumes that each supporting place of the polynomial w = p (x) fulfils the condition

y(x;) = p(x;). In this case we get for the n + 1 supporting places n + 1 equations with the n + 1
unknown quantities ag to a,.

o + a1T0 + azrp + ... + anzh = o (3.6)
o + 171 + a2x] + ... + a2} =

ag + a1 &, + a7z + . Fa,a =y,

This equation system can be written in accustomed way as matrix equation:

X-A=Y
With
1 1 1 11 ] /1
X=11 2 2 A= Y =1y

It is to be noted that the matrix X and Y on the right side represent well-known the coefficients,
whereby the matrix A represents the searched solution vector. The LGS can be solved with all
well-known methods (see section 1.3 solution of equation system, page 16).

The determinant of this linear equation system (LGS) is:

1 xg -+ a0 (x1 - x0) (x2 —x0) (x3—x0) ... (X, — x0)
(x2—x1) (x3-x1) ... (Xxp—x1)
1 = --- e
D= = iieees |3ﬂ)
- (xn—l - xn—Z) (xn - xn—Z)
(xn _xn—l)
1

and it is named as VANDERMOND determinant.
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Since all supporting places are different with each other (must be), D # 0 and the LGS is
definitely solvable.

There is of an n-th order polynomial, which receives the values y; = f'(x;) and their coefficients:
(cp. section 1.2.3 determinants, page 13 and the following):

D&D D&j 'Dl.'l.ﬂ-

2 g = (3.8)

ay =

From these coefficients we know the interpolation polynomial in demand:

:m: ) =S ‘i"u: r)=a,; + a; - x + @, - .J‘: + -4 a, - ‘
Thereby the interpolation value in the place xp results from:

y(zp) = plrp)=av+ar-rp+az-xp+---+an-Tp ‘

Although the beginning of this procedure is very simple, the final determination of the
interpolation polynomial requires a relative large computation, particularly if a great number of
basic values are to be taken into account.
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Example for the application of the polynomial interpolation:

Please find a quadratic polynomial by using the values of the following table and calculate the
value y = f(1/2) at the place x = 1/2

Since only three supporting places are available, the polynomial can be only in a second order. A
quadratic polynomial has the form:

It must be:

.'.'-___":l I — an } Gy - 2 } Gy - __f'r i — -:"'l } -l--':- I

From the three equations:

Thus the interpolation polynomial:

pir)=2r — *

With this function the looked for function value in the place x =1/2 can be computed:

04
| &
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3.1.2 LAGRANGE interpolation formula

LAGRANGE wrote the interpolation function in the following form:
ylrp) = plrp) = Lolxp)- Yo + Ly(xp)- v+ ...+ L,(xp)- UYn (3.9)

With the Lagrange interpolation no analytical functions are computed, but only individual values
p (xp) for each interpolation place (xp). (Li (x) (i = 0, 1, ..., n)) are the coefficients of the basic
values yi in the n-th order polynomial. These are computed from the supporting places xi. The
Lagrange polynomial with n-th order has the following shape:

Lo lrp—x1)lep—T2) - lTp— Tn) m e
LII (r) = ! ':__’.1':_]'_:'
(xpg — 1) (g — Z23) (g r
Lo lrp Tollrp Tole-- |y T )
L) = —
|‘.<‘] — ;'IJ||_‘J'l — ;-‘l | II —_—
I lrp — o) lxp—I)irp rz) (rp —xi1)Tp — Tip1) \Tp — Tp-1)
s L .r 1 =
| — Zo) | — ) i — Tiy ) ey — xri41) (r; — —1)
(rp —xy)lep — I I Ip — I3 Joeee Ip —I,_1)
L-." ) = r ). 2 2
(Tn — Top)lxy — T ) [Ty — T)

Thus the LAGRANGE interpolation polynomial:

Yy = }‘l rp)=plrp) = Lol rp)un + jr_l (rplin+ ...+ L (rp)yn (31D
(xp — x1) (xp — 22) - - (TP — 20
—_— 4 ¥ , fi’ll
(o — ) lxg—T2) -+ g — Tp)
(xp — x0) (xp — x2) - - (xp — 0)
+ = , i
lry — o)l —xrz2)-- -1 Iy
lzp —xg) xp—1)lxp —22) - (xp — Tp_1)
+ ...+ - : . \ Un
[Ty — T Ty — 1) | Ty — T2 )

If we insert the value of xp choosing from xo, x; ... x,.1, X, there is always a factor which is equal
to zero. Thus all Lagrange polynomials will become zero except the i-th item. The i-th item is one
as the numerator is equal to the denominator. It proves:

= flz)=plz) =1y
A disadvantage of the Lagrange method is that the computation of the Lagrange interpolation
polynomials must be accomplished again when an increase of the supporting place number

should be taken into account, which is identical with the increase of the order of the interpolation.
This is to be clearly seen in the following example.
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Attention:

+ The weights (factors) Li (x;) of LANGRANGE interpolation formula must be always again
computed if the number of the supporting places changes itself.

- The sum of the weights always is equal to one (as a check of the results).

2{ =1
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Example for the application of LAGRANGE interpolation function:

For the function y»= f(x») the values in the equidistant places x»= x0+ 2nh, withn=-1,0, 1, 2
(see table) are given:

11 1 0 1 2
Xn Lo — :.'1"5' L To + j-:r‘ To + -l-’lr‘
t(x,) Y- Yo Y1 U2

Find an approximate value w = f'(xo + /) for x =1/2

According to the rules of the polynomial interpolation maximally a polynomial with 3™ order can
be developed in this case with four supporting places. It is also possible to accomplish a
piecewise interpolation. This has the advantage that we can reduce computation work. The
accuracy 1s however declined. In this case we try to find an optimum between the required
accuracy and the cost of computation. The supporting places are used in the piecewise
interpolation, which are next to the interpolation point.

1. Linear interpolation

The interpolation function in the place x=1/2 is written as follows with the help of the Lagrange
interpolation formula (see equation 3.9):

= Lo (23 ) s+ L (23 ) w

,r
[

The supporting places values x = 0 and x = [ are used, between which the value x=1/2 lies. The
factors Loand L1 are (see equation 3.10):

1= to + h — 20 — 2h 1

Ly (zy) = Rt
/ L —dp ro 4+ h — x 1
£ ( %] N 1 — 0 - "ju + 2h [ - E

Then the searched value:

1
w1 = — | |
E 2 lyl:l+y1.l

The result of the linear interpolation is thereby equal to the arithmetic means.

31




2. Quadratic interpolation
in this case (see equation 3.9):

wy = Ly (1%) o + Ly (I%) ) + Lo (?%) Yo

The corresponding factors are (see equation 3.10):

) () _

(g — xy) (T — 72)

(@1 — 20) (71 — =2)

L, (xy) = (23 — o) (23 — 1)

(22 — xa) (22 — 1)

Ly
&
I.;Iu-
|
|
£ |

P~
T
13—
S’
|
|
|

o) =

and the result is:

3. Cubic interpolation
In the same way (see equation 3.9):

|;|r-

We get the following LAGRANGE factors (see equation 3.10):

oy =) (=) ()

(x_) —axg) () —ay) (] — x25)

o) () (54 - =)

(o — x ) (To — x1) (@0 — 72)

() =
(1) =

9
(x) —x_)(xy — x0) (2] — 23) 16
=) (=) (4 =) _ 3
Lolxy) = - w . 7 - = ——
2 (xo —x ) (22— xa) (X2 — 1) 16

Thus the result:
9 q

- 16" el T T

24y
1677

32
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3.1.3 NEWTON interpolation formula

3.1.3.1 Arbitrary supporting places

The disadvantage of the Lagrange method is that the Lagrange polynomials must be computed
again and again, which can be avoided in the Newton's method. With the Newton's method only
one auxiliary item should be added when further supporting places are taken into account.

The method begins with following formula:

pnlr) = |Fs,| 4 .:.11 (r — Zn) l::_; 12y
—+— .:J_-I £ — _.",,:II: T — ‘."| |
+ ba(z — xo)x — 21) (2 — x2)
+ .";”, (x raollx ry)---lx Thn_1)

If we want to find a certain interpolation value p (xp), X will be replaced by xpin the polynomial
expression.

The coefficients are determined again in such a way that the polynomial accurately reflects the
supporting places (x,, y,). If we respectively replace xp with xo, x;... x,, in the Newton's formula,
gradually we get an equation system with n equations for » unknown quantities. Since in each
case the corresponding factors ((xp - x;) = 0) are equal to zero, the polynomial items will be
omitted. Then we know the basic value y; from the polynomial value p(x;).

Yo = by + by (29 — x0) + (3.13)
—
(]
=+ bz —xa)+ by —a)(zy—21) +---
R
0
Y2 = n + 01 — a4+ Oal — Ioll — )
= by + b (z, — xy) + bl —xollx, — &)+
—I—.'.au,l — Toll — 1) | r, — ~1)

The equation system can be solved gradually with by, b;... b,. By inserting the first equation into
second we get b;. Once again inserting into the third equation it yields b,. In (n + 7)-th equation
the by, b;... b,.; which are determined before are used to yield b,,.
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(3.14)

by = wo
by = —I?ii — ii.)} = [@y 2]
b, — (2 —2m) — ‘::;:—:E‘I,"ricz — @)
) (T2 — xo) (T2 — )
_ (y2 — ) + (11— wo) — [m0] (22 — @)
(T2 — zp){@g — 31)
_ (y2 — 1) (1 — o) B [170] (72 — )
(p — @ ){wy — ) (27 — 29 ) (22 — 71 (22 — T ) (T2 — 1)
[z ] [x120] (1 — T0a) [z170] (22 — xq)
B (2 — xg) (T2 — xp) (T2 — 21) a (13 — ) (T2 — T1)
_ [:t:lel n [:I:IID] (x, — o) — [xlxﬂ] (72 — Tq)
(2 — xq) (a2 — x )@z — 1)
[x34] — [z170] (22 — 1)
B (T2 — o) (T2 — To)(Tz — T1)
b, = [xo3,] — [@)m] = [y, 7]

Liﬂ:j — .r|:|.:|
Generally the following notation is introduced for short, which are called divided differences of
first and higher order:

A [‘rn'x}.-] — [-I',':E]
[rrzpr;] == —
[Tmmrea;] = [£mzizg] — [Ti2p]

':-rm — -I';l

[i'"nxn—1 o 'J'fl] - [xﬂ-—l R 55 R

["Tﬂxn—l s i"lxD] =

':xn - 'I'III,:I
Thus the results of the coefficients:

by = ug (3.16)
) (i — Ya)
|'11 = 1—" = [-Fl;'l‘ll]

| ‘n'.‘l — Ty .l
|'-l_' = [IJII] _ [' ]IJ.II] = [‘i'_'.f‘]"-'.]l]

(X2 — Tn)

e s _

(ra — Tp) ["FRJ":'.‘" 1 ‘I"']

4] q

(r, — xq)
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Particularly the coefficients can be determined conveniently according to the following
computation scheme (example for 5 supporting places):

Yo B
SN =l
= Iy Tzd1dn
=b [3x52, 20]

Ty ] = b [4zamam o
%ﬁ% = [w2a1] = ba
Ty | Yz - [r3757] = by
%ﬁ% = [5'33-1'2] [$4$3$2$1]
Tg | wa [ 4727;]
(ua—ua) [-I'dl'z]

(za—z3)

Ty | Uy

(3.17)
According to equation 3.12 the value y at the place x can be interpolated:

ylx) = plx) =by + iz — ) (3.18)
+ bz(x — xo)(x — 1)
+ balx — xo)(x — 11 )z — 22)
+bylr — xg)(x — 1y )(x — 22 ) (2 — a)

This equation also can be used, in order to compute the interpolation function w = p(x)
distribution and possibly to plot the function.

3.1.3.2 Equidistant supporting place distribution

The equidistant supporting place distribution xo, x; = Xo + h, ..., X, = X + nh (h is the step
length) are given, then the interpolation function by NEWTON:

Ays A%y . Ay,
(r o)+ {x o) lx 1)+ .+

7 21 R : W

plr ) = Y

(3.19)
The elements Ayg, A%yo, ..., A"y, are called finite differences. The exponent does not represent
exponentiation, but gradual differences formation. We compare equation 3.19 with the equation
3.12 on page 70:

W — Yo P
= : ~ 20 (3.20)

35



These differences are computed according to the following scheme:

nlr.b.ﬂ o ~I:._J.4._. — :I:b.mﬂ..

T-uf — Ui =

~|n:~.4

_”:.:I:ﬂ - :flnd. = _”_.::4

Uy — 11Uy —

\\|nn- 4

iy — Zhy = 1,7

oy — 1Ay = _Hs.n/l._..

Iz — 2

07 — 1

= EMA..

n,.-s.-.. ........
1—ug | -y
h Zr
17 Lr
a5 o
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For example the scheme for n = 4:

=
<]
|
=
<]
Il
=
-
<]
<1 | -
| |
<1 -
Il Il
<]
=] — Il
= = =
| 9| <
| | |
= = =
| 9| -
Il Il Il
=] — o
| 9| <
S| &5 & S
| | | |
— ] 3] =F
= = = =4
Il Il Il Il
S| &5 5| =
< <4 a4 -
= = = = =
S & 4] &) 4

By rear substitution we know that each finite difference is a combination of the y-values of the
first column. e.g.:

Ayy = uz — 3uz + 3uy — Yo (3.21)
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3.1.3.3 Example for the application of Newton's method:

1. For the function y, = f'(x,) the values in the equidistant places are given x, = X¢ + 2nh, n = -1,
0, 1, 2 (see table):

1 -1 ] 1

b

o Tn — 2h To o+ 2h | o + 4k

fixn) U1 Yo 1 Y2

please find an approximate value x = for y1,=f (xo + h).
Solve this example with Newton's method and compare the results with those from
LANGRANGE interpolation formula.

a) Linear interpolation:

P( %)—EJ'D'F%,:’D (Il—mn)

1 — o
= + (xa+ h — xq)
Yo 5h ] )
= Lo +m)
=3 Yo + 1
b) Quadratic interpolation:
N Ao N Ay g \ /
P {I%J = Yo + h ( — 'y ) (§ — ."’n) [,.“1!' —_ -"1)
]. 'r.- - ..J i1 + ']J | ¥ . 3 -7
= — | (] RS ) | To+n —xo) (o4 N — 20— 20)
2 (2h) =9
3 3 1
= —io + =t —s
It applies:
—\::""-l — —\‘."--"l - Af*'l' = —Y — Y — Up) = Uz — ;_—'!’-"I + Yo
Remarks:

The advantage of the Newton's method is that the polynomial Z; (x) does not change itself if the
number of supporting places is changed, i.e. each time we only need calculate the additional part
of the interpolation function.
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2. The following measured values are given:

yvi{1]2(4]|8|15]26

Determine the value y = f (2.5). Please select a polynomial with suitable order. How large is the
deviation if the order of the polynomial is changed? Since the given supporting places are
equidistant (2 = /), Newton's method is applicable to calculate the polynomials with different
orders.

First the finite differences are computed:

=0y, =1
Ay =1
=11y =2 Ay, =1
Ay =2 Noyp =1
=2y =4 Ay, =2 Ay, =0
Ay, =4 Ay =1 A'yy =0
;=3 [y3 =8 Ay, =3 Aty =0
Ay =T Ady, =1
ry=4 |y =15 Ay =4
Auy =11
=5 s = s

It is evident that the maximal interpolation polynomial order is third.
a) Linear interpolation

The searched value x = 2.5 lies between x, = 2 and x3 = 3. Therefore the linear interpolation is
accomplished only between this tow values

A
p()=v2t == (& — )
1

=4+ (25-2)
p(2,5)=6

39



b) Quadratic interpolation

Since the searched value is x = 2.5 the quadratic parabola interpolation can be stretched among
X1, X2, und x3.

PR Ayz , Ay o
plxr) =y + & — T2) 4+ — (x —x2)(x — x3)
o o h B 2'h°
. 3 . .
=4+-(25-2)+ (2.5 —=2)(2,5-=3)
1 2.1
149 0,75
=442 5
pi 2.5)=5625

c¢) Cubic interpolation

The cubic interpolation formula requires three supporting places. In this case both of the triple x1,
x2, and x3 or the triple x2, x3, and x4 can be used. For the first case:

[\ + Awy |+ Ay - | 4+ Aty . \ / .
plr)=wum +—I(xr —1) — (r—m)(x —22) +— (. — 1) (z — 22) (x — 23)
’ ' h 1 2!k 3'h*
2 2 1
=24+-(25-1)4+—1(2,5-1)(2,5-2)+—(2,5-1)(2,5-2)(2,5-3)
1 2.1 ' 61 o '
=24+340.75—-0,0625
p(2,5) =5,6875
For the second triple
o Ay o Ay . Ay,
plr)=t+— (0 —23) + ——= (T —22) (T — T3) + = (r —xo) (& — x4) (0 — y)
- h - 2! h2 - 3 B
4 3 1
=44+ —-(2.5—-21+ (2.5—2)(2.5=-3)4+—(2.5—=2)(2.5=3)(2.5—-41)
1 2.1 76 ’

.75
442 — —' + 0,0625
L)

>

p(2.5) =5, 6875
The deviation between the linear and the quadratic result is:

5625 —6

—— | = 6,7%,
5,625

While the deviation between the square and the cubic result is only:

5.6875 — 5,625

=1,1%

—_

0o
O, 0809

In order to estimate the results, the given points can be plotted (see figure 3.3). The diagram
shows that:
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25.00 /
13 1)) *—' Linear /
o —a— Quadratic f
21,00 —a— Cubic /
/
b rl /
L /
X |
/
15.00 "
y - value /
s Xl /
/
| 1X) ,"J
|f’
/
ALY /
(Xl y
SO0 /
30 /,—’"
o
|0
() ] AX 200 30K Lo S0 GAX)
X - value

Figure 3.3: Representation of the measured interpolated values

Actually the value should lie between 5 and 6. Obviously the linear interpolation can not yield
good results in this case. For this reason it is meaningful to plot given points and estimate the
searched value. In a practical work it is important to have enough points in order to get a good
approximation of the function. This can be ascertained that, the form of the function substantially
does not change when additional points are taken into account.
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3.2 Polynomial Interpolation (Spline)

To describe a given function in a certain interval we can link sections that consist of several
lower degree polynomials together with only one polynomial with high degree. The classical
examples are line segments in subintervals (seeing figure 3.4). It is assumed that the function
between two supporting places is nearly linear. This can be applied, if the supporting places are
narrow enough with each other.

Figure 3.4: Representation of linear spline curves

Such approximations are continuous, however the first derivative is discontinuous, and i.e. vertex
appears at the transition part from one interval to another. In the following spline interpolation
method will be described, in which cubic parabola arches are built up such that the vertexes are
rounded, then first and second derivatives of the approximation are constant. Polynomials with
higher degree are in principle not used since they oscillate strongly.

A given interval of [ = (a, b) is divided into n subintervals according to x-value xo = a, X1, Xz ...
xn = b. The cubic parabola arches will adapt in each subinterval such that the given y-values y; are
fit at place x;. The first and second derivatives must be agreement between left- and right side at
the transition part of subintervals (see figure 3.5). The supporting places (x;, y;) are called the
knots of the spline (the word "spline" originally designated a flexible curve template).
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A cubic polynomial with third degree has four coefficients. Generally it can be written:
pi () = coi + clix + cax” + cax’ (3.22)
My Cubic parabola arches
.\rl
Knoten
Yi (f', f" stetig)
.\-.I
! % : +—t >
X X X, X
a b
Figure 3.5 Representation of spline-curve for a cubic system
The spline function is defined as follows:
1. S(x) is twice continuously differentiable in the range [a, b].
2. In each interval [X; ... Xi+1] S(X) is given by a cubic polynomial p; (x):
2|T) = T pilr)
(3.23)

3. S (x) fulfils the Interpolation constraints S (x;) = y, for all i from [1 ... n] in range [a, b].

4. Depending upon the form of connecting constraints we get different kinds from spline
functions. The following is special cubic spline functions
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T
Connecting conditions Description Comments
S(xg)=5"(xy) =0 Sixy)und S (x, ) 1st die Tangente
natiirlich
S{ap)=5"(xn) =0 an den Graphen von S ()
S"(xo) =aS"(z,) =3 verallgemeinert
Sxg)=aS(x,) =7 vorgegeben erste Ableitung am Rand
S"Nxg)=aS" (x,) = vorgegehen dritte Ablettung am Rand
Slxa) = 51 |
S (xo) = 5" (x,) periodisch
SNeqg)=85"(x.,)
polx) = plx)
not-a-knot S™(xy)und S (x,) sind stetig
1‘-’.‘:—'__'( r)= Pn—1 ()

In the case of n segments it yields 4n coefficients and 4n constraints for the 4n coefficient are
expected. There are 4 constraints at each Knot (x;, ;) fori=1,2 ... n— 1 (y-value and agreement
of the derivatives). This yields 4n-4 constraints. At the terminator points the y-value must be
accepted, and thus sind4n ;2 conditions found, i.e. the spline-curve is defined not completely; two

degrees of freedom remain.
pilri) = Ui
pilri) = pioi(mi)
piimi) = pi(xi)

.”;flij':.i] =1 ,ill_ I fﬂ'.i]
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We can set the second derivative at the terminator points zero and get a natural spline curve.

Palzn) = an S{xa)und S (x,) 1st die Tangente

(Y]
(]
5

n ) = 2¢, an den Graphen von S (x)

Alternatively the first derivative at the terminator points can be given, in order to approximate a
function.

Thus it yields an equation system with 4n equations for 4n+2 unknown quantities. The two
missing equations are covered by default of the boundary conditions.

polza) =0 iy
Boundary conditions (3.26)
i'-:':;': rn) =10

This equation system can be solved according to familiar methods. Usually the solution of this
equation system is complex, so not only combination steps- but also iterative procedures (see
section 1.3 solution methods of equation system, page 16) must be used. As is shown below,
however a tridiagonal equation system can be generated by a certain scheme, then it can be solve
with little operating expense.
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Calculation scheme

N supporting places x; with 1= 0, 1 ... n with the step length hi = X;+,-X; and the n basic values y;
withi=0, 1 ... n are given (e.g. as list of measurement readings), so the following calculation
scheme (see equations 3.24 to 3.26) for interpolation by means of cubic spline functions can be
applied with n-1 subfunctions for range x; <x <x;4

Slx) = S pilx)

R
plx)=a;+ b (x—x)+c;(x—x) +d; (x —x;)° (3.27)
Schritt || Berechnung Giiltigkeitshereich
1 i = Ui i=0;1;---n
2 co=cn =0
;?:__ll"':__l + 2-"‘- 1:1}}':_| +!J:j| + I;?‘-l"‘:{,]
3 i=0;1;---n—-1
3 , 3 .
= — (a;, —a;) — (a; —a;_)
1 \ l*] . "]"‘_] \ . . l
1 I . \
4 ZI’,‘:‘_":(“-.‘H_"."::l___.":“ﬂl_j“‘:' =011 n—1
S d; = ! (Cciy1 — i) =01, n—1
3k Y

The equation in the third step of the table represents a linear equation system of n-1 equations for
the unknown quantities ¢y, C; ...cy.1. It can be written in the form of matrix:

A-C=R (3.28)
2(hg +hy) hy
hy 2 (hy + ha) hy
h, 2(ha+ h3) ki
A=
hp_z 2(hy_3+ hy_o) 2
'J"J— ._,I:.f'.'”__- + '2*'::—[.'
) (3.29)
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L¥S ]

(FY)
[u—y
—

A is tridiagonally, symmetrically, diagonally dominant, positively definite matrix and possesses
only positive elements. Thus this matrix is always invertable and definitely solvable. As solution
method Gauss algorithm can be used for tridiagonal matrices (see section 1.3.1 solutions of

equation system, Gauss algorithm, page 17).
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Example for application of spline function:

The following measured values are given as supporting places and values.

For these 5 pairs a natural cubic spline function will be found. According to the definition of the
spline functions, 4 subfunctions i = 1, 2, 3, 4 with respective ranges xi < x < xi+1 will be
searched.

3

pi(z)=a; + b;(x — ;) +¢c;(z — 2;,)° + d; (x — x;)°

Correspondently the computation schemes are implemented in five steps.

Schritt || Berechnung Ergebnis
ag = 0.5
a; = 0,8

1 a; =u > = 1,0
az = (. S
ayg =05
ca=U

: co=cp =10
cy = 1]
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Schritt Berechnung Ergebnis
2(hy + hy) hy 1
hl 2|h1 +h_3l hg (o)
[ 3 3 ]
— (a2 — ay) — — (ay — ap)
hl . 1 h._‘. L] [
3 3
= (a3 — ay) — — lay — ay)
2 1
}— l::(-fJ —_ ﬂ’3:| —_—— I:ﬂ’3 — ﬂglj
3 — = - 2 =1,2
2(0,540.5) 0,5 I
Cy = 0
0.5 2(0,540,5) 0,5 Co
0.5 2(0,540,5) 0,5 Ca

3 . 3
— ] — B = — (0.8 =10.5)
0% (1,0 -0.8) 05 (0,8 —10,5)

= & (0.8 —1.0) 4 (1.0 —0.8)
05 T YT HY TR

. 3
B 05_08 _ 2 (08_10)
0 (0,5-0.8) 05 (0,8—1,0)

1 h; |

bi = —(ay1 — a;)) — — (ciy1 — 2¢4)
hi 30

by =0,6
b =0,6
Elg = U

by = —0.6

h

1, :
di = ——(ciy1 — )

3}1_.‘ '

dy =0
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Thus it yields the following sub-spline-functions according to equation 3.23:

pilx) =aq; +b;(x —x;) +c;(x —x)" +d; (x — x;)°

Teil-Spline-Funktion Geltungshereich
polx) =0,540.6(x+1) -1<2<-0,5
p(x)=0,84+0.6(x4+05 —-08x+05°|-05<x<0
pale) = 10— 1,224 0,8z 0<xr<005
palz) =0,8—0,6(x —0,5) 0.5 <x<1

The diagram of the splines is shown in figure 3.6:

. -
" ::% —a— Spline
‘; \.\1 +— analt

[ \
F b
1
y b

™ 1 i ' 1 | Vol oa I i 0nx aw 1

Figure 3.6: Spline interpolation function

We recognize that the spline simulates the original analytic function very well.
1

|
The maximum deviation of analytic solution amounts to 0.010244, which corresponds to 1.68%.

iy =
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3.3 Kriging method

A family of special interpolation methods is marked with Kriging, which aims at the following
problem:

The sampling at a place supplies information for certain space oriented points. However it is
unknown which values are available for the measuring variables among these points. Kriging is a
method, which makes possible, to compute the value of intermediate point or the average over an
entire block. Different special methods are based on the creation of weighted average values of
the space oriented variables. Block estimations are predominantly necessary in the mining
industry, while estimated points are inserted for map, which is described in the following one.

The individual Kriging methods differ either in the kind of the goal sizes which can be estimated
or in their methodical extension for the inclusion of additional information.

Additional information about the spatial behaviour of a location dependent variable exists in the
cognition of other measurements, which relates to the observed variables. In hydrogeological
practice for instance correlated dissolved matter or temporal repetition measurements of
groundwater pressure head are common.

In a word Kriging methods are of following advantages compared to other interpolation
procedures:

¢ Kriging yields the "best" estimated value

¢ Kriging involves the information of the spatial structure of the variable and the variogram into
the estimation.

¢ The individual spatial arrangement of the measuring point net is considered with reference to
the interpolation grid.

e The reliability of the results is indicated in form of Kriging error for each estimated point.

Attention:

In the Kriging method it must be also paid attention that no information gain can be achieved by
the mathematical procedures. Only the information content of the measured values (basic values)
is processed. Interpolation results might contradict physical laws (e.g. ground water contour line
in receiving streams).

If we want to get physically correct interpolations, a fine quantized simulation by means of

physical models (e.g. ground-water flow models) is necessary and meaningful. Therefore such
simulation programs offer internal diagram routines for creation of isoline.
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In order to understand the Kriging procedures, the following terms from the geostatistics must be
known:

m = i \_‘ Za
1 R—

Mean value ]

Jz-p(z)dz=m,
Expected value ElZ] =
wobe1 p ( z) die Dichtefunktion 1st

Variance var (Z) = o =E[(Z-E[Z])] =E [(Z-m)]
Covariance of two

random variables
Zi, Z;

cov (£, Z;) = E [I Zi —m) (Z; — my)| = oy

Correlations pij = |
coefficient V
variogram

Z is a place dependent random variable with n measured values Z,. The density function p(z) is
probability that Z takes the value z;. By computation of the inequality of two values, the
variogram shows the variability of a random function, which correspond to points with distance

to the vector ”..

Then the Kriging problem can be represented according to illustration 3.7:

We have a number of measured values Z (< ,), whereby Z is a random variable and T ,is a
measuring point of range D.

We assume then that Z (1 ,) is a subset of the random function Z (), which has the following
characteristics:
It is a second order stationary function, i.e.:

1. The expected value is constant over the range D E [K ( T+ J'.")] =7 (T

2. The covariance between two points depends only on the vector o

[z(.r-' + fa')_zl;.rj]] —c(n)

Due to these assumptions we want to compute a weighted mean, in order to get an estimated
value for the place Ty,
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Figure 3.7: illustration of Kriging problem

The Kriging estimator Z'(* ) represents a linear combination of weighted sample values Z; and n
of neighbouring points:

The weights A; are determined in such a way that the estimated value Z' (T ) of the unknown true
value fulfils the following conditions:

1. Z"(*) is unbiased, i.c.: E*[Z{Fa)— Zi(Fa)]=0

2. The mean square error g2+ (&) — Z (Fp)° 1S minimal.

Under the assumption the stationarity is the expected value £ [ (%)] = and 7 (7 ) = m. the
condition 1 (unbiasedness) yields

ENMNZ(TH-Z(T)| =) dim—m=m (V N — 1 ) = (3.33)
‘:_T i=1 i=1
From this the sum of the weights must be one.
With the help of the variogram the expected value of the square error can be expressed:
E(Z' (T - Z(T)] =var (Z'(To) — Z(T0)) (3.34)

=2 A (T —T) =Y > AN (T — 7)) =y (T8 — T)

i=1 i=1 j=1
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n

S =1 )
In order to minimize the error variance of the side condition 1 (, ' , Lagrange multiplier p
will be introduced. Then the following function is minimized:

p=var (Z*(Ty) —Z(Ty)) — 2u ( ; A — 1)
AR

ey e
o ) ) o — (i=1....n) —_—
We get the minimum by setting of the partial derivative zero and ¢
These yield linear Kring equation system (KGS) with n+/ equations:
,Y‘ Ny (T — 25+ p=~(T7 — 7o) firi =1.2,...,n
=1
N =1
i
1
In matrix form the KGS is written as follows:
(T —77) v(Tr—-7z) ... (T —Tn) 1 A1 (T1 — 7o)
(7 -7) v(% -7 (75— 7)1 \, T3 — 7o)
(z7 — 77) T, — 1o (7, —7,) 1 A (T, — @)
1 1 1 0 1

(m — 1) =7 (0) =0,

In the case of point estimation " 1.e. the diagonal is occupied with zero.

o oy n ) =iy o)
Since in the steady case the relationship of ( : ) e ( : ) , ( )can be replaced by

O
( : ) the covariance in the KGS.

Thus the diagonal of the matrix emerges large elements. In numeric aspect it is preferable
therefore implemented in most programs.

The Kriging estimate variance o7 for point estimation results from above equations:

i
-::rﬁ. =var (£ (7)) — A7) =p+ Zk,", (T — ) (3.33)

=1
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1

A o= —
In a special case, in which no spatial dependence of the data exists, we get the weights . . 7 .
The Kriging estimator now the simple arithmetic means of the neighbouring samples. The
following characteristics distinguish the Kriging estimator:

* The KGS is solvable only if the determinant of the matrix (y;) = 0. Practically this
means that a sample can not appear twice (i.e. with identical coordinates).

* Kriging yields an accurate interpolator.

vl h O )

* The KGS depends only on ( ) or ( : ), however not on the values of the variable Z
in the points of sample x;. With identical data configuration the KGS only need to be
solved once.

* Confidential limits of the estimation can be indicated under the help of the estimation
error ok,

In practice a series of Kriging procedures were developed and applied, which regard more
complex situations, e.g. intermittent variable, space time dependence etc.
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3.3.1 Task for application of interpolation method
Interpolate by means of

+ Analytical power function

- LAGRANGE

- NEWTON

* Spline function

The following are measured value tables

1. For normal distribution function is tabulated yla) = o
T

x || 1,00 1,20 1,40 1,60 1,80 2,00

v || 0,2420 | 0,1942 | 0, 1497 | 0,1109 | 0,0790 | 0,0540

and find out the value of y(1.50)

2. Please interpolate 1,03 ang v'1. '—_'"5‘| on the basis of the table.
X 1. 00 1.05 1.10 1.15 1,20 1.25 1.30
y =y || 1,00000 | 1,02470 | 1,04881 | 1,07238 | 1,09544 | 1,11803 | 1,14017

3. A rational function with degree as low as possible is supported by three points: (1, -2); (2, 3);
(3, 1)? How does this interpolation function change, if another supporting point (4, 4) is taken
into account?
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Chapter 4

4 Optimisation problem
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4.1 Analytical solution of extreme value problems
4.2 Iterative optimum search

4.3 Least squares methods (MKQ)

In water management practice the experimental process analysis (see section 11.1 model
classification, page 284 and the following page) is used for the parameter determination of
underground systems, e.g. k -, S- and T-values of soils, degradation rates, transportation
parameters. The mathematical model structure is specified by a theoretical process analysis. we
try to transfer this model structure into easily solvable representations. The parameters can be
determined by the solving conditional equations or by a parameter approximation problem. So
the task is, on the basis of structure knowledge or assuming such a model or such parameter sets,
to develop

e the characteristics of the system which reflect reality as exact as necessary and
e climinate the superposed influence of noise and errors to a large extent

For the fulfilment of these demands the comparison of the output value serves as function of the
inputs or an independent variable (time or place). In the result a change of the parameters is to be
made or the model change itself until the deviation reaches minimum. The changes can be carried
out according to a certain strategy (search algorithms, optimisation programs), statistically
(random number generator) or empirically. Also the visual comparison between the two diagrams
(original and model output signal) is possible.

This task is also called parameter estimation. Particularly the procedure which is introduced here
is classified as iterative estimation.

By the algorithmic model adjustment (see figure 4.1) we try to let the input vector and the
manipulated vector y work in the process as well as in the model. With a first parameter set, the
starting parameter, the output vector of the model x'y can be computed by first approximation.
The deviation of this vector from the output vector x of the process (xi - Xumi) is named as quality
of the adjustment of the model. In water management applications the square evaluation will be
carried out. The aim of transformation of parameter is minimizing the value Q =) (x; - xMi)2 =>
Min.
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Figure 4.1: Iterative Model adjustment

4.4 Retrieval Strategy

In these optimisation tasks it is very crucial that at what processing time the minimum is found.
The processing time 7, depends on the basic computing time 7, for the numeric analysis of the
model and the number of iteration steps n. The number of solution procedure is mainly
determined by four influences:

der Zahl der zu suchenden Parameter; sie entspricht der Anzahl der Suchrichtungen
und geht damit exponentiell ein,

e the number of the parameters which are looked for; it corresponds to the number of
search directions and shrinks exponentially

ethe formation of the quality mountains, i.e. the slope and the number of subminimum,

o the search strategy, whereby accuracy for the correct direction, the search step length
and cognition of subminimum

o the starting parameters, which crucially prevent unnecessary search steps.

The formation of the quality mountains and the search strategy can not be regarded
independently. Generally it must be noted that there is not a "best" search program, but for
certain classes of quality mountains appropriate procedures are particularly suitable.

There is a series of procedures to solve of optimisation problems. We divide these search
methods according to their search strategy into non-gradient-, gradient- and coincidence- search
method.
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In table 4.1 the most important procedures for iterative processes of estimation (WERNSTEDT)

are compiled.

Table 4.1: iterative estimation method (WERNSTEDT)

LB IUeLEnspIdseg

s any Bunyoe BsBunsg

1343MHDS JOPEAS|BINZ 5V
31 ITHM (2)y = (1 +e)Pans 1 W L
g = ¢ = (T +#) Ua UL Jan Lpres|[ein
NIDIHIS Y (2 2 1T+ o T [ELBAPTESIIEINZ
SAHO0HE SVITHeRf el +elg= 4, 5V
SANOr
113MOd
OdIININATT NULUPS UB -2 WNZ uaipeas) (275 A
1HYNODEYIN xLewsBuniyo ( oy B 1 EABIBIPE 1
NOSHdVH loppaualRMIugRS (2)h
NOLMIN (IOAT + )y o1 + 8- = | 57
NOLAMIN
B sqy Bis|eE
Jopep, Busgebsbion sy
A Tt M 1) uUe M 10 ULBA LB ALELBA
HOOHENISOY (T - L)) ULER () - L) 5B UBIBIPEID)
113MOd > <
SVe ()P =1,V
LAY +_,.H_ b ¥

LEs JUE IS,
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4.4.1 JONES Spiral method

The methods of the nonlinear regression, which is best suitable for pumping test evaluations, is
aimed at adapting model functions x,, () by choosing the parameters § to given values (measured
values) x(s). The deviations between x,, (5) and x(s) are shown with weight factors the . In the
case we assume that, n samples (measured values) are available from the process and the model is
determined by k independent parameters.

Starting from initial value S the goal function is to be minimized concerning parameters S; (1 =
Lk)
n
Q&) = (Wilx(s)i — aar(3):)7) (4.1)
i=1

This complies with the requirement of the least square error method.

Essentially iteration exists in the solution of the linear equation system:

*.
Y AT =0, (4.2)

with
16); .
;= i (i=14k) (4.3)
ils; '
. = i“ N (s Pl s '|M (4.4)
T = £ ii b i BRI fIIIHJi VR
and

T

. . dapre  dia FA
--'h._;=E Wi - : [4.5)

P |:||I."ij r.ll.w.j

T; represents the change of j-th parameter. We can get the equation system by developing
TAYLOR expansion of the objective function at the place Sy. If we set the partial derivatives of
this function equal to zero, we get an equation system as above.

To check whether the linear approximation is adequate, the inequality must be fulfilled.

(...J': g+ T = {JI’ ""'U:'

It is not always like this case in practical. According to JONES we find a better goal function
value by a vector manipulation between the TAYLOR direction T and the negative gradient
direction G (see figure 4.2).
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The minimum function value within the iteration is expected in the place sy + 7. On the other
hand the goal function decreases in the direction of negative gradients. Thus it is sure that there is
a better goal function value within the triangle So— (5o T) — (So+ G*). G* has the direction of G
and the modulus of T. we act on the assumption of TAYLOR step in this search.

5,00*

g, §+025T §,+0,5T §+T

Figure 4.2: JONES spiral algorithm

Iteration is terminated, if a better goal function value were found. If the TAYLOR step is not
successful, points will be calculated at the 1 spiral, which are shown:

S=A (pl 41— )T (4.6)

The different s-values are attained by change of the p-value. p begins with 0, 1 and is computed
by the following relationship (Z > 2).

AN T
My = - — (4.7
i 1+{Z4 1) m, v

If n>0.9 the search will stop on the current spiral. If Q (5p +.S) > O (sy) the vector T is halved
and the next spiral will be searched.

The larger Z is, the fewer points on a spiral are computed. If possible we interpolate either on the

spiral or in TAYLOR direction. If no better value is found even along the last spiral, search will
be carried out in negative gradient direction with smaller steepening increment.
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Chapter 5

S Ordinary differential equation
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Ordinary differential equations are characterized by the fact that the searched function is
dependent on a variable, while in the partial differential equations (PDE) more arguments and
their appropriate derivatives appear as the following examples:

dr
i
af oaf
fx Oy -

+ 2. ¢ =242 Ordinary Differential Equation (ODE)

0 Partial differential equation (PDE)

Their illustrations are evident in table 5.1.

Table 5.1: illustration of the differential equations

| | Gewohnliche DGL | Partielle DGL |
Anzah| eine Variable mehrere Variable
(unabhangige Veranderliche) (unabhangige Veranderliche)
Variablen Ty, zoder t x,y, zund/oder ¢
v = k- orad (h)
Beigpid v j—j vk %—* | ﬁ—r | ﬁ—:
' ' dr Syj az
~ i )
1-D-Funktion mit Spitzkegel mit beliebig
Tangente gekrummter Oberflache
Grafik

In the following derivations and examples with the ordinary differential equations it is assumed
that "x" stands for the function value and "#" serves as argument. Of course all propositions can
be also assigned to other arguments, and for dependent functions arbitrary variable names can be
used. The particular use of the letter x as a symbol of variable name appears in many mathematic
teaching materials and in the signal theory (See GRABER: Lehrmaterial zur
Automatisierungstechnik bzw. Grundwassermesstechnik). In the partial differential equations x, y
and z are used as independent local coordinates.

The general form of an ODE is:
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dr(t) dx(t) d"x(t)
dt * dt? Todn

Fit x(t), git) (5.1)

These differential equations are identified according to table 5.2, if correspondent conditions
fulfilled.

Table 5.2: identification of differential equations

| Bezeichnung [ Bedingung [Beispid
dr | d* 1z I d* x .
Ordnung der DGL | " T,
Y dx
: (t1=10 - 2 oy
inhomogen glt)# Tt r=2
- dx
homogen git)="u o Ft2ox =0
d"x 0 d*x N
dr d"x dr
. — ( _ 2 . 042 1
implizit Fltegngm| =0 | Hte-20-0
dz
(4% =£ - A - . 342
linear a1 (t) # a1 (2. ) t— o+t = 2t
- dx
(1] (1. 1) el 2. g2
nichtlinear a1 (t) = ax(x,1) s+ = 2
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5.1 Setting up equations

In the further sections solving differential equations is based on the mathematical description of
natural processes. The derivative of mathematical equations as transformation of natural
processes is noted as modelling and as the transformation of mathematical model. The
development of such mathematical models is the subject of section 11.2.1 theoretical process
analysis, page 291 as well as 11.2.2 experimental process analysis, page 292. The method
described here is only how the mathematical models to be completed according to the physical or
chemical basic laws and their effects. This way of the theoretical process analysis, also
designated as mathematical modelling, is generally preferred by natural scientists.

In the theoretical process analysis the reciprocal effects of the process variables, state variables
are formulated as mathematical model equations with their neighbourhoods. The most
substantially reciprocal effects between the system and its neighbourhood are divided into causes
and effects. The causes and the effects are called input and output variables. The description by
means of the physical or chemical basic law is usually in formation of balance equation,
particularly the formation of the energy and mass balance equations.

Most energy balance equations lead to force equilibrium law and flux laws. Generally we can
speak of the transformation from potential to kinetic energy. Such energy transformations take
place on so called flow resistances. A kinetic energy in form of material or mass flow results
from different potential energies at the in- or outflow resistance (e.g. conduit, aquifer, electrical
resistance), which act as driving force. We also say that flow resistances corresponding potential
energy, also called as potential, is abolished, "drops" (e.g. pressure difference, voltage drop).

The mass balance equation assumes that mass is neither created nor destroyed within a regarded
system (e.g. container, representative unit volume). The mass balance of a system can only be
changed by outside sources or sinks. If dynamic systems are considered, the storage effect must
be included likewise the mass balance. This means that all mass flows, which affect a system,
must be zero in sum (junction law).

Mathematically this circumstance can be also described by the divergence of a flow vector, which
must be zero in this case (dive = 0).

Examples of setting up differential equations:

Please find out the relationship of the flow rate V, which flows out from a pipe with free gradient,
if this is attached at a container (see figure).
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Task of setting up differential equation:

1. The padding to the remainder holes of the former brown coal open pit caused by the rise of
groundwater under natural conditions will last too long time. Therefore external supply is
introduced to the filling procedure for acceleration.

Set up the differential equation for the padding procedure 4; »)(¢), without consideration of the
aquifer and contingent ground water regeneration rate.
Initial condition (hio12) = 0) is given for all cases.

a) Constant flow rate (see figure 5.1)
b) Variable flow rate (see figure 5.2)
c¢) Coupled storage cascade (see figure 5.3)

v

Figure 5.1: filling procedure of a remainder hole with constant flow rate

Figure 5.2: filling procedure of a remainder hole with variable flow rate
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Figure 5.3: coupled storage cascade
2. Set up differential equation for the following hydraulic scheme (see figure 5.4) with associated

block model.

Assume a linearized relationship and a homogeneous, isotropic aquifer with the following
parameters k=15 - 107 m/s; 1o =0.2; Zrpmiste1 =20m; [ = 50m:

Figure 5.4: schematic illustration of the groundwater level with block diagram

3. A float control is used for the water level regulation of an irrigation ditch (see figure 5.5). Set
up differential equations to calculate water level H. The surface of the container is A. The flow
rate V is dependent on the water level H.

1'; .ﬁ: '1’5371.3_? " |: HJT!-G.T - H\I
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Figure 5.5: Water level control of an irrigation ditch
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5.2 Analytical solution methods

5.2.1 First order Ordinary differential equations

One solution for the following inhomogenous first order ODE should be found

a4+ apit)ler = git)

The following writing ways are often used for short:

E
et
dy
dz

Firstly it will be transferred into a homogeneous ODE in order to solve the inhomogenous one.

Yy

dr
m[‘a‘.;u—h Fag(t)zy — 0 (5.2)
dlt

There are several methods to solve homogeneous ODE, and the separation of variables and the
substitution method are described here.

5.2.1.1 Solution of homogeneous differential equation

First order ODE:

dx

ay(t)—— + ag(tjay — 0 (5.3)
dt

For simplification the functions ay and a; are regarded as constants.
* Separation of variables

The method of variable separation is aimed at rearranging the ODE algebraically such that, there
is a total differential on each side of the equation which is conveniently integrable.
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day,

a1—— + agrp — U (5.4)
dt
dxy, g
——x
dt a t
dxy, ag
-t
Ty, a
I 7]
—dz, — —— [ dt
Iy g
iy Qg
ey, +C) = —— -t oder Iz, —InCy = —— ¢
] 1
i) T
hll‘n’a — _D'f- f 'Cl ]ll.l',ra ]“CZ_ —D-t
5] e
a0 ey =
Ih e Aol If] Th Cy-e [.”l :I

Both solutions are applicable and transferable with each other based on logarithm laws (see
section 1.1, page 2).

By equating both equations we get:

Cy —e“Vhaw. €, — —InCYy (5.5)

Since the integration constants C; and C; are still indefinite as well as the logarithm and the
exponential function, both two solutions are equivalent. The constants can be determined from at
the initial or final conditions, e.g. C; and C, can be determined at the point t = 0 with the known
initial condition x:

O = —Inzpg (5.6)

’ -
Cy Tro

The solution of the homogeneous ODE:

20

Ih Tho - € (-“' /

(5.7)
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Application of Separation of variables:

Solve the ODE:

di Pt ox =0,

wobel gilt: r—y = 3

According to the algorithm we try to separate the total differentials (dx and dt) respectively

each side of the equation.

dx

dt
1

—dx
-

] ld.-r
-

Inz

T

r

—t?z

— 2t

f —3dt

L 3
——t '
3 0

l o
) ) . C o — gt
We insert x,—o = 3 in the general solution, it yields C, = 3, so the answer is * = de” 2"
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¢ Substitution method

Basic idea of the substitution method is to find a possible solution by means of insertion, which
have been proved with experiences. The most well known substitutions are combinations of
exponential functions or sine functions as well as general power series. The advantage is no
implementation of difficult integral operations, only the insertion to be differentiated, which is
often more simply to realize:

dry, _
Differential equation: T tagry = U (5.8)
o rp = K - eM
substitution: J
derived from: SRy KL e
dt
. . . . . . - iy - A .
inserting in homogenous differential equation: ap- A K- fay Koett =10
[y}
A= ——
LR

The reciprocal value of this constant A, which is in unit of time in the case, is also often called
time constant T or .

(78]

o= K- e m' = K.eT=K-.¢

(5.9)

As in the method of separation of variables, the constants are determined from initial or final
conditions. I.e. K can be determined at the point t = 0 with xp:

K — 210 (5.10)
It yields:
e . (5.11)

the same solution for ODE is obtained like other methods.
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5.2.1.2 Solution of the inhomogenous differential equation

A general inhomogenous differential equation can be written in the form:

ald—;r Fagr = glt) (5.12)
dt

its general solution results from adding the homogeneous solution x;, (t) to a particular solution x,
(1), i.e.

x(t) = xp(t) + zp(t) (5.13)

We can get the particular solution of differential equation for example by variation of constants
method, which assumes the homogeneous solution and takes the existing constant, here the time,
as function of the arguments.

* Variation of constants method

The solution will be carried out in four steps:

dx o
Differential equation: Aoyt aot git)
st . d.‘l‘,r; )
17 step: dismember: = gy — U
nd o : dr
2" step: variation separation: — = —dt
Th !
1]
solution of homogenous differential equation: zp = Ce o'

LT

3" step variation of constant: x, — C(t)e o

According to the rule of product differentiation:

dr, dC S, iy 20,
— . aj O ——1- a 514
dt dt © | ( (/) ‘ ( )

. D . . d
4h step insertion in differential equation: v Fagry, — git)
i

dC’ 2o, an g, o, .
rel—( e O —— e @ | fay-Coe m g t)

dt y
dC 8o, . ao %, . o, .
ayp—-€ 9 +a O —— e @ fap-Cee @ it
dt i1y
dC’ [ .
ar-—pee o glt)
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dC _ g(t) +5 (5.15)

dt y

This differential equation can be treated according to the above methods for solution of
homogeneous differential equation, e.g. by means of separation of variables:

it g
do = L8ty (5.16)
1
it o
ffff.‘ /g_ Lottt
ity
it 8n
C'(t) ) etart gy
ity

Thus the general solution of the differential equation:

x(t) = xp(t) + xp(t) (5.17)

z—Ce mt fg['t’l Tmtdt e ot (5.18)

i

The constants are determined by initial or final conditions, as in the method of variables
separation, e.g. C can be determined at the point t = 0 with xy:

4 ant
C ;rn—( ﬁ”.e?dt) (5.19)
t=0

1

Then it yields:
(t) . i) it L 2
r(t) (.1'0— &rEJrﬂutdt) e (/ g -e+ﬂ|rrh‘.) e (5.20)
i =0 151

The solution possibility thereby depends on the integrability of the perturbation function g(t).
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Tips:

The integration of two functions product is only possible in some functions. Particularly, if a
function is the primitive function or the derivative of the others, the following substitution can be
introduced:

"

/ u-dv=u-v— /?J ~du (5.21)

That what we should keep in mind is not final formula, but the way of:

Transfer into a homogeneous differential equation (mutilating)
Separation of variables

Variation of the constants or substitution method

Insertion in the differential equation

b s

Remarks on the method of the variation of the constants:

—

It can be only used for linear differential equations.

2. The general solution is linearly dependent on the constants.

The general solution has a member of free constants which are received from the
particular solution of the inhomogenous differential equations.

4. Tt frequently occurs that a nonlinear differential equation is transferred into a linear one by
a simple substitution.

(98]
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Examples of solution of inhomogeneous differential equation:

1. Find out the solution of

Solution:

Differential equation:
1. Dismembering:

fr —x = cost
2. variables separation: |
dr df
. r
3. variation of constants: =
r=_C{i
4. Insertion: = Ct+

General solution: ' ==snt +

1 +sinfit =fsint + Oy f

r=|

2. Find out the solution of

Solution:

By the substitution z = x” and z = 2 x-x the equation becomes a linear differential equation of
unknown function z. It can be solved according to the substitution method as follows:
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Differential equation:
Substitution:

Substituted equation:
1. Dismembering:

2. variables separation:

3. variation of constants:

4. Insertion:

General solution for z:

Back substitution:
General solution for x:

Z =T

Foow __1_+E
Ed — 2 =L|
-:Er_d:'

x
=1
=8
=040

r=+/1—t24+C4t



5.2.1.3 Task of solving first order differential equation

1. Give the general solution of the following differential equation:

a) y' =(y—3)cosz
b) oy =e Y

¢) ysinr=ylny
d) 2oy 4+L =0

&) Y +y+et=0
) y+L=sinx

g Z+itr=22

hy o =—xy’ mit y(0) =2
) L4tr=0 mit  2(0) =3

dt - V)=
otE—r=t'cost mit x(7/2)=m7

2. Differential equation Tx, + x, = Kx, for a system with simple memory effect (x, output value,
X, input value, T time constant, K proportional transfer function).
How the output value x, changes dependent on time ¢ if x, = ct (C = const.)?

3. Determine in each case the general and the special solution by specified initial conditions:
a) Yy =xy+2a mit y(0) =2

b) Ir;" = -"._I."f' = 7? mit yi2) = ]

4. Differential equation applies to the hydraulic scheme (see figure 5.6) with associated block
diagram:

; X xR
hpr=R-C—— + 2R

!

It is assumed a linearized relationship and a homogeneous, isotropic aquifer with the following

o= s _iE — D = ' 1 E= o
parameters ko= 5107550 = 0. 25 Zpmaget = 20m; 1= 50m Compute the change of the

water level, if the river surface changes as a first approximation as follows:
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h,

Figure 5.6: Schematic representation of the groundwater level

a) Erratic (hm = hg - [(?)) and
b) sinusoidal (g = hpp sin(w- t) + hpg, with w = 2zl and I' = 7 days)

5. The following differential equation applies to the concentration C in sorption of pollutants at
the soil matrix:

T1C+C:K

T, is time constant and K is a constant. 7; = 1d™', K = 100. The concentration should C(0) = 0 at
time 7 = 0.

a) Solve the differential equation by means of the analytic methods and compute the
concentration change for the time ¢ = /d

b) Outline the time process of concentration change.

6. The padding to the remainder holes of the former brown coal open pit caused by the rise of

groundwater under natural conditions will last too long time. Therefore external supply is
introduced to the filling procedure (h—o= 0) for acceleration. (see figure 5.7)

A = Ve

Solve the differential equation by means of the analytic methods.

7. Solve the following differential equation by means of the analytic methods:

dh |
S tk-h= £ =0
=+ g mi t=0

g=0.015m s und k =0,01s!
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figure 5.7: filling procedure of a remainder hole
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5.2.2 Ordinary differential equations of higher order

A general solution of a differential equation with n-th order has » constants and represents
geometrically a n-parametric curve family. For determination of a single solution from this crowd
we need 7 initial- or boundary conditions.

Example of a 2. order differential equation:

y?y’ +y* - 1 =0 is given for the movement of a particle. The general solution of these differential
equation is (x - C)* + y2 = 1. This equation stands for all circles of the radius r = 1 with the centre
on the x axis. According to initial condition y (0) = 1 yields C = 0; then the single solution is x* +
y* = 1. The particle moves around the circle with radius r = 1 whose centre is on the origin of the

coordinate system.

Different types of higher order differential equation can be solved with different methods:
5.2.2.1 Differential equation of type a

d*y dy
—_— = =]
FTERT

(5.22)

The degrees of higher order differential equation can be reduced by means of the following
substitution:

iy

= 523
il \=-=3)
Then the derivative:
dx  dly
-y 5.24)
di i’ 5-4)
These two equations are inserted into the differential equation:
) iz 0 z 93
Sy = 5325
il +e 3.2)

According to the rules for homogeneous 1. Order differential equation(see section 5.2.1.1, page
111):

= ke i5.26)
or
iz by _t
L (5.27)
i A
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Due to the substitution condition we get:

iy
P == (528
df
dy _t
— =k
di !

This differential equation can be solved again with the method of the separation of the variables:

il _t -
— = ke A (3.249)
il I

/r."_.',' = f F.-|f-_rTrH

t
yW=—aA- k- e”d 4+ fia

Since here two constants exist, two condition equations must be found. t=0and t=1 are
supplied to e” functions, then the exponential function simple values (1 and 0) yields:

o = i)
o yll) — yl=c)
L= )
And the solution:
[
gl ) = (0} — gioc)) - e™X +yis) (5.30)

Remarks:

This solution method can be applied also for the differential equation

i ) -
£ ”+hﬂ=g|:.” 331

—
di? i

The substitution z = dy/dt leads to a linear differential equation, which can be solved by method
variation of the constants.
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5.2.2.2 Differential equation of type b

d*y  dy -
”W -+ hm + iy = 0 [(>.a2)

This differential equation is to be solved according to substitution method. Sense and purpose of
the substitution method are to avoid complicated operations of the integration of the differential
equation and only carry out substantially simple operations of the deviation implement. A
popular substitution is used here, which looks promising from the experience. At the beginning
all derivatives are developed, which appear in the differential equation.

Following substitution and derivatives:

y=C- e (5.33)
i
I'__|'_|’ — |:' LI _;5,_ . ,’-”
i
i .
f -'lf =':--_}L_:'_E_,"|I'

d?
These are inserted to the differential equation:
(aA* +bA +¢) - - &M =0 (5.34)

.. Jl
For t # -0 we can divide ¢

LA

M b +e=10 (5.

If we introduce this to the standard format of quadratic equation, then it yields new constants d =
b/a and f = c/a:

Lob e .
}L-’+§A+%=n brw, AT dAt f=0 (5.36)

This equation is also designated as characteristic equation of differential equation. And the
general solution of this characteristic equation is:

=l
L]

Alg=—=+4 \II-'T f (2.5

Depending upon the coefficients d and f'there are three different cases:

1. 1st case, when &/ —f>0=> &/ > f, or B>2c- a, then A; # A, and real number
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,}L|_g= o T IEIII'T f [:T'.?'H:l

The solution:
y = Ot 4 Cyet! (5.39)

This case results in an asymptotic curve, which approaches a final steady state. This lies in the
real number range if A; and A, take negative values.

2.2nd case, when d°/4 — < 0 => d*/4 <[, or b’ < 2 - ¢ - a, then A, will be displayed by
complex number, as the radian is negative and the square root from (-1) yields complex number j.

=) =
=
]

: "u"'IT f (5.40)

B
(]
A=) =
—
—
—_
Ty

1)
| B
R

=2
(=]
b | S
=
—
—_
--:-_-':_
Ee
.y
| 5
\"‘-_-""}

[ =

Inserting this solution of the characteristic equation into the substitution function:

y=0C,-el=2H8M L oy olmgmr) (5.41)

W= f"_%’.r ({' 'I a l!|_|l T + { '2 . '.,—..l'-i'r‘jl

According to the law of exponential calculation the sum of the exponents could be decomposed
into product of two exponential functions. At the same time we can consider that the exponential
functions with imaginary exponent can be transformed into trigonometric functions.

Thus the solution:

y = e 3O cos Gt + Cysin 5t) (5.42)

This function represents the general form of the oscillation equation. For special cases we get
sinusoidal oscillations. This is the case, if cl or C2 are identically equal to zero. With d = 0 we
get an undamped oscillation, i.e. the amplitude is constant, if d < 0 a damped, with which the
amplitude goes to zero, and if d > 0 a swing oscillation.
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3. 3rd case, in the case the radian is equal to zero, and we get two identical solutions:

i ; _
A=A =Ay= 5= }—‘“ (5.43)

Thus the solution is no longer unique! We have two different functions, which satisfy the
differential equation as solution:

m = Ce (5.44)

2 = Cytet 4+ CyeM
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Example of 2nd order differential equation:

1. find out the solution: y' -y =0
y' oy =10
Differential equation: y = e
substitution: Y = A
. llr-'.l _ }ti '.Il'n'
(A2 1)eM =0
insertion: 31—
characteristic equation:
. . . . . .;'l.|_2 = O ].
solution of characteristic equation: r r
general solution: Y = Ut + Car
2. find out the solution: y+y=0
Differential equation: y+u =0y
substitution: y— M
Y= A
. . = Al
o msertion: e gy g
characteristic equation: ; _
solution of characteristic equation: A+1=10
Aa=+j
e = cosi -+ jsint

general solution: . .
Y= Cpeosl 4+ Cosind

3. find out the solution: Y+ 2+ y = (.
Differential equation: P+ +y=0
substitution: gy = e
i = At
i A2
insertion: (AP 20+ 1) eM =0

characteristic equation:

a
: .o R 2 o _
solution of characteristic equation: A 2441 =1
Az =1
general solution: y= et + Che
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Remarks:

This solution method can be likewise used for differential equation of higher order (n>3) with the
appropriate substitution of higher order algebraic equations.

Example of 3rd order:
find out the solution: y+y=0.
Differential equation:
substitution:
insertion:

characteristic equation:

solution of characteristic equation:
general solution:

88

y+y=0y
y — oM

f;f e
= 32
” — }l:;p"lll

(A + X e =0
Ara=a(2+1) =0
M = +]. Az = —J, Az =10

=0 +Cheosr + Casing



5.2.2.3 Differential equation of type ¢

d*y  1dy _ o
e T 5.4:
az g Y 122

This differential equation is again to be solved according to the substitution method. The solution
with the pertinent derivatives:

w=1 +ff2|f2 +rf;;|f:?' +r.'||rI

i . )

& _ Detat + Jagt® + Loyt

il
i .
—:"r = D0+ 2 Fagl + 4 gt
di?

If these equations are inserted into the differential equation and if the equation is arranged
according to powers of t:

(142 2a) - "+ 3 3ag - ' + (aa+4-day) - # +{ag + 5 bag) -
(3.40)

o + g+ +2% aga) " =10

A solution of this equation, which applies to all t-values, is that the factors of the power series
members are equal to zero.
In this case:

fl’:; =g = ﬂ'.' T e “2?! plesees = I'I
1
g = 53
ita 1
"= FT TP
i 1
6= m S mEE
ay_a a ! ( VE !
o — - — (1= - = 1y —
n l?”Jl B P I I+ B .(_Q”_]‘! = I, i_EF.'J']

If we set these coefficients into the solution, then we receive the solution of differential equation,
which are called zero order Bessel function:

Ir'2 Ir| Irii _I# Ir').‘u

V=l bt g et OV
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5.2.2.4 Tasks for the solution of higher order differential equation

The following differential equations are to be solved:

a) i =y"*

)y 4 Ay 4 agy =10 fir ag = 3,4, 5
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5.3 Integral transform

5.3.1 Time- and Frequency domain

Integral transform is a method over a detour to solve differential equation. We distinguish two
ranges in the transformations:

- the original or time domain and

- complex variable or frequency domain.

The integration according to the arguments within the original range is transformed into a
multiplication in complex variable domain. The difficult integration procedures can be bypassed.

The relations between the ranges and their special characteristics are represented in the following
scheme (see figure 5.8).

Bild- bzw. Frequenzbereich

Fomplexe [ sy der L ésumgsfunktion
Frequenziunkiion komplexen Glaichung (Fequenzfunkticn)

| Hintransformation | | Rncktransformation
Behebige | o [.sung der Lisumgstunktion
Zeitfunktionen Differentialgleichung ( Leitfunktion)

Original- bew. Leitbereich

Figure 5.8: Connection between original and complex variable domain

The most well-known transformations are the LAPLACE -, the LAPLACE CARSON -, the
FOURIER, LAURENT and the Z-transform. The theories of most these transformations can be
gleaned in the multifaceted literature. Therefore here we only deal with the substantial criteria
and disadvantages, which are against general application.
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The following transformations are represented on the basis of time as argument, since these are
most frequent applications of engineers, albeit the transformations are applicable to all
arguments, i.e. also to space variables.

The group of the integral transforms can be divided into the continuous and discrete
transformations. The continuous integral transforms can be generally written:

2
FUfE)) = / B FlO)rodt

It

i(5.48)
Whereby k(t, f(2)) is designated as core of the transformation. To simplify matters only an
argument (e.g. ) is regarded.

As special cases the relations specified in table 5.3.

Table 5.3: Special cases in continuous integral transforms

Transforma- untere Integra- obere Integra-
tionskern tionsgrenze tionsgrenze Bereichnung
kit, fie)) £ ta
T (-~ . _[:AF'L.:'I:.C'E— _
[ransformation
pe 0(—o¢) . LAPLACE-CARSON-
[ransformation
—fut . FOURIER-
e N —oC) L .
[ransformation

The connection between the three numerated integral transforms can be represented in the
following form descriptive. According to definition it will be characterized as complex frequency

pP=o+jw mit & = Realteil und 7 = Imaginirteil (5.49)

If the real part of the complex frequency p approaches to zero, the LAPLACE transformation
changes into the FOURIER transformation. It means that arbitrary (theoretical) time procedure
can be treated by means of the LAPLACE transformation, and only sinusoidal one by means of
the FOURIER transformation. The LAPLACE transformation is particularly suitable for
application to deadbeat procedures, like e.g. bar signals. Nevertheless the FOURIER
transformation has a large advantage as it is simpler in practice. Each periodic or periodization
function can be decomposed into a sum of sinusoidal oscillations by the Fourier series analysis.
This decomposition of the excitation functions and overlay of the response functions are certainly
only permitted in linear systems. The well-known complex computing methods of electro-
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technology for sinusoidal alternating current results from the Fourier transformation. In the
Fourier transformation the density of such oscillations, the so called spectrum will be analysed
and treated by the rule of alternating current theory with only one sinusoidal oscillation, i.e. only
one frequency. The discrete transformations are in contrast represented by a sum formula:

Fipit) = Z b, )] (5.50
We can get certain k(t,, f(t,)) for some special cases (see table 5.4).

Table 5.4: Special cases for discrete transformations

Transformationskern . . ] .
. e Summationsgrenzen Bezeichnung
kit,.Tit,)
o ~ diskrete
g 0-<n<=x - . :
LaPLACE-Transformation

1 oo T O LAURENT-Transformation
Pr T

1 0= = Z-Transformation

We can also explain the connection between LAPLACE and Z-transform in the following way.
Replace in the LAPLACE integral for continuous functions the function f{z) by the function value
series f(nT),

F(p) = / flt)e ™t (5.51)
0
p=0+ jw
The integral correspondingly by an infinite sum and e”* by e

Flp) =T _ [y (5.52)
n=0

with &' =z

Friz)= TZ fnT)z™" =T F(z) (3.53)
T ]
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5.3.2 LAPLACE Transformation

Forward transformation

The following symbols are used in LAPLACE transformation:

LAy = Fip) LaPLACE-Transformierte der Funktion f(1)
LY F(p) =L "YLIf(O ) LarLace-Ricktransformierte
= fit)

The transformation of time or original level into the LAPLACE level takes place by means of
integral relationship stated above.

Fip) = L{f()} = /ftf;u-‘“’rn (5.54)
[i

p=0+ju

Examples for the application of transformation to functions:

Examplel:

f{ty =0 (5.5

Fp) = L{0} = [n e Mdi =0

=
=l
=

Example 2:

fi)y =1 (5.56)

Fip) = L{l} = / | Pty
i

| .
= ;'[E'JJ]H= ;'L 1)
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Example 3:

I
—
|
=] .
=

ay

=

=

+

—_
—
*

th
LN

There are tabular compositions of LAPLACE transforming for further basic functions (see table

5.5, page 139).
5.3.2.1 Important calculation rules

e Addition Theorem
Lintt)+ falt) = Lifiit) i+ Lifaif);

This addition theorem can exemplarily prove another arithmetic rules, that according to
transformation rule LAPLACE transformation is calculable as integral of product of exponential

functions:

#

AN+ falf) ) = /r-‘”i_,ﬂ (£)+ falt))di
[l

#

= [le P filt) +e7™ fa(t))di

¢

= [ e (0di + [ R IRl

According to the definition of LAPLACE transformation:

LA+ fali)y = Ly fli)p 4 L fali) ]
General form of the addition theorem
L 1‘*3"LI..|I.I|;L'r.:I + o+ f}lrf..rr-':.'r.” = }ll JII'II “’J + e +“}"JJ;';I-'|;.!"I.:I

e Similarity theorem

Li{flat)} = %;.- (s_)

i

(5.58)

(5.39)

(5.60)
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e Theorem for damping

L{e™™f(t)} = Fip+a) (5.61)

e Shift theorem

nach rechts,
Lijit—a)l =™ (p) F

positiv in die Zukunft
a nach links,

Liflt+a)=e™|F(p)— [ePf(e)dt]| ¢

! negativ in die Vergangenheit

"

LAPLACE-Transformation
mit Fip)= L{fit)} ¢

ohne Verschicbung

(3.62)

e Differentiation

The deviation rules form the basic application of LAPLACE transformation to differential
equations and their solution.

Lif(Oy =pF(p)— f(0)
LA =p F(p) — f(0p — f1(0) (5.63)
AN =g () - ot ot

..... £y prY )

e Integration

1
L /_,I’[T_]r.f’r =!—I-'|:_p;| (5.64)
1

¢ Faltung theorem

The faltung operation plays a role in transmission system analysis (see section 12.3, page 355
and the following page)

!

L / filt —7mifalr)dr 3 =LA} - Lifaim)t = Filp) - Falp) (5.65)
3]
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Inverse transformation

For the inverse transformation we use the so called L'-Transformation.
LY Fp) =LY L =5 [.APLACE-Riicktransformierte  (3.66)

In principle the following are possible to be applied:

e Integral formula

il o

Fit) = 5= [ Lif(t)}edp (5.67)

rl—'_.l.:.

e Residue formula (expansion into partial fractions)

Fle) = Res{L{f ()} e} (5.68)

n=1"

pn 1s the singular places on the left, complex half planes, and (p - p,) yields the corresponding
pole places.

e Series development

|'|:I|”I = Z rl'”f.;” |:_I‘T|||rJ mit HHI:_I.'T,,F;I = E-'_ﬂ'"l -Ir.;,u |:_2I‘T||lrj i 5.649)
n=0

Because of this possibility the residue formula is always applicable and easy to handle for the
technical problems.
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5.3.2.2 Correspondence table

Since these integrals are relatively complicated and different functions are very often repeated,
arithmetic rules and correspondence tables are set up, from which the forward transformation
and their inverse transformations are easy for reading (see table 5.5).

Table 5.5: Correspondence table

98

Nr. | Fipl= Lt} fit) =L " F(p)!
I I
| 1] 0
1
L F 1
. 1 T
' le (n_1)!
T
4 - fats
p— )" 1
- 1 ot P
2 SN ——
Wp—allp—pJ) 50
[ l|'.l F (Ef) flr.-n'
(p—ajip— 3 H E
T
! 2+ 02 sin o
oy e0s 0 4 pein g _
8 T I-: sinfad + 7
¥+
! . .
N 7+ a2 Cos o
. pens  — s J T N
10 T coa(od + [7)
2 2
L T - -
2 2 — 2 sinhad
4 : T .
12 e cosh af
. P+ 20 9,
13 G RRTRTY 08 o
plpE + do®)
20 L
14 i sin” of
pip? + da?)
T 9.7
5 ﬁ sinh® o




Table 5.6: Correspondence table - continuation

NI, Fip) = LIf(t)] fit) =L F(p)]
2o . .
16 |I—IJ| sinad sinh of
' 4+ dn
_ (P + 20 .
|7 alp” +2a7) sin ot eosh o
pl 4+ dad
2op L
I8 —r i sin o
L=+ o)
ot ,
|9 R —T i eos o
L=+ =)=
] dop . )
20 — oo i sinl v
(p? —a®)?
'\l 1 1
) /P VTt
- 1 o
o PP '.,r.-":é
1 . .
23 —— Jo (ad) (BESSEL-Funktion der Ordnung 0)
"n.-":JI'I- + i¥*
1
24 N Iy (ot (modifizierte BESSEL-Funktion der Ordnung 0)
Vi a?
25 arctan — sin (af)
& i
. 2o 7
26 arctan — Thm(“.f] ceoE | T

llu_l_-' “2 + 42
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5.3.3 Solution of differential equations by means of LAPLACE transformation

5.3.3.1 solution method

This solution method consists of three sub steps:

e Application of the LAPLACE transformation to differential equation (or differential equation
system) with consideration of initial conditions

e Solution of the resulting algebraic equation (or equation system) with F (p) as unknown
quantity

e [nverse transformation of /' (p) and determination of the searched function, i.e. solution
function of the differential equation.

5.3.3.2 Examples

1. Find out solution of y(t)+y () =1 with the initial conditions y (0) =1 and ¥ (0) = 0:

e application of LAPLACE transformation:

Differential equation: e +y(t) =1
LAPLACE transformation: I {_‘,J'. (t) + y UJ} — LI
Addition Theorem: L {-.“.’ 'l”} + Ly = Ll
Transforming:

. 1
P (p)— f(0)p fUU+FUH=;

Initial conditions: PF(p)— p+ F(p) = !l

e Solution of the resulting algebraic equation with F (p):

. 1
(ﬁ+nfﬂﬂ=;+p
. 2|
[jr] +1) F(p) = i :_
)

1
Ay = —
Fip) 7

e Inverse transformation und determination of y(#) by means of correspondence table (see table
5.5, Page 139, row 2):
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1
y(t) = L {F(p)} =L {!—} —1
)

2. Solving by means of LAPLACE-transformation

¥ — 3y + 2y =2

The initial conditions are y (0) =2 and ¥ (0) = -1

e application of LAPLACE transformation:

Differential equation: y 3y +2y =2

LAPLACE transformation: I { i3+ ?H} — L{2)

Addition Theorem: L. {j'} i_.f_]} + L { 3{;} +L{2y(t)} = L{2e7"}

Transforming: P F (p) — £ 0)p— f(0)
9

Ipl (p) + 37 (0 + 28 (p) = —
pE (p) +3f(0) 4+ 2F (p) PN

@

Initial conditions: FE(p)—2p+1 S.eu’-'i_y.l+G+Ef-'ual=jﬁ
]

e Solving algebraic equation according to F(p) :

9
a gy -
- | MK =—42
(P —3p+2) Fip) F+1+ P
24 (2p - Ti{p+1)
(p? —3p+2)(p+1)

Fip) =

e [nverse transform and determination of y(%):

The inverse transform is achieved in this case via expansion into partial fractions. The zero
positions of the denominator polynomial are searched and expressed as sum product. In the case

under consideration the denominator is equal to zero, if:

prl=0—p = 1

=]
[+
o
+
]
I
[l
b=
Il
AT
|;-| |
La
e
--:-_-'_"__
AT
-
La
\-"I—I-"Fr
[%e]

The equation for F(p) can be written:
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27— Gp &

(p+1)(p—1)(p—2)

Fip)=

The expansion into partial fractions:

20 —Ep 5 A B e
- . . = + +
p+1{p—-1)(p-2) p+1 p-1 p-12

A common denominator (p + 1) (p - 1) (p - 2) should be used to determine the factors 4, B and C:

op® —Ep -5 Al -Np -2+ Bp+1)p -2+ Clp+1)(p 1)
P+ Dip-2) P+ 12

This equation is fulfilled only when apart from the denominators the numerators are also same,

1.e.:

Wt Ep-E=Ap-Lp-D+Bp+Lp - +C(p+1(p-1)
Wt Gp- B=(A+B+O) P+ (34 Bip+(24 2B )

It must be an identity and valid for all p values. That means the coefficients power series of p are
identical in each case. And we get follows:

s 2=A+B+C
! F=-34-B
" =24 28 ¢

This LGS can be solved by the known methods, so the solution is:

1 T
A==, =4 C=—
3 3
Then F(p) can be written in the following way:
1 1 1 ¥ 1
Flp)==- 1. .
R i H s B R
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The inverse transform is to be read from the correspondence table (see table 5.5, page 139, line 4)

It is:
n—1
L 1 — = ! _—— fiirm = 1 wilt
p—a) fn—1)! N
IIr_—l { 1 } _ E__rll'
(p—m)
firay = —l.as =1 ay =2 gilt
1 7
LY EF(p)} =yit) = 7 . B 3 gl
1 7.
R R L
Remark:

The same procedure can also be used for the solution of linear DGL systems with constant
coefficients.

5.3.3.3 Example of DGL system

Find out the solution of system:

with initial condition {0} =0. 2 (0) = 1. y (0) = 0, y(0) = 0.
e application of LAPLACE transformation:

With F (p)=L { x (t)} and G(p) =L { y (t)} the application of LAPLACE transformation to the
system yields (under consideration of the initial conditions)

FE(p)— 1= —pG(p)
PG (p) = pF(p)

e Solving linear equation according to F(p), G(p):
According to the known rules or simple transformation, e.g. from the 2nd. equation:

L. ]' 1 ’
Gp) = ;f' (Pl

Einsetzen in obere Gleichung - PP (p) 1= F(p)
1
Aufldsen nach Fip) : Fipl = P
1 1
EJr. | = —_|II'I |
P b (p PP+ D)
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e Inverse transform and determination of x (t), y (t) by means of correspondence table (see table
5.5, page 139, line 3 and 7)

- g - 1 .
x(t) =L YF(p)} =L '{!Jg+1}=.ﬁmr

1 1 P
=L o =L —— Lt C : =1 cosi
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5.3.3.4 Tasks for the application of LAPLACE transformation

1. Solve the following differential equation by means of LAPLACE transformation

a) ylrj+y=70

yio)y=1
b) y' (1) -3y () +2y()=4  mit
y 0y =10
) " (f) + 16y (1) = 321 mit y(0)=3
y" i) y (i) = 32 7,
: : ) =23
(i) (it () — =2t y (0
d) " () + 4y (6] + dy (1) = Ge mit v (0) = 8
yil) =
e "+ (1) =1+1 mit ' (0) =

o) =
2. Solve the following equation system by means of LAPLACE transformation

ity +xity =10 0 — 0
a) mit z(0)=0

. v _ yi0y=10
it +yiti =1

e (i) —y(t) —y () =4(1—e7"
b) mit

20 (1) + y () = 2(1 + 3~}

r(0) =0
y(0)=0

3. Differential equation applies to the hydraulic scheme (see figure 5.9) with associated block
diagram:

. R 1 5:9
hpi= R - ( — + IR

(t

It is assumed a linearized relationship and a homogeneous, isotropic aquifer with the following

parameters k=5-1072; ng = 0, 2; Zpmuna = 20m; I = 50m

Compute the change of the water level by means of LAPLACE transformation, if the river
surface changes as a first approximation as follows:

c) Erratic (hm = hg - I(?)) and
d) sinusoidal (g = hpm sin(w- t) + hgp, with o = 2zl and I" = 7 days)

4. The following differential equation applies to the concentration C in sorption of pollutants at
the soil matrix:

7,C+C=K
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Figure 5.9: Schematic representation of the groundwater level

T, is time constant and K is a constant. 7; = 1d”!, K = 100. The concentration should C(0)=0at
time ¢ = 0.

a) Solve the differential equation by means of LAPLACE transformation and compute the
concentration change for the time ¢ = /d
b) Outline the time process of concentration change.

5. The padding to the remainder holes of the former brown coal open pit caused by the rise of
groundwater under natural conditions will last too long time. Therefore external supply is
introduced to the filling procedure (h—o= 0) for acceleration. (see figure 5.10) The corresponding
differential equation:

dh .

-’15 = V zustr

Transfer this differential equation by means of LAPLACE transformation in the image plane and
solve this equation.

v

R

nit)

figure 5.10: filling procedure of a remainder hole
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6. Solve the following differential equation by means of LAPLACE transformation

dh .
—+k-h= t Rien =10
o g mi =0

g=0.015m s Tund k =0,01s!
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5.4 Methods for Numerical Integration

5.4.1 Integration

The numerical integration always yields the result of a certain integral between an upper and a
lower limit. In a variable is inserted at the upper limit of the integral, the certain integral changes
into a function, which is determined by the lower limit and the variable at upper border. The
integral of a function, which can be also displayed as the area between the upper and lower limit
and the abscissa, can be approximated by a simplified area computation. The numerical
integration procedures differ with each other in the method of area computation. In most
procedures it is assumed that total area between the upper and lower limit is divided into
individual subarea and the summation of these subareas yields the integral. The accuracy strongly
depends on the method of subarea creation and the quantization width of the abscissa. The
approximation by summation of subareas will be worst with rectangle method and will be best
with Predictor Corrector procedure or with higher order RUNGE KUTTA procedure with the
same quantization increment. The advantage of the trivial procedures exists in the simple, fast
and stable computation of the subareas also in complicated, e.g. discontinuous function.
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5.4.1.1 Rectangle rule

The rectangle rule as the simplest method assumes the creation of rectangles as subarea (see
figure 5.11). The area of the rectangles results from the multiplication of the function value (y,)
on the left supporting place (x,) with the quantization increment Ax = | x,, - x,+;|. These
rectangles yield too small values with convex function, too large values with concave function. A
substantial advantage of the rectangle method is no equidistant quantization necessary for the
abscissa:

b

m

Frings = [ ylr)dr =~ Z (|Tn — Tn-1]) Yn (fiir mm Teilintervalle) (5.70)

u n=l0

We can use function value on the right side instead of on the left.

S

\Xy¥y AX1Yy AXSYs

Figure 5.11: creation from rectangles to the numerical integration

In this case the rectangles yield too large values with convex function, and too small with
concave function. The computation of the areas:

F."- chts — / iyl :ur.‘"."' Z ( ?'J.'.'-H .' ) Un+1 (5.71)
The correct value of the integral must lie between Fjiis and Fecs.
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Examples for application of rectangle rule:

1. We calculate the following integral according to the table by using rectangle rule (left and
right), then compare the results with the analytical value

.

fu l_rf:r =1n2 =10.693
L

T

- 1,000 | 0,833 | 0.714 | 0.625 | 0.556 | 0,500

,.._'s

The increment is regarded as constant, h = Ax = 0.2.

Firivie = 0.2(1,000 4 0,833 + 0,714 4+ 0,625 4+ 0.556) = 0, 746
Froehie = 0.2(0.8333 4+ 0. 714 + 0.625 4+ 0.556 + 0,500) = 0. 646

f(x) = I/x is a concave function, then Fixs > Fanar > Frecms. The average value of the two results
18:

0,746 + 0,646
sz’rrei — : 5 : = 0,696

)

Fonar = 0,603

This value approaches to the actual analytical value.
Remark:
The increment plays an important role for exact determination of the integral. The smaller it is,

the more approaches the numerical value to the analytical, i.e. the numerical value converges.
This is not only valid for rectangle rule, but for all numerical methods.
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2. We calculate the integral with an increment h = 0.1 in table and compare the results with
example 1.

X 1 Fiinks | Freches
X

1.0 1.000 | 1,000

1.1 0,909 [ 0,900 | 0,909
1.2 0.333 ] 0.833 | 0.833
1.3 0.769 |1 0.769 | 0.769
1.4 0. 7141 0,714 | 0,714
1.5 0.667 | 0.667 | 0,667
1.6 0,625 | 0.625 0,625
1.7 0,588 | 0,588 [ 0,588
1.8 0,556 | 0.556 | 0,556
1.9 0.526 | 0.526 | 0.526
2.0 0,500 0. 500

Teilsumme | 7. 187 | 6. 669

F"‘inﬁcs =0,1- IT lt\‘Tl =0.719Y
F?.ec,ms =0.1-16.669) = 0,667
Foitter = 0,694

It is clear to notice that all the three values, which are calculated with increment 0.1, lie nearer to
the analytical value F,,,; = 0.693, than in example 1 with an increment of 0.2.
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5.4.1.2 Trapezoidal rule

The approximation by polynomials plays a role in a multitude of procedures. The basic idea is
that, if p (x) is an approximation for y (x), [ p(x) dx = [ y(x) dx.

Different situations are dependent on the selected approximation.
With the trapezoidal rule the function between the supporting places X, and X+ is linear

interpolated (see figure 5.12). Thus the wanted area is divided into trapezoid areas, which are
calculated geometrically:

o a+ h T I - -
[=h oder [ = |z, — 1,1 ————— (5.72)
2 17
By summation of the subareas:
' = . Un + Yn+1 s iqs
F = / y(z)de =Y (|Tn — Tns]) ( - ) (fiir m Teilintervalle)
(5.73)
v A
Ax,
VY,
¥s
¥a
Al
}

R

figure 5.12: Numerical integration by means of trapezoidal rule
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In the case of equidistant division the computation of Ax can be simplified:

o m—1

o m AJ‘
Yy (T :”"rf 2 Z FI_' = Ar- Z ( Un+1 :I + —) ( Yo + ,'-;‘lm.-' (5-_1’}

F=

In the trapezoidal rule we have another simple possibility irregular increment, i.e. not equidistant
quantization.

5.4.1.3 Simpson’s Rule

The Simpson’s rule is:

Il h |
F = [f (x)dr = = (Yo + dyy + 2y2 + dys + .. + 2yop—2 + 42 —1 + Yoi) (5.75)

It is likewise a compound formula as parabolic arcs are used instead of y (x).
Pay attention:

- the supporting places must be equidistant (constant increment h).
- the number of supporting places x, must be odd (n =0....2k):

5.4.1.4 Newton’s Formula

In this method the Newton's interpolation function (also see section 3.1.3, page 70) will be
integrated with following results

Gleichung Stiitzstellenanz. | Interpolationsart

I f \ ‘f‘r \ »
|, plx)de =< (yo+ 1) 2 linear

z h | . ,
[.op(r)dr =< (yo+ 4 + 2) 3 quadratisch

3h

[, P(r)dr = —(yo+ 3yr + 3y + y3) 4 kubisch
S I0 ~
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5.4.1.5 examples for application of numerical integration

We use trapezoidal rule and Simpson’s rule in order to determine the integral [,”* sin x - dx from
the following table. And compare the results with the analytical value /,,,; = 1.

D

12

1 27 AT

dm
12

2| =i

v — —

I ] ‘) ‘)

sin x () .20 1 0500 0. 707 | 0,866 0,966 1,000

Trapezoidal rule

I, = ﬁ{i}+ 0.250 +0.54+ 0. 707 4+ 0.866 + 0,966 +0.5) = 0.994

Simpson’s rule

I, = T (0+4-0,2504+2-0,5+4-0,707+2-0,866+4-0,966 + 1) = 1,000

3-12

Obviously the adjustment of quadratic polynomials yields one up to three decimal places exact
result.

Newton’s interpolation function

a) linear

( \

(0+0,259) +
(0, 259 4 0,500) +

_ (0,500 4 0, 707) +

MTD (0,707 4 0,866) +
(0,866 4 0, 066) +
\ (0,966 +1,000) )
= 0,994
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b) quadratic

(044 +0,25940,.500) 4+

Ing = 55| (0,500 4 440,707 +0.866) +

(0.366 4+ 4+ 0,966+ 1.000)
— 1.00003
¢) cubic

9. - (04+3+0.250 43 +0.500 4+ 0.707) +
!,\-.'.n':

(0,707 + 3+ 0,866 4+ 3+ 0,966+ 1.000)

= 1. 00006

Apparently the adjustment of quadratic polynomials yields one up to three decimal places exact
result.

Remark:

The accuracy of numerical methods must be always relating to the significant number of
computed and represented places. If we solve e.g. the same problem with seven digitals of
significant number, then the Simpson’s rule yields /= 1.000003, which does not match the
analytical value of /,,, = 1.
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5.4.1.6 Tasks of application to numerical integration

]
T L L}

]

1. Compute the integral L+ by using trapezoidal rule with increment 4 = 0.1

2. Calculate the following integrals. Use at least two numerical methods and two different

2 |
bl —
J1 L

3. Calculate the integral [/ x - dx by means of three Newton’s formulae and compare the

results.
/-ll:l l
J1ooF -

4. Calculate the integral by approximation.
Choose h=1.

Apply Simpson’s rule for the interval [1, 9] and trapezoidal rule for the interval [9, 10].

5. A measurement series of A/,0; specific heat C are listed in the table as a function of the
temperature 7.

A 1000

- - -
()= gl

Determine the amount of heat = Jf-2m , which must be supplied to a gram 4/,0;, in
order to warm it up from -200°C to 1000°C .

The integration is to be accomplished numerically according to

a) trapezoidal rule
b) Simpson’s rule with an increment h = 200°C.
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T [°C) | ¢ [¢/(g- K)]

—260 U

—200 0.04

— 100 0,012

U 0,13

100 0,22

200 0,24

300 0,25

400 0,26

HUD 0,27

=00 0,275

1000 (), 28

6. In a pumping test the groundwater level were measured (see figure 5.13). Calculate the water
deficit (volume) of the sinking funnel, if the aquifer is of following characteristic values.
by = 16m, M = 10m, k = 0.00Im- s, Sy = 0.0001, ny = 0.20

Apply methods of numerical integration.
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Figure 5.13: groundwater level as a function of the radius




5.4.2 Solution of Differential equations

While the solutions of definite integrals are in the foreground in the former sections, the Euler’s
method, RUNGE KUTTA method and Predictor Corrector method are showing how to solve
ordinary differential equations. In contrast to analytical methods numerical method always
assumes boundary conditions, i.e. the initial- and boundary conditions. Particularly in Ist. order
differential equation the initial values are supposed, which leads to the concept of initial value
task.

In the 1st. order differential equation

with the initial condition beginning point x = a and the function value yx-,) =y, yield the
integration in range x = a to x = b:

‘f.'lf’.r' . ' . . & -
r—r',f_.' = J".-"'-_'Ii’lr"-" (>.77)
ar

[F) a J L.y Le

Thus we obtain the wanted function value y, in the place x = b from the function value at the
beginning point plus the definite integral of function y (see figure 5.14). The problem now is the
function y is unknown. For this reason approximation solutions must be again used for the
integral as described in the former section. The following methods differ from the application of
approximation methods.
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v(b)=? fx.y)=y'

v(a) — /

v

a b

Figure 5.14: Computation of the function value y(b) from the initial value y(a)

These methods can be improved if this approximation is only applied in sections and then
iteratively expanded to the whole integration interval (see figure 5.15).

-\':A
v(b)=? fix.y)=y'
e e
v(X, )
vix,) /’ /
X
d '\ '\.:‘. 1 b ]
Ax, i

Figure 5.15: iterative solution of the differential equation
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Unt1 = Un + / flz,y)dz (5.79)

Up =~ Um -+ / f (. 1 'Ir.';_.' [:-‘:"‘“]'

We recognize that the writing ways of integration limits could be synonymous:

lower limit: x = a or x = x,,

upper limit: x = b or x = x,+;

The subscript is usually used for the intermediate intervals and the advantage is that it can be
easily converted into programming language.

5.4.2.1 EULER method

The Euler method is the simplest method and actually the integral is approximately determined
by means of the rectangle formula. The greater the distance between a and b, i.e. the increment h
or Ax, the worse the approximation is.

,u",‘ — ,;J Q
A.l’ n — A n+1 'jl?.'
Thus the solution with following shape:

Up = Yo + / flr.y)de = y, + fla. y,) - (b—a) (5.81)

Yo+ fla, y,) - h (53.82)

..‘ I
Untl = Yn + / fle y)dr = vy + flon, un) - (Tpe1 — T0) (5.83)
_"ra'lr_- + I ' Yn!* -A.-'“r_ [5 \_l’}

In this method it is possible to work with different increments, i.e. with a not equidistant division.
It is also suitable for an automatic increment control, because the error, which results from the
approximation, is dependent on the slope of the function y and on the increment (b - a) = Ax.
Inserting it into equation above, we get:
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dy

de| _,

b
Yp = Ua +\[\fl{;2“. y)de = 1y, + ‘ -(b—a) (5.85)
a

Example for application of the Euler’s method (also see figure 5.16):
An approximation solution for the differential equation y’ = xyl/ 7 with y (1) =1 is looked for.

The EULER formula can be also written in the form:

Ynt1 = Un +h -y,

- - 1/3
Ungl = Un + (Tpg1 — ) - Tyt - Yy,

The stop error O(%°), which is produced in the interval x, to x,+;, is rather large in Euler method
(i.e. proportional to /7), so that for a high accuracy very small increments / are necessary. E.g.
for h=0.01:

y1 A 1+ (0,01)1 = 1,0100
ys == 1,0100 + (0,01) (1,01) (1,0033) =~ 1,0201
ys = 1,0201 + (0,01) (1,02) (1,0067) =~ 1,0304

The stop error in each interval is about 0.00007. The fourth decimal place should be considered
with caution. If we want a higher accuracy, a smaller increment / is necessary. The analytical
values are

”1 f— IH]'"’;_
ys = 1, 02027
r'J'_-_: e I . ”“ erl

E.g. the fourth decimal place was actually inaccurate.
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Figure 5.16: result development with the Euler method
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5.4.2.2 RUNGE KUTTA method

The RUNGE KUTTA method assumes the same approach, the approximation of the integral by
area calculation, as Euler method. The difference lies in the degree of approximation function for
area calculation, which is linear in Euler method. Here with the RUNGE KUTTA method a
higher order polynomial is used according to TAYLOR series expansion.

j,2 h3
iy = Ya + U, - n+ Yo " Fr +U, — t+U

2 3 a ’ {!

+ ... (5.86)

with: 7= [b—

Depending upon degrees of the considered derivative in the TAYLOR series we distinguish
RUNGE KUTTA method in different n-th orders.

In the following subscript way of writing is used, as the entire integration interval (a to b) is
mostly decomposed into subintervals and additionally this way will be converted in programming
technique in practice.

Un+1 = Un + 'I"n (5'8?}

The RUNGE KUTTA methods differ in the way of &, determination. In this classification Euler
method can be arranged:

Ap = |Tps1 — T

The simplest procedure, which differs from Euler method in respect of accuracy, is 2nd order
RUNGE KUTTA method:

Un+1 = i/n + ,';._l 1<SS|
with: fy = Ay - f () (5.89)
: L [, I, o
ko = Axyp - flon+ Shoyn + sk (5.90)
.A 'y = é..‘ n4l — .".I.|

The error this method grows proportionally with h power 3 (0(h)) and is better one power than

Euler method (0(h?)).
The 4th order RUNGE KUTTA method is frequently used, which is a good compromise between
accuracy and numerical expenditure. For the general form:

Up = UYa + h (5.91)
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We write:

|
B= =k +2ky+ 2k + ky) (5.92)

i, ) ."‘.f I-'-J
ks =h - f (’f + 5 Ya + —)—

by =h-fla+h, yo + k)
Wlth: ,"1.* = |'l_? — {1

The error of this procedure is 5th.order (0(h’)). Here also for improvement of the accuracy we
can divide the total interval of a to b into subintervals x, with y, and iteratively solve y;,. Since we
cannot change the increment within the subintervals, it is possible to control increment as a
function of gradients:

I
iJo = U, -+ l_ ': !r-'l‘l -+ '._’?Fu'gll -+ '._'JT-'-;_l -+ J"'l.l | (5.':.’3}

| ) R
Unt+1 = Un + '_ { "{i + '-j;-'i’.a.- + 2h3n + Kan)

I
iy = .f'r.‘-—_l_f-- + r Ii ‘Ir'.l,l"—.A_l'-- + .“?‘Irl.;_lll"—A_"“ + ‘J‘{'IHIEJ—__\._"-\ + J'.-I_u:J—__\_.'-\ |
When n =1, it yields:
A.f'h — fr+1 — Ly

Fyn=Ax,- flo,. yn) (5.94)
A.n", ff 1

r‘J n—A‘l; f 'rr+ 9 "'|+_))
A, /

et (342
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Example for application of the RUNGE-KUTTA method:

An approximation solution for the differential equation y’ = xy”” with y (1) = 1 is looked for.

With x0 =1 und 4 = 0.1 we get 4™ order according to above RUNGE-KUTTA formula (see

equation 5.94):

Fy=0.1-f(1.1)=0.1

o = ). ] - _.:. | 1.05:1.05) =0, 10672

fg = 0,1 f(1,1; 1, 105336) = 0, 10684
By=0.1-f(1,1:1,10684) = 0, 11378

We calculate:

|
Jyr= 14 —=(0.140.21344 4+ 0. 21368 + 0. 11378) = 1. 10682

8]
The analytical value is y = 1.10326. The correspondent value with EULER method is y =
1.10000, i.e. the RUNGE KUTTA method yields better result. However the increment must be

likewise smaller selected if a higher accuracy is demanded.

5.4.2.3 Predictor-Corrector method

The Predictor Corrector method is a two-step procedure. In the first step an auxiliary value ', is
computed and then y,. Thus an increased numerical expenditure develops, but the accuracy rises
substantially compared to one-step method. Besides RUNGE KUTTA method Predictor
Corrector method represents the most substantial integration procedure. Predictor step in the
simplest form, like in Euler method, a rectangle formula for the computation of the integral is
used:

I
o

Uy = Ya + / fir.y)dr =y, + fla. y,) - (b—a) (5.95)

We can also write:

7
a.r
r=

A .
4 ) ".‘r'r \ 4 1 \ - -
Yy = Yy + / flr.y)dr = y, + ‘ (b—a)=1y, + Yy b= a) (3>.90)

The difference is that in Predi*ctor step wanted value y;, will not be computed, but as the first
approximation of this value y ; is regarded. As the second step, Corrector step, the integral will
be calculated by the trapezoid formula, while the value y , is used as upper value in the trapezoid
formula:

i1
(h—a)

Up = UYg + A fla. Yo + .IIJ.I_ b "“r.-'i- )) (5.97)

‘)
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Similar to the Predictor step here the basis of output differential equation can be formulated here:

{ .’J o ’ ‘_.' _ )
UYp = g + . : (,a + U, ) (5.98)

Also this procedure can be expanded to n subintervals of the range a to b and computed
iteratively. Then the Predictor- and the Corrector- step for the n+1 ™ interval:

Unat = Un + AT (f(Tn.0n)) = e + A7 -y,
;\T .y \ P & \ .J_\I" I &l -
Un+1 = Yn + S (I (Tnyln) + f'ﬁrn+1- yn+1ﬂ} = Un + = (yn + yn-H) (5.99)

with: Az = |2y — Ty

A series of procedures were developed. The above procedure possesses the disadvantage that
there is a relative large residue, i.e. a residual value error, which grows proportionally with Ax”
(O(Ax?)). The advantage lies in a relatively simple increment control, only the value f (Xp+1; Y*ni1
) or the derivative of y,+; is to be computed. A very widespread Predictor Corrector method is the
Adam BASHFORTH MOULTON scheme. This method is very stable. In contrast to the simple
Predictor Corrector method several supporting places of integration steps are needed here. Thus
the approximation area will not be made a rectangle any longer, but polyline is used for
boundary. The frequently used 3rd. order ADAM BASHFORTH:

For Predictor step:

.|'J'Jr,.+] — .Jrlr‘|\' + T |_ v} |r |_-|I n—2s '.Jli,' -2 .' . ]“ .'I ( A n—1- _"rl"i_'—'l .I + -—}"' " ': ! 1] '.flr,- _I _| {? . ]-”[-”
Ar 7/, o
= Yn + ]—_, (‘-'I_".l'll, 2 l"-'l;'r: 1 + _,- "fl'lr: )
Then for Corrector step:
Un41 = Un + T (_ f(Thet1.Un-1) + Sflan.im) +5f(Tn41. Ynt1) ) (5.101)
.A.J" . o T
= Yn+ 1 ( Y1 T Y, + U4 )

This method yields a residue, grows proportionally with 4th power of Ax (~Ax*), i.e. O(Ax"). The
disadvantage is that the intervals n-1 and n-2 must be calculated again if changing increment for
interval n. So it is necessary to calculate the intervals n, n-1 and n-2 with the same increment Ax.
This can lead to an increased numerical expenditure when strong gradient oscillation.
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Example for application of the Predictor-Corrector method:
An approximation solution for the differential equation y’ = xy"” with y (1) = 1 is looked for. The

accuracy € < 10°

For each forward step the simple Euler formula is used as a Predictor. It presupposes a first
estimation of y,+;. Here xo = 1 and h=0.05

il 1.05 ) A ] + (), O -1 =1.05
The differential equation:

1
y' (1,05) =1,05-1,053 = 1,0661

The Euler formula will be modified for Corrector (according to trapezoidal rule):

1 , ,
Ung1 = Yn + j"l" (¥, + Ui )

It yields:

] ( ]‘|i.‘—|:| = ] —|—|!H__}bp| | s ]ﬂlhl;]:- f— l.“.»p“;.hp

With this new value of the differential equation y’ (1.05) will be corrected to 1.0678; afterwards
the Corrector is used again and yields the result:

y(1.05) = 140,025(1 4+ 1.0678) = 1.0517

Further calculations confirm these four decimal places, so that the desired accuracy is reached. It
is noticed that the same accuracy can be achieved with increment h = 0.01 in simple Euler
formula.

Generally we iterate until it converges if it exists. Afterwards we can continue with the next
interval in order to start again with a simple Predictor formula.
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5.4.2.4 Tasks for the numeric solution of differential equation

1. Apply the simple Euler’s method to the differential equation, until x = 1 with intervals, e.g. 0.5
0.2 and 0.1

: : with:
Do the results converge the accurate solution value y (1) — 1 ¢

2. Apply the RUNGE-KUTTA method 4™ order and a Predictor Corrector method on the
problem specified above and compare the results.

3. The following differential equation applies to the concentration C [mg] in sorption of
pollutants at the soil matrix:

T.C+C=K

T; is time constant and K is a constant. 7; = ld'l, K =100. The concentration should C(0) =0 at
time ¢ = 0.

a) Solve the differential equation by means of Euler’s method (Rectangle rule with 2 =0, 1d) and
compute the concentration change for the time ¢t = /d

b) Outline the time process of concentration change.

4. The padding to the remainder holes of the former brown coal open pit caused by the rise of
groundwater under natural conditions will last too long time. Therefore external supply is
introduced to the filling procedure (h=o= 0) for acceleration. (see figure 5.17)

Set up the differential equation for the filling up procedure 4(z), without consideration of the

aquifer and contingent groundwater formation rate. Describe the solution by means of numerical
methods.

— ]

Ly

Figure 5.17: filling procedure of a remainder hole
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5. Solve the following differential equation by means of numerical methods

%4_,1;.}1:5; with  fiup =10

g=0.015m s Tund k =0,01s!
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Part 11

Partial differential equations of
underground processes
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Chapter 6

6 Overview
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There are no generally valid solutions for partial differential equations (PDE), which are
characterised by consideration of functional dependency on more arguments.

Because of this reason the following selected PDE, which plays an important role in
hydrogeology, will be discussed. The groundwater flow equation and convection dispersion
equation predominantly stand in the foreground.

Different mathematical methods, such as analytical or numerical solution will be introduced
according to the complexity of the equation, the number of independent parameters and the
consideration of inhomogeneity, anisotropy, as well as nonlinearity.

The physical processes are divided into so called quantity flow- and material transportation. The
application of energy- and mass conservation law lead to following coupled partial differential
equation, for material process only transportation is displayed:

e The dynamic basic equation of flow processes:
i =& prad h (6.1}

e The balance equation of flow processes:

. sh
div @ = S— (i (B2
af

¢ The boundary condition of flow processes:

initial- and boundary condition 1. 2. and 3. type

This equation system must be set up in the modelling of material and energy transportation for
each substance contained in water or in immiscible material processes for each group of materials
and for each phase in the multi-phase system (liquid (water, oils), solid (stone matrix), gaseous
(air, gases)). Balance equations must be defined for each subsystem, which consist of the
following parts:

¢ The dynamic basic equation for transportation processes:

Transport durch Dispersion: fi =1 grad P (6.3)
Transport durch Konvektion: fJo = TF (6.4)
¢ The balance equation for transportation processes:
L o .
div § = (o + Mﬁ_.f T (630
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e The boundary condition for transportation processes:
initial- and boundary condition 1. 2. and 3. type

The connection of the equations within each subsystem is given by the exchange terms. In the
subsystems it is made via internal reaction terms. The following balance equation applies to a
balance area, which is also designated as representative elementary volume (REV):

Transport = internal reaction + storage + exchange + external sources

The chemical reaction equations (material change processes) and biological growth processes can
be added to these basic equations. The mathematical model thereby consists of a system of
ordinary or partial differential equations and algebraic equations, whose coefficients are usually a
function of place, time and potential. Thus the system is nonlinear and local- and time variant.
The processes in the soil and groundwater range are characterized by a high complexity, a bad
condition, a large range of time constants and a very uncertainty of initial parameters.

The basic equations can be summarized in each case for the flow and the material process, and
yield two nonlinear partial differential equations with second order:

e The conduction equation for the flow process (parabolic PDE):
. _ ah
div (fpp ygrad b)) = .H‘[]Tlr i (6.0

e The convection diffusion equation for the transportation process (hyperbolic PDE):

v 3

] L s al
cliv (H_E_{]':lil P -!'F") =My +0 ']F w, (6.7)

7 o . FIYCA T
Depending upon the relationship of dispersion portion (” grac / :) to convection (E ! ) in total
transportation process the property of these PDE varies among predominantly parabolic,

hyperbolic or first order PDE. If convection approaches to zero ( v , the PDE is parabolic

Dgrad P — 0
type, and we get first order PDE with ( s ) .

The connection of the quantity and of the material flow is characterised by the critical values of
the water property (temperature T, material concentration C, kinematical viscosity v and density

p) and by the critical values of the underground flow processes (filter velocity “l, change of
memory contents C-dp/ot as well as internal flow source and -sink w).

This complex form of the system description is often approximated by simplified forms, in which
one or more processes are neglected or the dependence on one or other arguments is ignored. A
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fundamental simplification results from the decoupled approach of flow and transportation
processes and chemical kinetics. Substantial simplification can be also achieved by reduction of
the multidimensional area to a local coordinate or time variable.

This procedure will be demonstrated exemplary by often used and significant engineering
examples in the following chapters.
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6.1 One dimensional flow equation

Under the prerequisite of simplified flow conditions, the view in the cylindrical coordinate space
as well as the integration over the height of z by a transformation, e.g. the so called GIRINSKIJ
potential ¢, we get the following equations for the rotational symmetric flow field:

steady flow: ,;z? + Lae + 2 g (6.8)
drs  rdr Ok
"leakier" flow (leaky aquifer): z 1dZz - Z — 1 (6.9
" Tar B e
non steady flow: #z 19z  Z _ uﬁ (6.10)
i e B2 it

These equations and other analytic solutions (see to section 8.1 THEIS well equation, page 196)
were found by THEIS. The importance of these equations is that they supply useful results with a
local character (approx. 200 m expansion, e.g. foundation pit) for many engineering
investigations, which fulfils the hydraulic geological conditions. In addition they form the basic
procedures for the indirect parameter investigation, e.g. for the so called pumping test evaluations
(see section 14.1 pumping test evaluation, page 380).

Similar conditions occur at parallel ditch flow, and the PDE has the following form:

parallel ditch incident flow: ”;_{ :r—r - fr? (6.11)
o= v [y

The one dimensional processes are also meaningful for the investigation of transportation
procedures in stream tube connected with pollution.
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6.2 Horizontal plane groundwater flow equation

The horizontal plane groundwater flow equation represents a fundamental principle for the flow
processes apart from the well equation (see equations 6.8 to 6.10). A simplified aquifer
characterized by means of the DUPUIT assumption (see to section 7.1 DUPUIT assumption and
balance equation, page 184), and an integral transform for the description of the profile
permeability, the transmissibility 7:

o \ Ir'i":” ~
div (T, pgrad 2p) = S—— — wy i6.12)

This equation can be built separately for each groundwater story and the coupling between the
aquifer can be achieved by hydraulic windows. This equation forms the basics of most hydraulic
geological region models, also for the mining districts of the Central Germany and the Lusatia
area.
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6.3 One dimensional material transfer

For the material transfer the modeling of the one dimensional processes also plays important role
since on the one hand it is partly analytically solvable and on the other hand it is basics for the
model measuring (e.g. the so called column test). Also it is backwards indirect Parameter
estimation (e.g. tracer test). As example equations can be derived:

e Heat transport due to precipitation in the unsaturated soil zone:

i i P . e

Wasser ( Index w): —(hy—(— 4+ 2)) = — — i}y t. 13
sser(ndex w): - o Vg G T3 == — -13)

i il iy il
Luft (Index £ —(k—(—+2)) = — —w .14
(Index L) f.sz I'H?I:' " + z)) i L (0. 14)

¢ One dimensional Transport:

e acy
Konvektion: f— = —g— o135
onvekc o 'rf'}.l' §] I
Dispersi ro e (6.16)
ispersion; —s = — 16
PEISION: 5o = 9%

. . . N S SR
Dispersion und Konvektion: MDY —  g— = sf— 4+ A0 — 1w o.17
Spersic d Konvektic 1 52 'r._f'}_y i + (6. 17)

The three cases are differentiated, with whether A or ® are equal or unequal to zero.
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6.4 Multiphase flow

Simultaneous effects of several phases in the porous medium, soil or aquifer are considered in the
modeling of the multiphase flow. In the literature the relations of three-phase system are
illustrated. According to the equation 6.7 on page 177 with neglecting the dispersion portion:

2 Pp,Sy)
div (o 0 a) + % = Pa (6.18)

In this case a represents a general fluid phase. Within the three-phase system water (o = o),
NAPL (n) and air (a) will be considered. NAPL is the abbreviation for petroleum products (Non
Aqueous phase liquid - NAPL).

DARCY law can be extended to the multiphase system by neglecting of the theorem of
momentum between the fluid phases:

DRLALL Y PR (6.19)

[t

The reciprocal effects between the individual phases will be described by additional equations,
secondary conditions:

sw + s, + s, = 1 (the pore area is filled out by the sum of the three phases)
Pn* Pw = Pcuw (Sw,Sa) (Capillary pressure saturation relationship)

Pa Pn = PCan(Sw:Sa)
kra = kra(Sy,S,) (relative permeability saturation relationship)

In many practical applications the nonlinear equation system is limited by the assumption that air
is infinitely mobile in each case a movement phase for the water phase and for the NAPL phase.

Analytical solution from BUCKLEY and LEVERETT will be used for one dimensional
displacement procedure of oil through water, which describes the transient procedures.
To describe the relative permeability saturation curve the COREY function can be set:

by = S*1 (6,20

IE"J'J.I = Ll S I'E ’ Ll 'H“j.j (6.21)

I: 'H‘Il" "t‘;-'l'.l' II

mit : 5% = - D Sy = S = 0.2
|:. 1 "‘-_‘;”U. .‘"‘1]”- '| 2 nr

For two-dimensional case and the investigation of three-phase system air/NAPL/water the
following beginnings are examined:
For the capillary pressure saturation relationship PARKER formula:
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1 L Mo L1

FPrw =1 by = S, L) e (6.22)
[y e !J.‘ ! T i1 e - .._J.”hnln. [E |I‘]_ ””II .I .-I
1 S+ S, - S, s 1
Fouw = Pa — Pn = ()T " — 1)™s (6.23)
e I (i © —Jan 1 Sy !
_ S — Suw Taw i,
|-|-||1. . |L;|'. — i (i = 1T . j:.h.l — [E4H
1 IHh’ IJ:I-.‘ll'l' IJ.'I-I'IZI.'

For the relative permeability saturation relationship for the Non Aqueous phase liquid(NAPL)
a model by STONE will be used :

Spll — S e - Kran
(1 — Sw)iSp+ Sw — Suw)

(624

'i'-.l':l.l =
Here k.., and k,,, stand for the relative permeability saturation relationship in NAPL phase of a
two-phase system (water/NAPL) and (air/NAPL). The parameters S, and k., were occupied

with the values "0" and "1" in the original form of the STONE model. For the water phase the
relationship PARKER formula is used:

2

) |'|I|-;' 1]
— i Ry
o = 1/ 50 | 1 1§ —" 6.25
T Y, ( ( r':_l’-'n:.' 1}) ) [0 I

mit: 5. = -
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Chapter 7

7 Horizontal plane
Groundwater flow equation
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7.1 DUPUIT assumption and balance equation

The description of the rotationally symmetric groundwater flow field is based on horizontal
planes flow processes, in which the vertical flow vector is neglected. The transfer of the three-
dimensional flow regime into a two-dimensional mathematical description takes place with
consideration of

DUPUIT assumption:

* The potential lines 4 = const run parallelly to z-axis. This means that the vertical component of
groundwater flow (v, — 0) is equal to zero. This can be realized by an infinitely large vertical
flow resistance (specific permeability coefficient in z-direction (k, — o)) or by a no gradient
gauge level:

ah
3, =0

* The horizontal speed is constant during the entire through flow height of aquifer. It means the
vertical gradients of the horizontal flow components are equal to zero.

."i'."l_ o,
ro_ 5 (7.1

iz hE

* The horizontal speed is proportional to the decline gradient of free surface according to the
DARCY law:

fih
Oy
ith

The force equilibrium law is set up under the condition that only pressure force, gravity force,
capillary force and internal friction are effective. Inertia forces, adhesive force, turbulent friction
forces and others are small enough to be negligible. Since the groundwater movement is regarded
as saturated filter flow, we know following law from DARCY:

= k- prad h (7.4

The DARCY law is only valid when the precondition its derivative existing fulfils. Thus it loses
its validity when the above neglected forces increase. In practical groundwater flow procedures
the validity of DARCY law can be however accepted with sufficient accuracy. Only directly in
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the proximity of well a breach of this law can occur with large filter velocity. With the DUPUIT
assumption the balance equation for horizontal plane groundwater flow is built up. The specific
flow rate, refer to flow field width of 1m, can be calculated:

n

qJ= /.""n"? (7.5)

=i

D through flow thickness

A Aquifer thickness in confined
D= aquifer
*p Position of free groundwater surface in unconfined

And the balance equation:

I
liv 7 v spa ] (7.6)
v i = 1 . (1 - —_— ! Al
f 0 . 0 T

=i

w sources/sinks
ny storage coefficient at the free groundwater surface due to gravimetric effects

So elastic storage coefficient, which works within the aquifer

The summary expression for the storage capability is designated with S as general storage
coefficient:

il
."1I1 = o + / j"i'lu Iflr,? l:_|_|]
-il il

Iy
no+ [ Spd: confined
5= T aquifer (7.8)
' (e unconfined
-&I 1]

If the gravimetric storage coefficient is substantially larger than the sum of all elastic effects in
vertical direction:

iR

i == / So dz (7.9

=il
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It results in that the storage coefficient is only dependent on gravimetric coefficient in the case of
a free groundwater surface and a small through flow thickness aquifer (D <<100m). The storage
coefficient S can take the following value:

iy A2 Mg = T confined _
5= M aquifer (7.107
I Soiz unconfined
=0
For the effect water height 4:
h confined
h = aquifer

2R unconfined

Thus the balance equation, also as continuity equation, is written in the form:

. ih -
divi=5- Bt it (7.11)
i

With the equations 7.5 and 7.6 we get the horizontal plane groundwater flow equation in the

following form:
n _
dliv (/L r.f:m'mlh) =5 ﬂ i (7.12)
. ' &l

Z=il

According to definition 4, grad h is independent on z thus it can be pulled out of integral. For
further writing simplification the integral of permeability coefficient, the term transmissibility 7
is introduced:
o
T - ]Me (7.13)

=il

This integral of transmissibility will be analysed numerically poorly as the permeability
coefficient is only expressed as step function and not continuous function.

Thus the horizontal plane groundwater flow equation in the representation of water height:

ith

div LT 51;['51[1 h )= 5. — i confined .

y aquifer  (7.14)
3 f ' d?“ f' d

div (T grad zp) = 5 - Ty w  uncontine
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7.2 Potential illustration

An integral transform was used for solving partial differential equation of underground flow
processes in the former chapter, which yields the value of transmissibility. Now in this section
another integral transform is applied, the so called GIRINSKIJ potential @ also a relatively
simple solution, thus the horizontal plane groundwater flow equation is illustrated in potential
expression.

The GIRINSKIJ potential @ is defined as:

n

P y) = [f;[.?] Ahlr oy oz — 2)dz (7.15)

Z=qa

In this equation the function g(z) characterizes the dependence of permeability coefficient k£ on
height z.

Elr,g.z)=k(r.yl - giz) (7.10)

For the following considered unstratified aquifer:

glz) =1

i
= =0 h = fiz)) )
Here with the validity of DUPUIT assumption Nz L7 1) and the assumption of lower
bound of aquifer a equal to zero (a = 0), the integral yields two solutions:

I

5,27
Plr.y) = /i_h zldz = [h - j—] (7.17)
o 2 Jo
M2
M- h— — confined
— L2 aquifer (7.18)
h,—;’ unconfined

With consideration of DARCY law the specific volume flow:

iq= /Fr.fe i(7.199

And with ¥ = —# grad h

o
7= [i_ F: - grad h)dz (7.200)
=0
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Since k and h are not functions of z, we can write k before the integral and exchange the
consequence of the deviation (gradient) and the integration.

We get:

n

J= —k- grad /!.l iz (7.21)
B
ij= k- grad® (7.22)

The horizontal plane groundwater flow equation in potential form:

il
div (& grad &) = %ﬂ w  confined ‘

o aquifer (7.23)
div (k grad &) = a%{” @ unconfined

i

This PDE can be transferred into a uniform potential writing way, if the definition for the
GIRINSKIJ potential is separately introduced according to confined and unconfined conditions:

g _ g Oh O (7.24)
(el ad i
i) 5 Af?
g L ) ﬁ - ;E mit & — AMh l confined
1 ae  S§4 _ 2%
5 — = mitd = == unconfined
st |_.i||ll IRt 2
(7.23)
And:
e M _
.Ir.'=ﬂ+T [jf‘l:l
’_ji = 1 (7T.27)
oLt M
Or:
?.I',l= .L.E [?EH:l
Orp 1 (7.29)
LN YT

Assuming a homogeneous, isotropic aquifer, i.e. k = const., then k can be calculated from the
divergence and the division of the right side. With introduction of the transmissibility and the
geohydraulic time constant we get:

i TH
div (grad ) =a— — —
v igrad ®) =a 3 p
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With:

5 .
B 7.30
i T [ F.al)
b B M confined .
T = ] kdz = aquifer (7.31)
ey k- zp unconfined

Now we have found a universally valid PDE, which is linear and analytically solvable.

However it must be noted that the linearity is not exact under free groundwater surface
conditions, i.e. with unconfined aquifer, since the geohydraulic time constant a is a function of z.
In this case a temporal average value will be taken for 7" and also for a. The following
approximation has been well proved for a:

- it — 2ty
WA —
3
For extreme drawdown ratios over 10% of groundwater level this equation is only valid
approximately. The water level of standpipe often changes, i.e. drawdown, of note in GIRINSKIJ
potential. Therefore the potential difference between the output potential @ and the current
potential @ is used. In unstratified aquifer, i.e. with k(z) = const. and thus g(z) = 0:

) ¥
A=D5 P = /UJ, p— 2) iz [(h, z)dz (7.33)

=0 =0

M |:_.'I.'|- 0 ,n’,lJ confined .
= aquifer

(=5 25)
L’J“J unconfined

The subscript 0 stands for conditions to time point ¢ = 0, i.e. @y- D=y, hg = hi=, Zro = Zri=9. In
some citation the subscript n (®,, &, zr,) 1s also used for it.

Inserting this into the PDE:
as  w'

div (grad &) = frW T (7.34)

By definition w’ is the supply quantity caused by the change of potential Z, is by definition, while
w represents the supply quantity, which affects from the outside of aquifer, e.g. the natural
groundwater replenishment:
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Practically the following two cases are interested:

o w' =(),
1.e. supply conditions won’t change when the regarded groundwater level varies, and

1.e. the difference of potential Z causes an additional proportional supply (see section 8.1.3
supply from neighbouring layers, page 221)

If we a supply factor B add in all cases, which approaches to infinite for the first case( B = o),
we get the general form, the standard form of horizontal planes groundwater flow equation:

div (grad &) = reﬁ + z

— (7.36)
o B :

To solve this PDE it is necessary to transfer the general vectorial differential way of writing into
a coordinate related way of writing (see section 2.2 arithmetic rules of the vector algebra, page
47).

During introduction of the cartesian coordinates we get a PDE, and we can inspect the
groundwater flow processes in connection with the ditch flow (see to section 6.1 one dimensional
flow equation, page 178). The cylindrical coordinates lead to a demonstration, which is very
useful for rotationally symmetrical problems (see to section 8.1 THEIS well equation, page 196).
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7.3 Marginal conditions

Each flow process takes place in a locally and temporally defined area, i.e. it represents a closed
system, which is connected with its environment under certain conditions. Information, energy
and matter can be exchanged through such couple conditions. They are called marginal
conditions. While the system is described by the PDE and generally valid for all conditions, a
unique solution will be achieved by marginal conditions. The effect of the marginal conditions is
identical to determination of the integration constant by solving differential equation. Marginal
conditions are impressed to the regarded system from the outside and influence independently of
state variables.

It is differentiated between boundary conditions (marginal conditions at certain local points)
and initial conditions (marginal conditions of reference time point). Besides force equilibrium
and mass conservation, the initial- and boundary condition serve explicit mathematical
description of the original process, the flow process. They are regarded as a part of the
mathematical model.

7.3.1 Initial conditions

In dynamic systems relative time will be discussed. The absolute time point, from which the
system behaviour is changing from static into movement, is regarded as starting point with
relative time t = 0. The initial conditions serve to definition of the dynamic system state at this
point. Since the state variable of horizontal planes groundwater flow is the piezometric head 4 or
the situation of free surface, the initial condition is a matter of potentials within the systems, i.e.
the groundwater height or the pertinent transform potential. In the model this will be a function of
h, zg or @ dependent on location. Other conditions are also necessary for the maintenance of
steady state at the border. These are from the same type like the boundary conditions. The
difference is they are valid for ¢ <0.
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7.3.2 Boundary conditions

Three different kinds of boundary conditions differ in physical action modes in the groundwater
flow (see figure 7.1):

1* type (DIRICHLET condition)
2" type (NEUMANN condition)

3" type (CAUCHY condition)

Boundary conditions are general functions of place and time. We differentiate boundary
conditions between influence inside of flow field (e.g. well, lakes, rivers, precipitation,
evaporation), and outside effect at the edge (e.g. delimitation of flow field by rivers or barriers).
It is characteristic for boundary conditions that its effect is independent on the flow conditions
(e.g. Groundwater level) of the investigation area. Generally it is nearly impossible to find a
complete analytical expression for geohydraulic boundary conditions.

« 1* type boundary condition (DIRICHLET condition) works,

if the hydraulic potential (e.g. A, zz, Z, @) on the boundary is known as a function of the time t
and independent on the potential, i.e. the system variables of the investigation area. This appears
e.g. in rivers, lakes or drainage:

wo=wlr.y, i) (737

« 2" type boundary condition (Neumann condition) works,

if the source intensity distribution and thus the hydraulic potential gradient on the bound are
known as a function of time t. This may be aroused for example by wells with constant flow rate,
supply due to groundwater regeneration, sealing of sheet pile wall or underground structures:

orad o = prad @z, g, 1) i(7.38)

« 3" type boundary condition (CAUCHY condition) works,

if in general a temporally constant flow resistance exists between a surface with known potential
distribution and the boundary of flow field. Such boundary conditions work in rivers with
colmation bottom layer as well as flow resistance of lift wells:

¢ + A grad ¢ =B (A and B are definite constants) (7.39)
In the figure 7.1 the effect of boundary conditions on an aquifer is demonstrated. We recognize
that the flow rates of 1* and 3" boundary conditions dependent on the difference between effect

potential (water level h) in the aquifer and the boundary conditions. Therefore the flow rate can
vary in amount and direction
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In 2™ boundary condition the potential of the boundary condition (possibly regarded as negative
or positive pressure) can vary accordingly with the potential of aquifer.

With the numerical models (see to section 9.1.1 numerical methods, e.g. finite differences
methods, page 237) additional boundary conditions arise in the course of the definition of the
model borders. In contrast to the original procedure, which possesses an infinite spatial
expansion, the numerical models are spatially limited due to the finite computing capacity
(memory space, computing speed). Thus a considerable error arises, which must be reduced or
eliminated by suitable measures (see section 9.1.1 finite differences method, page 237).

Another problem related to boundary conditions arises in the interaction investigation of surface
and aquifer systems. A volume flow appears between the surface and the aquifer or the
unsaturated soil zone.

Depending upon potential conditions an ex- or infiltration of surface water can come out or into
the aquifer. If this filtration stream is substantially smaller than the volume flow within water, or
the filtration amount is substantially smaller than the entire storage volume of surface water, the
surface water has an effect of boundary condition on the groundwater. In the other case, if the
potential of surface water varies due to the filtration phenomenon, the surface water may be not
considered as boundary condition, but components of the system and are coupled to the aquifer
model according to suitable mathematical relations.
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figure 7.1: Effect of boundary conditions on an aquifer
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Chapter 8

8 Analytical Solution
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8.1 THEIS well equation (Rotationally symmetrical flow)

The computation of rotationally symmetric flow field, i.e. the solution of partial differential
equation, represents primary task of geohydraulics.

Such procedures can be described by means of horizontal planes groundwater flow equation
standard form, which is deduced in the section 7.2 potential illustration, page 187:

iz Z
liv(grad Z) = o— + —
divigrad Z) = a—-+ 55

Changes of groundwater flow conditions with employment of vertical filter wells were first
calculated by THEIS in the year 1935 and replenished by several other authors (e.g. THIEM,
JACOB, COOPER, NEUMANN, HANTUSH and others). Due to importance of this task
numerous publications and text books refer to this topic (for instance
BUSCH/LUCKNER/TIEMER, Geohydraulik, and others).

8.1.1 General solution
On the basis of partial differential equation we are looking for a solution for the standard form of
horizontal planes groundwater flow equation, i.e. the drawdown of the groundwater level as a

function of place and time, if a change of boundary condition takes place at relative time point ¢ =
0.

¥p

Figure 8.1 Coordinate system for rotationally symmetrical well

According to vectorial transfer in coordinate binding differential operators, here in cylindrical
coordinates (see figure 8.1, see section 2.2 arithmetic rules of vector algebra, page 47), we know
that the flow field is rotationally symmetric (Z(a) = 0) and no dependent on the local coordinate z

(Z(z) = 0):
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Y
divigrad #) = ff% - % (5.1
Fro 19z dZ Z -
F+Fm=frw+ﬁ i5.2)

Thus the solution of this partial differential equation, the drawdown potential Z depends, only on
the time t and the radius r (distance between well and calculation point). Under above
prerequisite the parameters of the aquifer, the permeability coefficient k and the storage
coefficient S change neither with the height of z nor with the angle a in the regarded area.

The simplest solution can be achieved if following initial- and boundary conditions are

considered and the aquifer is regarded as infinitely expanded, homogeneous and isotropic flow
field (see figure 8.2).

Initial condition: Aoy =0 (8.3)

External boundary condition: i Z g — 0 (8.4

Internal boundary condition: lim 27 ,-;.E — —V = const (8.5
r—l o

The internal boundary condition can be technically realized, if a vertical filter well is arranged at
the origin of the cylindrical coordinates (r = 0) , which conveys a constant flow rate V starting
from time point = 0 (see figure 8.2).

Figure 8.2 infinitively expanded aquifer

The solution of corresponding simplified partial differential equation was found by THEIS under
aforementioned conditions:

Py Loz oz w6
R —_—_ = D
arz T roar o

s Voo . ar? S .
Al k) = mll (7). mit # = — und a = T (8.7)
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Neither groundwater generation rates nor supply from neighbouring layers are taken into account
here. Remarks in addition are in the section 8.1.3 supply from neighbouring layers, page 221.

The so called well function (o) is specified as the integral of an exponential function, which is
known as exponential integral Ei(x) in the analysis and defined as follows:

— Tt
Ei(x) = /E; di (8.8)
"1

.-Il.JJ

(8.9

Eifr) =~ +Inx +ZH ot
n=1 ’

vy stands for Euler’s constant and is equal to:
v = lim i : I () (8.10)
g e —\n s '
7 == 0, 5772156640
withx=-0:
=
Wim) = —Ei[—7) = [—r.fr:r (8.11)
T
"l

This integral is not elementarily solvable, but expressed as an infinite series.

3

0.2 T .3:r| H Th
Wigh=—~ —Inl) P (R 1 L pe— 812
e A o T o B | B S ey .12
a 3 | "
. T T T T
Wig) = In(Ca) + o + 4o (1
. e 591 3.3 141 R

U”

Wig) =~ In(Ca)+ 3 1_.1”"”_”]

n—=1

To solve equation 8.6 series development and substitution method can be applied and similar

methodology such as Bessel function (see section 5.2.2.3 differential equation of type C, page
130).

Table 8.1 contains the values of well function W (o) for range: 1 - 10" <6<9

158



<9

1-10"2%<6

W (o) for range:
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From the definition of drawdown or GIRINSKIJ potential the inverse transform for physical
dimension water level % or zg and the drawdown s can be accomplished:

1'.
A= d = —WiT) w13
1 ok L [ )
2
o . M7 confined
P = /i_h 2z = . 2 aquifer (8.14)
S “I;’ unconfined
and
b h confined ]
a— ) aquifer (8.15)
Zrn — R unconfined J
For confined flow condition:
A=3, @
0 g
- (.‘lm,, %) (Jm %)
=Mih, — )
Z v
Sgeap. = 37 = EH'[JJ mit 7T = k- M (8.16)
or
Z Voo q
h=hy T Iy ﬁ“ (o) (=517
For unconfined flow condition:
Z=d, @
9 w2
_ =Hm ~h
2 2
Sungesp. = ZRn I'H' ff,-;, 27 = 1|l‘ll a'-":r!,-,I ?H i) (8.18)
or
= 22 W (o) (8.19)
- 'qu ~iin = ‘Ikl “Hn Emﬁ -

This sharp separation between confined and unconfined groundwater conditions and modelling
by means of the THEIS solution are not consistently implemented in all literature. This can also
be applied to graphic methods for pumping test evaluation. In the case of very thick aquifer, for
instance in North Germany the drawdown only amounts to a few percentage of thickness, it can
be possibly calculated with the formula for confined aquifer.
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From above derived formulas of the drawdown for different aquifers we know that under
unconfined groundwater conditions the position change of free surface represents a strongly
nonlinear process.

Please note that the well formula is not valid in the proximity of well with »— ry. The reason is
that it does not fulfil the prerequisites, which were the derivation of rotationally symmetrical flow
equation. So the vertical flow component which should be v. = 0 can not be applied in the
proximity of well. Also the effective well radius 7, is mostly not exactly confirmed. The storage
effects and the flow resistances in the well area are hardly predictable (see section 14.2 pumping
test simulator, page 388). In spite of some restrictions the well formula is a fundamental
calculation formula in geohydraulics for computation of groundwater level height drawdown
according to a volume stream.

The potential series W (o) (see equation 8.12, page 198) already strongly converge from the value
0< 0.03, so that terms with higher order of ¢ are small enough to be negligible. Thus ¥ (c) can

be computed in the case of an error < 1% only with logarithmic function. This approximation was
advanced by COOPER & JACOB in 1946:

“':'Tll = In |:'-f‘|5|'_ll (8,20
g 9 .
Wim)=In (%) (8.21)

S .

This simplified formula has great importance for many practical applications. In particular all
graphic procedures of pumping test evaluation (see section 14.1 pumping test evaluation, page
380) are based on this formula (also see table 8.2).

The relative error, which results from the approximation, can be computed as follows:

aa W TR ]
SRy T

1 n-nl .
= (8.22)

ma [ 1-.'F|| 7
[ h(co) + 320
n—1 n-mnl

Widlog, —Wia)
W)

Since the series for 6 < 1 converge very fast, it is only necessary to include the first term of the
series to error estimation. All further terms will be substantially smaller than the linear term and
thereby can be neglected. The second term only contributes a portion, which is squarely smaller
than the first one.
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. T
T —In(Co)+0o

In table 8.2 the error for approximation by COOPER & JACOB is dependent on o.

Table 8.2 Error of COOPER and JACOB formula as a function of ¢

o £=7 — — | Minimale Zeit
(o —In(C-0o))
C'=1,7811
0, 25000 23.61% 1.00-r2-a
0, 20000 16, 23% 1.25-r2 .4
0, 15000 10, 20% 16712 a
0, 10000 5, 48% 250-r%.4
0, 07500 3,50% 3.33-r2-a
0,05000 2,03% 500 % a
0, 03000 1,01% 333 7.4
0,02500 0,80% 100072 a
0, 01000 0,25% 95 0012 - g
0,00750 0, 17% 33,3312 a
0, 00500 0,11% 50.00 - r2 - a
0, 00250 0,05% 100,00 7% -
0,00100 0,02% 55000 7% q
0, 00075 0,.01% 333.33 .12 . a

Simultaneously we get an estimation for the relation of computation place (#), computation time
(#) and approximation errors (¢). It is also recognized that the geohydraulic time constant (a =
S/T) representatively determines the stop accuracy. Thus the more computation time point
approaches to steady state, the more exact the computation is. For the unsteady transition region
the approximation of COOPER &JACOB is not well applicable and large approximation errors
yield.

The computational evaluation of well function W (o) can be substantially simplified by a
recursive expression of sum formula.

Wio)=-In(Ca)+ Y ay (8.23)
n=1
(—1)o(n—1)
. i = Op— 5
With : fn—1 n<

And =0
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Thus it yields:
* Only certain terms must be calculated for a given accuracy (e.g. between two sum

terms).
* The computation of each sum term requires only a multiplication.
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8.1.2 Consideration of special effects

The general solution of well equation according to THEIS only applies to a very ideal aquifer. So
it is assumed e.g. as homogeneous and isotropic. Further more an infinite expansion is supposed.
Only one well is considered in the solution, which conveys from time ¢y with constant stream and
is arranged as singularity with a radius of 7. = Om at the coordinate origin. These idealizations
can not be found in practice with real aquifers. For some practice-relevant conditions however
results can be obtained based on THEIS solution, if appropriate auxiliary computations and
substitutions are accomplished.

Such are for example the consideration of technical well radii, imperfection of the wells and
boundary conditions, as well as the laminated aquifers and supply from neighbouring layers.
These special effects are regarded as additional potential in well equation, which are established
and dismantled.

8.1.2.1 imperfect well

Imperfect boundary conditions, particular wells appear, if the boundary conditions or wells do not
act on the entire thickness of the aquifer. In the case of wells it happens if the working filter pipe
length is smaller than the thickness of the aquifer through flow. With the imperfect wells it is
assumed a potential loss results from through flow thickness near the imperfect well smaller than
the actual aquifer. Besides we can suppose that the average flow path via redirecting is longer
than the geometrical distance r. Figure 8.3 shows conditions with different filter installation.
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a) b) c)

M

Figure 8.3: Imperfect wells with filter in the a) upper, b) lower, ¢) middle part of the aquifer

C Length of the full pipe

D through flow thickness

L Length of the filter pipe within through flow thickness
M thickness of the aquifer

Zg Position of the groundwater free surface

oy Filter losses

We can describe the potential loss as follows:

Zr,t) = e (Wia)+ ov) (8.24)
D al o) [ L

v =2|FI——-In—| —4/1- % 25

Oy 7 In - In . \/ 1 7 (8.25)

a=0,735(1+(H - 1) (8.26)

gy 2 .

=D I (8.27)

We recognize that a stronger sink occurs due to the imperfection, comparing with the case of a
perfect well.
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8.1.2.2 Multi-well plants

In practical multi-well plants are meaningful. In seldom cases e.g. foundation pit drainage or a
ground water works only one well is operated. The computation for such multi-well plants is
possible based on principle of superposition. The solutions, i.e. the partial drawdown potentials,
which apply to the individual wells, will be superposed, i.e. overlaid together (see figures 8.4 and
8.5). The principle of superposition can be only applied in linear systems. Relating to THEIS
solution this means that the superposition can be only used in the potential expression. When the
superposed potential is formed, the inverse transform of physical dimension drawdown or water
level can be accomplished. Since the connection between potential and drawdown for the
confined aquifer is linear, the superposition in this case could be also exceptionally applied to the
drawdown.

Figure 8.4 Multi-well plant
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In principle:

figure 8.5 Superposition of the drawdown potentials

7 distances between the individual well and the computation point Py,
a geohydraulic time constant for the entire area a = const.

First we calculate the individual drawdown portions of Z(7i, ¢) due to the well effects Vi and then

sum them up. Afterwards the conversion in the total drawdown takes place according to
groundwater conditions (confined or unconfined) and equations 8.16 and 8.18 (see page 201).
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8.1.2.3 Variable conveying curve of wells

The THEIS solution assumes the internal boundary condition that, the flow rate affects on the
aquifer from time point ¢ = 0. In practice it often happens that, this condition is not fulfilled.
Because of technical/technological criteria a variation of pump capacity is often required. This
problem play an important role, if the groundwater level after switching off the pump is in the so
called rising phase.

Also here a solution based on THEIS formula can be obtained by means of superposition
principle. The basic idea consists of the fact that time-dependent conveyor capacity is set as
summation of temporally transfer step functions. Figuratively we can imagine » fictitious pumps,
which are put on the same well successively according to the conveying stages and switched on
(see figure 8.6 and 8.7).

4
¥

figure 8.6 Virtual conveying flows with time-dependent conveying curve

Subsequently we check the individual fictitious partial conveying capacities in the total
drawdown potential and add these accordingly (see figure 8.8):

m

Zearp = Z/U )
=1

m i'.a )
= — W)
2 (455' .'"'-'7.'.-)

m

1 - fria e
=H§i ."1]'.'(4—'”) (®.28)
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figure 8.7 composite conveying curve
If we introduce the real time ¢ and the starting times r; of conveying capacity, we get:

e
Zgesws = 9 _Z(rt —7)
i=1

| — ria
- NV, oW — 8 20
45&-2 ’ ’(4:_; :r,;) (525

We can also calculate the partial conveying capacities Vi from the real conveying capacity at
time 7 of V.41, by subtracting those time stages from this:

Vie = Viearss 1-.J'--'rl.'..'—l.r—r.- (®.30)

) 1 m - - ) rin i
Zgeart = HZI (i realst — .I'-'rl.'..'—l.l'—T;) W, (m) (B.31)
i

Observing this formula it is recognized that the rising phase can be computed. In this case the last
partial conveying amount is negative (see figure 8.9). The sign reversal means that this
component current is not exfiltration but as treated as infiltration and thus not leads to a
drawdown, but an increase of the groundwater level compared with the foregoing time.

169



2T AT AT )

figure 8.8 drawdown potential
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figure 8.9 groundwater rising
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The described method for computation of drawdown potentials with temporally conveying curves
can be also used, if the conveying curves are not step functions, but as continuous, concave or
convex functions. In this case the function will be approximated by a step function (see figure
8.10), whereby step height and width may be not constant. We do not have to assume an
equidistant quantization (see section 11.3.5 approximation of signals, page 304). The decision
between necessary accuracy and expenditure here is of importance for editors.

L¥

figure 8.10: Approximation of a continuous conveying curve

The methods for computation of multi-well plants and variable conveying curves can be also
summarized, so we get a solution for the superposition of both effects:

i 1 T e . ) f'jrf
Zaesrs = 1 (Z VoW (mf—w)) (832)

=1 Mj=1

The drawdown potentials are to be superposed first over all conveying stages of one well and
afterwards over all wells.
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8.1.2.4 Limitation

* 1** and 2" type boundary conditions

The solution of well equation according to THEIS is derived for the infinitely expanded aquifer.
For special limitations of aquifer the boundary conditions of THEIS well equation can be
modified into a geometrically simple form by means of superposition principle in order to find
out a solution.

Basic idea is to arrange a virtual well with drawdown potential in the overlay in such a way that
the same hydraulic effect as real well can be exactly obtained like 1 or 2™ boundary condition,
i.e. a constant change of potential or a constant influx at the flow limitation. These are special
cases, which occur very often in practice.

This method of arranging virtual sources or sinks in a potential field for model building of special
boundary conditions is designated as reflection method in general potential theory, which
applies to many different potential fields (e.g. thermal conduction, electrostatic and magnetic
fields). The realization of different kinds of boundary conditions is under consideration of
different volume flow directions (ex- or infiltration).

With a limitation in 1% type boundary conditions, we try to keep the drawdown potential value
at zero by means of a virtual infiltration well with same vertical distance / between real well and
boundary condition (Zgauq = 0) (see figures 8.11 and 8.12).

With 2™ boundary conditions the flow rate at the boundary will be by definition remained
constant, here at value zero (dzgaua/dr = 0). We can model this with a virtual conveying well,
which is axially symmetric and is pressurized with the same conveying capacity (see figures 8.13
and 8.14).
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1* type boundary

condition
h = constant >
2 L Lok
\E” 1.e. rlvefr._h her |
5 e
S
Z
E
E
virtual aquifer real aquifer

Figure 8.11: 1 type boundary condition modelling by a virtual well

EB 1. An

Figure 8.12: consideration of one-sided 1* type boundary condition
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2" type boundary condition
v = dh/dn; V, = const.
i.e. sheet pile wall

< v=V,=0 >
’ AV
V,=0
E, e
B
[a3)
=
virtual aquifer real aquifer

Figure 8.13: 2™ type boundary condition modelling by a virtual well

= %
~ A
2
. > a0
V< \ Br . v
et

virt. Br

Figure 8.14: consideration of one-sided o type boundary condition
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One-sided, linear aquifer limitation and a conveying well at the point B,(x,y) yield the drawdown
potential Z at the computation point P(x,)):

v ——
Z(r.1) = 7= (Waaar (1 6] + (= 1)" Wt (p:1)) (8.33)
TR

1* type boundary condition
m=

- 2" type boundary condition

and the distance from well to computation point:

r'2 = f_.l'j;_.- .I'ﬂ‘_]2 + l:.!I.er.l' !'.-".”J2 (8.34)

or the distance from virtual well to computation point:

.Irf'._] = | gy wirt -r'.“,.l2 + Y ar vire !'..".“,.I2 (8.35)
The superposition must be carried on accordingly in multi-well arrangements or variable the
conveying curves. The transformation of drawdown potentials into real drawdown is

accomplished according to the arithmetic rules for confined or unconfined aquifer and equations
8.16 and 8.18 (page 201) (see section 7.2 potential illustration, page 187).

Under 1* type boundary conditions a method for computation of the final steady state can be
derived from above equation with consideration of COOPER & JACOB approximation:

f{!_J-.f'- = — (Weeat (7, 1] — Wonriwen (p, 1))

4'.-._L|i|'
Loy (T 1 ) = e (—In(Cae) +1Ini{Ca,))
. V Ty
Fa (7)) = = (111 .::r:)
H () = L 1 2 8.3¢
At |l_lI = 4'H|i| 11 " [ . 'I:I

We recognize that the final steady state of drawdown potential of the aquifer with one side
limited by 1%. type boundary condition proportionally depends on the ratio of conveying capacity
to permeability and proportionally on the logarithm of distance.

Taking the same considerations on the steady case of a aquifer with one side limited by 2™ type
boundary condition, then we get that the drawdown potential approaches infinitely. This is
technically impossible. In the practical operation this means, it takes an infinite time to drain the
aquifer circumscribed by sheet pile wall completely.
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3" type boundary conditions

Real boundary conditions are characterized by the fact that due to their effects the definitions and
conditions for derivation of mathematical model are not fulfilled. These are imperfection of 1%
type boundary condition and additional flow resistances between 1* type boundary condition and
the aquifer. Such flow resistances are e.g. colmation layers of water surface. Both effects cause
an additional potential decrease between the boundary condition and the drawdown potential
point P. These effects correspond to 3™ type boundary condition (see section 7.3.2 boundary
conditions, page 192). The additional potential decrease depends on the flow quantity, which
flows between 1% type boundary condition and the aquifer.

real aquifer

!

-

a+ Al + Al

Figure 8.15: consideration of one-sided 31 type boundary condition

In connection with analytical solution of well equation 3™ type boundary conditions can be
solved in such a way, that we find out the equivalent flow resistance of a piece of aquifer, which
causes the same potential decrease in ideal 1* type boundary conditions. In the model we shift the
real boundary condition a virtual auxiliary length AL away from the well (see figure 8.15). Thus
the influence of the boundary condition on the drawdown potential is reduced.
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We differentiate two kinds of extra lengths by imperfection or by colmation bottom layer.

In the first case of imperfection, i.e. the boundary condition does not extend over the entire
through flow thickness, the extra length is determined by the following diagramm (see figure
8.16).

AL, D

BD

figure 8.16: Dependence of the auxiliary length on the standardized river width

In lakes with 3™ type boundary conditions it can be always assumed that the extra length amounts
to:

AL =0,43-D (8.37)
In the colmation bottom layers the length of equivalent aquifer, the same decrease potential

caused like the colmation layer can be computed in such way that hydraulic resistances are
equated:

, | AL, :
Rpyarcm :r‘,—"”_:j (5.38)

n i M < 10
Uhydr K OL = =— - (8.39)
s o ALy b

According to equation of these two hydraulic resistances the extra length is:

[k-D- M

ALy =\/— (8.40)
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with:

D Through flow thickness of aquifer
k' permeability coefficient of colmation layer
k permeability coefficient of aquifer

74 Thickness of colmation layer

8.1.2.5 Multilateral boundary

Besides the linear one-sided boundaries through investigated area until infinite described in the
preceding sections, which fulfil the correspondent conditions of THEIS well equation solution,
many practical cases are characterized by the fact that the boundary conditions do not have linear
process or multilateral boundary conditions rise at the same time. In these cases it is a matter of
multilateral limited aquifer systems. These nonlinear boundary condition processes, e.g. the
confluence of several receiving streams, will be approximated piecewise by linear boundary
conditions. To be noticed that the linear boundary conditions are to be considered with an infinite
length.

On the basis of superposition the effect of boundary condition can be computed as additive
overlays of the different linear processes. The reflecting method can be here again applied (see
figure 8.17). However it must be considered that the virtual wells (reflecting well) at each linear
boundary are also to be reflected and lead to further virtual wells. And the combination of
different boundary conditions (1* and 2™ type) is possible.

In principle arbitrary angle arrangements between the multilateral boundaries can be considered
mathematically based on analytical geometry. Practically however borders are set and only with
comfortable computer programs realized (e.g. CAE Groundwater/THEIS). The restriction of
perpendicular or parallel standing bounds is for simpler applications. With the perpendicular or
parallel bounds the number of repeated reflection will be estimated, i.e. how large the influence
of n-th reflection well is. Since the drawdown potential is proportional to the W(o) function and
W(o) decreases strongly with large o nascence, the distance between the n-t4 reflection well and
the computation point plays a dominative role. It is pointed out that ¢ grows quadratically with
the distance r.
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figure 8.17: Repeated boundary conditions with corresponding virtual wells
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8.1.3 Supply from neighbouring layers

In former sections a homogeneous aquifer was presupposed. This is however in the rarest cases
justifiable. The question, whether a vertical soil profile is to be regarded as homogeneous,
laminated or as impervious layer, depends on the variation of the aquifer parameters, the
permeability coefficient k£ and the storage coefficient S (ny or Sy - D). In practice the followings
are generally accepted. If we consider two abutting soil relationship with the permeability
coefficients k; and k;, then the following classification can be carried out according to real
precision demand:

20 Homogeneous
— = - 50 und < 100 Laminated aquifer

150 Vertically limited

The first case, the homogeneous aquifer, leads to THEIS well equation solution, the third, the
vertically limited, to groundwater storey. In the second case, the laminated aquifer, a supply of
the better permeable comes from more badly conducting layer due to larger capillary forces in the
layer with larger permeability coefficient (blotting paper effect). This supply was considered by
the supply factor B in general well equation. The laminated aquifer is also called Leakage
Aquifer and the supply factor B is Leakage factor. All three cases are transferable into one
another and represent only simplified computation possibilities. Furthermore the borders between
the computation possibilities are not rigid, but cross over into each other.

This supply factor describes the portion of groundwater regeneration, which results in a potential
change in the aquifer and originates from semipermeable layer. These supply rates are thereby
calculated under the quasi-stable potential conditions in the semipermeable layer.

Thereby in three cases the spatial arrangements of good and semipermeable layers differ in: the
supply above (from hanging), the supply below (from lying) and the combination of both. The
aquifer lies between two semipermeable layers. The groundwater level is understood as
piezometer head 4 for the semipermeable layer in all three cases.

The supply factor are computed for the three forms as follows; the aquifer is expressed by

thickness M and the permeability coefficient £, the semipermeable layer by thickness M, and the
permeability k,:
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]

.'.I h
\ M Supply from layer above

I

(h, +1N)

) [k (8
B = \ T Supply from layer below (8.41)
\ﬁ A/ Supply from above and below
A S A
. - "I'.'-'
With: i, = A

The general well equation in polar coordinates:

9z N 1 07 qefZ N Z (8.42)
ar2 rodr at B2 T

HANTUSH has found the solution of the drawdown potential:

ZI-’_."]:I—‘”-{'.T_;'_;] .-T:[“ (8.43)

' bk = 1

It is designated also as well function of a semipermeable aquifer, Leaky aquifer. Also here the

inverse transform from the potential plane for physical dimension water level or drawdown still
must be carried out.

The function W(o, 7/B) is again a notation short for the exponential integral Ei, here with an
extended argument. The derivation of this solution is topic of section 8.1.1 general solution of
well equations, page 196.

W (cr. %) — f{’(_g—é"?) lria (8.44)

This function exists as diagram (see figure 8.18). There are simplifications for different ranges of
parameters o or 7/B , so that in practical tasks this complicated formula does not have to be
applied:

v _. |
ﬁ” (0. %) Generally valid
|
—Wim 6> 2r/B
R 4;3 ) (8.45)
v |
5k In (1,12£) long time and » <0.03 B
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In the application of this solution for the Leaky aquifer it must be noted that the supply is set as
constant value and thus steady groundwater flow conditions in less permeable aquifer,
semipermeable aquifer are presupposed. The storage capacities of these layers are neglected.

The error is not too large for the lying, since in such cases confined groundwater conditions are
predominant there, which possess smaller storage effects. In hanging also only a small error
occurs under confined conditions. Larger errors can come up if free groundwater surface exists in
the lying. Particularly in the evaluation of pumping tests this simplified assumption emerges as
not acceptable. In this case the supply factor must be increased empirically.
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8.2 Tasks of analytical calculation

1. Compute the drawdown s for the groundwater observation tubes (GWOT) with distance r and
at time t, which results from water conveying in the well for consecutively infinitely expanded
aquifer (see figure 8.19) and state the result graphically.

k=1 1[]—3%; M=10m: 5 =0.001:0 =2 =0, L= rp = 0, 25m: V= [].[]1-’3%:

T
hy = 1Gm:

r = bm: 10m: 20m: 50m

i = 1min: 2min: Smtn: 10man:; 20min; 30mién: 45min: 60mein: 90min: 120min

Figure 8.19: infinitely expanded aquifer with well and GWOT

2. Compute the drawdown in the GWOT (r = 10m) for the aquifer from task 1 (see figure 8.19)
every 10 minutes until maximally 100 minutes, if that flow rate of conveying well is subject to
following stagger time. And plot the solution.

Volumenstrom [—"] 0,005 | 0,010 0,015 | 0,020 | 0,025 [ 0,030 | 0,000

Forderbeginn [min| | 0 10 20 30 40 50 G0l

3. A foundation pit should be lowered in an aquifer near a river. The centre of the foundation pit
is 100m far away from the river; the drainage well is 80m. Three wells are arranged parallel to
the river, which are 25m distant from each other. The diameter of wells rp = 0.3m and conveying
capacity is V =0.015m’/s

The width of the river is B = 20m and a colmation layer k> =3 - 10°m/s; M’ = Im. (see figure
8.20)

The properties of the aquifer:
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k=5-10"*2: ng = 0,20; h, = 15m; M = 20m.

Will a drawdown of 2.5m be achieved in 10 days in the centre of the foundation pit?

V=0015ms

Fluss i Brunnen Baugrube

L
@“ﬁu&@w&u indwasserstand L oo S E—
, . . M=20m -i
F\Ullllill[tl]’lhh(}h

M=1m \
k=310"ms' k =510* ms" -

So=0,0001 m-
np= 0,20

—*
1

" 80 m

figure 8.20: aquifer with imperfect river, well and foundation pit
4. Please apply analytical method of well flow to check whether the centre of the foundation pit is

drained after 7 days with conveying capacity of V = 0.01m’/s, ro = 0.30m and a security of 0.5m
(see figure 8.21).

V= 0,01m?!

Fluss l Spundwand | Brunnen Baugrube

Ausgangsgrundwasserstand

..................... | T Tl b AR

! +
Kolmationsschicht ' Tiefe = 10m
Mol : L
ey Bl k=1-10ms'
S = 0,0001m" | h, = 20m
n =020 !

77777777777 777777777l l 7l ?ss s Z 7]
| 5
r 30m | 50 i 20m :

figure 8.21: aquifer with well and foundation pit

5. In a pumping test in an infinitely expanded aquifer the following water levels are measured as
a function of the distance to the well after pumping 120min (see figure 8.22).

185




Compute the water deficit (volume) of the drawdown funnel, if the aquifer are of following
characteristic values:

hy, = 16m. M = 10m. bk = 0,001, Sy, = 0,0001m~1, ng = 0, 20.

_‘_:l;
v,
W -_—
: ’_d__,ar-—"“
g = ,A»-""""‘
= -
g = A
E —
s A
s - A
= o
Tl
&+ ¥
&
-+
S |
-T 1
0 2 4 6 8 10 12 |4 16 18

Radius rin m

figure 8.22: groundwater level dependent on radius

6. A constant flow rate of 25 I/s is conveyed from a well, which connects an ideal river (x = 0; -0
<y <+ ) (Br(100m;500m))- The well has a radius of ro = 0.35m. The aquifer is characterized by the
following parameters:

- T o
hy=15m. M =1Tm. k=1-10"2—, Sy = 0,0002m~, ny = 0, 25.

S

a) Calculate the final steady state (the portion of temporal functionality should be smaller
than 0.001) for the point (P200m,600m)) and

b) the time point, from when to calculate
Tips: Work as long as possible with general symbols.

7. A simulation system is to be developed for a induced recharge water works (see figure 8.23)
with parallel flow regime. The river should be considered as idealized boundary condition.
Compute the final steady state under these hydraulic conditions based on the analytical well
equation solution.

b = ] - |i)_:)”—j .'i.'.;:.; = 15m: RO = 15m: S = 0.25: V = f—ul}'—l; § = 1|_l|“]q—":._.:-,|";

n
=

b =100m: Jf.';\',-,g?,_. =5. l[]'_'-'%": A !‘I\'r.\"m = lm:
Establish the solution
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a) with idealized river
b) with consideration of real river (colmation and imperfection)
\

Brunnen Br GWBR P

\ M

Hangzufluss

L ——

- 1 g

fe————fe——§

20m 50m S50m 50m 50m

figure 8.23: aquifer with river, well and influx

8. In geohydraulics pumping tests are used for the determination of the aquifer parameters. Under
certain conditions the drawdown can be determined according to the THEISS/JAKOB/COOPER
formula.

By using this formula deduct an equation to determine k-value for a local point P, which is with a
distance r away from well. The determination of the k-value is based on the use of drawdown
value s; at the time t; and s; at the time t,. The relation of measurement period t;: t, amounts to 1:
10.

9. Compute the drawdown in the GWOT (see figure 8.24) for the time point = 10h, if a flow rate
of 0.2m’/s is conveyed for 5h in the well and afterwards the pumps were switched off.

hy—og = 10m. M = 15m. k= 0,00012. S, = 0,000lm~t. ng = 0,25

10. Compute the drawdown at point P after one year based on induced recharge for a
groundwater recovery plant.

Conveying rate of each well: 25 I-s™!

F=92.10"3%m -]

= iy

|
oy
o
|
o
M

,i': ] - |||”".'.'.—' - & ]: ‘l}r: L }I: = 25m: ™= 250m: Iy = S00me: re

e
= D2
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{’ 0.2 m's

Brunnen GWBR

1 h 10m
M I15m

r 25 m
l
I
|

figure 8.24: Infinitely expanded aquifer with a conveying well

11. From two wells to a river (without colmation and perfect) a constant flow 25 I's™ is conveyed.
Compute the drawdown at the point P after one month and the final steady state.

Coordinates:
Well 1: x=750m  y=100m
Well 2: x=700m  y=400m
Point P: x =1000m y=500m
h, = 15m, no = 0.25, k = 10°m-s”

12. Calculate the change of groundwater level after 10 days for the following schematic
groundwater plant by means of THEIS well equation (see figure 8.25). Given:

V=0001m* st Se=0001m " no=025k=0001m-s"

13. Calculate the change of groundwater condition after 10 days for the following schematic
groundwater plant by means of THEIS well equation (see figure 8.26). Given:

V=0001m* st Se=0001m " no=025k=0001m-s"

14. Calculate the drawdown at the gauge for time point t = 15h, if a flow rate of 0.1m’/s is
conveyed for 10h in the well and afterwards the pumps were switched off (see figure 8.27).
Given:

i =40m. M =50m_E = 0.0001ms L Sop = 0.0001m 1 e =0.25
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realer Fluss Brunnen GWER
B=30m]
x
M=15m
h,=10m
2
F S5m }L 25 m }l
I~ |

Figure 8.25: real river with pumping well (artificial groundwater recharge plant)

Brunnen, v
Sp ulndv-.-and l

GWBR
h,s

h,=40m

S50 m

25 m

Figure 8.26: groundwater plant with well and sheet pile wall

Brunnen 1?
idealer Fluss T GWBR
h.s
| hcs0m| M=50m
W
| 50m | 25m A
e

figure 8.27: induced recharge plant with well and river
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Chapter 9

9 Numerical method
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The horizontal plane groundwater flow equation in general form of a nonlinear partial differential
equation is not completely solvable. By local and the time coordinates quantization a
numerically solvable discontinuous model can be set up. In the literature the term discretisation
is also often used instead of quantization, and the discontinuous model is called discrete model.
This misuse of the words in the literature is caused by careless separation of independent and
dependent variables. The quantization of an independent variable leads to the discontinuous,
while the quantization of a dependent variable leads to the discrete model.

The discontinuous models can be simply adapted to the structures of data models, which are also
existent in the form of samples generally.

The quantization of local variables should first be regarded independent of time variable. This is
justifiable in any case of steady processes, but in unsteady procedures these classes of the
variables can be also regarded as independent of each other. Only in special interpolation scheme
some connections of these two quantization procedures come up and must be treated separately.

We assume the continuous function of the piezometer head or the position of free groundwater
surface in the original (zr(X,y,t)), then we get a discontinuous function (zr(xi,y1,t1)) by the
discontinuous simulation. Subsequently, the problem editor will try again to approximate a
continuous function from it. Following demands result from setting up tasks for the execution of
quantization:

e No information loss appears in the quantization of function, since otherwise the
continuous cannot be retrieved one to one from the discontinuous function.

e No redundant data processing is caused by quantization, i.e. the distance of the tactile
point is not too small to select.

Further demands concerning quantization result from the used simulator and the existing input
data:

e the quantized field is designed in such a way that the hydro geological and technical/
technological conditions of the original can be clearly, physically descriptively and with

high accuracy taken into consideration.

® quantization must allow a simple simulation.

The demands are contradictory to some extent. Above all the demands of the theoretical
information side contradict practical application. Thus a search of an optimal organization of
tactile points will be also carried out in quantization.
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9.1 Methods of local quantization

The quantized values of the x- and y- axis yield tactile points in the x-y plane, which can be
distributed arbitrarily. These points are connected with straight lines, and we get a reticular
structure. The tactile point function is from nodes. The function values at the tactile points or the
nodes are supposed to be known as possible solution of the simulation so that the values can be
interpolated along the net lines and within the mesh. If the function value (e.g. water level,
temperature, concentration) is represented as Z-axis, then we get a three-dimensional plane,
which is supported by the given function values at the knots. With respect to practical simulation
we differentiate various network configurations, which can be divided according to the following
criteria (see table 9.1 and figure 9.1).

Table 9.1: introduction of network configurations

Coordinate reference coordinate true coordinate independent
Quantization equidistant arbitrary quantized
Topology regular irregular
Geometry orthogonal triangular

The different network configurations possess advantages and disadvantage concerning the
fulfilment of initial demands. The regular network configurations allow a relatively simple
subsequent treatment by means of simulators. However they poorly fulfil the demand that hydro
geological conditions should be considered under minimum simulation expenditure. In addition a
redundant data processing cannot be avoided due to small increments. The irregular network
configurations, particularly the coordinate-independent, can not be well simulated. The network
configuration can be however well adapted to the hydro geological and technical/technological
conditions by the arbitrary distribution of the nodes. The substantial advantage in the arbitrary
node density distribution is that, they can lie as at close quarters or as far away as required. Thus
a minimized redundancy of data processing is realized with minimum number of nodes. The
disadvantage of the irregular network configurations is a complicated execution of the simulation.
We can make a compromise if we transfer the arbitrary network configurations into topologically
regular, but geometrically irregular triangle nets. the topological organization of the net is crucial
for the execution of the simulation. There are always six connections from a net point to
neighbouring points in the topologically regular triangle net. Finally lots of connections exist to
neighbouring knots in a arbitrary triangle net.
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figure 9.1: network configurations
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Independent of the organization of network configuration a further effect appears in the
modelling of hydraulic areas by means of numerical models. The generally infinite flow
conditions in aquifer are artificially limited by the finite expansion of mathematical models. The
edges of model belong to 2™ type boundary conditions (8h/dn = const.). Thus at the edge of the
model a volume flow Vgrang= 0 is outwards forced. And the barriers of model edges are set to be
equal. This is often contrast to the hydraulic conditions of original process. This effect is
recognizable from the fact that the equipotential lines, e.g. water level, the so called isolines,
which in principle stand perpendicularly at the model edge. We can minimize this error in order
to apply natural 1*' and 3™ boundary conditions to the model boundary such as rivers and lakes,
as well as considering possible colmation effects. With know hanging influx or phreatic divide, in
particular with groundwater basin borders, we can input these at the model border as 2™
boundary condition.

There are different ways to describe the geohydraulic behaviour within the mesh. The most
known ones are method of finite differences (FDM), method of finite volumes (FVM) and
method of finite elements (FEM). In FDM it is assumed that the exchange takes place along the
mesh borders and in the nodes. In contrast the basic idea of FEM consists in the fact that the
network mesh is regarded as continuum and the reciprocal effect with the neighbour elements is
achieved by energy-, impulse- and mass exchange perpendicularly through mesh bound. In the
following FDM will be described in detail. The other quantization procedures such as FEM and
FVM are only roughly represented.
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9.1.1 Finite Difference Method

As previously mentioned, no time-dependent procedures are considered in local discretisation.
Therefore the derivation of local quantizations is independent of whether an unsteady or steady
flow field. On this account the following assertions are derived on the basis of steady flow
equation. They can be also applied to the unsteady flow regime under consideration of the
mathematical conditions (see section 9.2 time quantization, page 258).

9.1.1.1 Balance equation

The differential equation of the horizontal planes groundwater flow in steady case:

div (T - grad h) =10 (0.1
n  Confined
mit h={ ( aquifer
Y R I Tneonfined
k(x.y.z)M  Confined o
tnid T= = f Rlr, y, 2)dz
Blr.y. z)z z
\ T Yy £)2R ITnconfine !

The steady flow is characterized by the fact that no storage procedures appear. This partial
differential equation can be written in cartesian coordinates as follows:

il ih i ih
e o o — | =10 Q7
il (T{'i‘.r') + iy (T{'}”) 0 (¥.2)

If the finite difference method is applied to this equation with reference to a coordinate,
topologically regular grid, then this is equated with transfer of derivatives in difference quotients:

i M A AR .
— | T— — | T=—1] =1 0.3
Ax ( i.r') + Ay ( iw) (-2}
2

The quantization error, which occurs during this transition, has a quadratic order (O(x, y) ~ A x7,
Ay?*). We can also describe this error as deviation of secant, which is used in the difference
quotient, and the tangent, which is defined by the derivative. This deviation is dependent on the
gradients, i.e. the slope of the tangent.

Apart from this mathematically justifiable error still the following error phenomenon can be
enumerated. In the quantization the geometrical position at surface will be changed by arbitrarily
arranged boundary conditions, since it can be only arranged at the net points, the crossings
between row and column in discontinuous net (see figure 9.2).

initial state — continuum discontinuous model
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nx

figure 9.2: transition between continuum and resistance network

Also the geometrical size of the boundary conditions is changed. In the continuum each boundary
condition has an arbitrary finite geometrical expansion. In the discontinuous field each boundary
condition can accept only one expansion, which is an integral multiple of the quantization
increment Ax and Ay. Generally this means that a substantially larger effect area is arranged in
the discontinuous simulated network and the original of this case is the boundary condition. In
this relation the effect of the finite expanded net is again pointed out. The net edges lead to a
limitation of flow field, since no flow rate flows at the borders (Vrang = 0). In original however it
does not have to be so. For this reason the edge of model should agree with the position of the
hydraulic boundary conditions if possible.

Apart from the mathematical derivative the quantization procedure can be also physically
justified. For this purpose the continuum is covered with an appropriate mesh. At the individual
nodes the balance equations, here the mass balance equations, are set up. The connections are
represented by flow resistances between the net knots. The mass balance equation at the point
Py, m results from the sum of water quantities, which flow along the net lines (see figure 9.3). The
sum must be equal to zero according to definition (under steady condition steps no storage
effect). Thus the balance equation:
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n-1 n nt+l

m+1

m

m-1

figure 9.3: balance for knot n, m

The flow rates can also be represented as quotient of differences of the water level or pressure
and hydraulic flow resistances or as product of differences of the water level or pressure and
hydraulic conductivity (general DARCY law, also see theory of pipe- and channel hydraulics),
and we get:

If’IJ' n—1m I;f.',,_.” -'I":I.I—I.u.llI + (’I.l-n..'r.l I;f.',,._.” "r'IZIJI 1,m -+

“;,l w1 fnm — Mamo1) + Cynmam — lpmpr) =0

or arranged according to water height:

1wl —Gen_1m)+
R m (—Glynm—1)+
B (Ganetm + Grnm + Gynmet + Gynm)+ (9.6)
My i1 Gy mm )+

Iyt~ Grpm) =10

If we go through the grid net in columns, i.e. the knots of row1 to my are processed within the
columns 1 to nx, then it yields an equation system with nx - my rows and with nx - my unknown
quantities. This high dimensional equation system, in practical until several hundred thousand or
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millions, can be solved according to GAUSS total step iteration, GAUSS SEIDEL or by means of
iterative methods, in particular the method of Preconditioned Conjugate Gradients (PCQG) (see
section 1.3 linear equation system, pagel7 and the following).

If we arrange these equations according to the elements h, ,, we get an equation system (see table
9.3), which has the characteristic diagonal shape. If we represent this as matrix equation, we get
the coefficient matrix G with nx - my columns and just as many as rows. This coefficient matrix
is only located in certain places, namely in the diagonals, the two directly bordering second
diagonals and two further second diagonals, which is nx distance from main diagonal. All other
elements of the matrix are equal to zero. Since this matrix is still symmetrical, the actual
significant value space reduces to 3 - nx - my elements (see section 1.2.1 band matrix, page 8).
The solution function, i.e. the water levels h, ,, at the knots, is represented by a column vector nx
- my. In contrast on the right side a column vector nx - my stands likewise.

An example of the quantization of a two-dimensional aquifer by means of a net with four
columns and four rows (see figure 9.4) as well as the equation system will be demonstrated.

figure 9.4: 4 x 4 grid net

This example yields following 16 equations (see table 9.2)
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Table 9.2: equation system for two dimensional aquifer quantization
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Table 9.3: equation system in diagonal shape
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Table 9.4: continuation 1
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Table 9.5: continuation 2
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Table 9.6: continuation 3
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The calculation of conductivity can be achieved according to following scheme (see figure 9.5)

m+1

figure 9.5: allocation of hydraulic parameter to compensatory conductivity

The smallest quantization area is the area, which results from around the regarded point P, ,, with
the edge lengths Ax and Ay. According to the quantization regulations this area will be uniformly
parameterised, i.e. the parameters of the aquifer such as k-value, storage coefficient S, position of
the aquiclude a, through flow thickness D and the current piezometer head or the situation of the
free groundwater surface zg are considered as independent of location x, y within this planning
element. A change of these values can take place only at the borders of the planning element.
There however large jumps may arise. Thus the parameters and state variables of the aquifer are
reflected by means of FDM with discontinuous functions in the quantized net. These usually
contradict continuous functions in original process. For the flow processes this means this
planning element is regarded as homogeneous aquifer with horizontal bed and horizontal
groundwater level. According to the quantization step an interpolation between the nodes is not
allowed. This corresponds to the same statements, which apply to quantized signals (see
GRABER: Scripte zu den Vorlesungen Automatisierungstechnik bzw. Grundwassermesstechnik).
If we consider these premises, the individual hydraulic conductivity can be defined.
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Generally:

-—

o=k — (9.7

whereby A is the perpendicularly through flow area and / is the parallel through flow length. A
results from the flow width b and through flow thickness D, which is equal to the thickness of the
confined aquifer or the free groundwater height zg. The differential conductivity of a streamline:

dr-h

(9.8)
{

flrfrl = |E| :

or the total conductivity of a perpendicularly through flow area results from parallel connection
of the individual streamline conductivity. The parallel connection is regarded as summation or
integration of the differential conductivity:

with:

ar  confined
= aquifer
»p  unconfined

This integral expression of the transmissibility will be evaluated numerically poorly, since the
permeability coefficient is a step function and can not be represented as continuous function.
Thus the transmissibility is always a piecewise linear function of the variable z and thereby can
be written as sum formula:

n
T= Z Ryllzp — 20+ (2r — 2)Ts) (9.9)
[
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with:
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z; 1s the absolute heights of the different soil layers and 4; is the pertinent permeability
coefficients. The single conductivity (indices O, W, S, N) is computed as follows:

Ay Ay
fr'_1-.~.__-.~..:1 = T;,.__-”—'_ =2 T;,__-”—'
= Ar
“.l-:.-.u.'ﬁl' = “.l-:.'.u.'t-' (.10

Since it is presupposed that in the planning element n,m all parameters, including though flow
thickness, are constant, each pair of conductivities can be assumed equal:

i M A
f’.Lr:.l.u.l 8= TJJ.IJJT;. =2 ?—;,.__-”3
= i

”,{rrf..-r.l.‘.' =Grams (9.11)

The interconnection of two partial conductivities, e.g. the G, , m 0 and the Gy 1+ w, results in the
conductivity between two knots. It is know from the fluid engineering or electro-technology that
the series connection of two resistances is their sum:

R=R + Ha i9.12)
1 1
G=—=— (9.13)
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in the equidistant part, i.e.

Ary, = Ary ) = Ax bizw.
Al = Ay = AY
we get:
e _ ?]r:l.l.l.l.l ' T:'. 1.0m ﬂ
e l:.?-JJ.I.IJ + TJJ | |_,“_] Ar
generally:
AN
Gmm = Tl:’:
it yields:
Tom- T -
T — g n+lam (.15
T:‘...'r. + T:'al lm

This harmonious averaging also corresponds to the hydraulic real condition very well, in which
the smaller permeability coefficient or the smaller transmissibility dominantly intersperses. The
computation of transmissibility is complicated in the steady case with unconfined aquifer, since
here it is a matter of a value, which depends on the solution of the equation system. In the
example of an unstratified aquifer the transmissibility is:

Tum = knm - Zrnm (9.16)

In this case it is necessary to compute the equation system iteratively. And we start with an
estimated value 2 g nm- Lhe better this estimated value to the true solution zg , ,, approaches, the
fewer iteration steps have to be implemented. The first approximation for the transmissibility
T(l)n,m can be computed by means of the estimated value and the coefficient matrix with the
appropriate conductivity can be developed. It leads to solution z** R n.m, N improved
approximation of exact solution zg m. This is again used for the computation of improved
transmissibility T, . The procedure is continued, until the deviation of two approximations is
smaller than a certain limit €.

_,’l:.'_i
“Rnm “Hnrm
[E3]

?” fi,m

s 1% ‘
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9.1.1.2 Consideration of boundary condition

The preceding accomplishment for the quantization of continuum applies to the case of
uninfluenced groundwater flow. For a unique simulation boundary conditions must work as in
original procedure, and no groundwater flow comes about without it. With the discontinuous
models on the basis of finite differences method the boundary conditions affect in principle on
the knots. Above all the consideration of 1* type boundary conditions come across difficulties.

During the numerical simulation at least one 1*' type boundary condition must work on a knot.
Models, which are endued with 2™ or 3™ boundary conditions, yield no unique simulation results.
The case of the infinitely expanded aquifer, which can be calculated by means of THEIS
analytical solution, does not exist in discontinuous models.

In the following the realization possibilities will be indicated for the different kinds of boundary
conditions. The 2" type boundary condition, which affects on a knot (see figure 9.6), can be
considered as follows based on balance equation:

n-1 n fnt1

m+1

m

m-1

figure 9.6: consideration of 2™ type boundary condition

i:'.— Ln + 1':‘f| L+ 1.u.'—l..'r.' + 1.u.ll lm + 1II|'H LArenm = 0
il;.l—|.:l.l + i. o T 1:-:.1— I.m + 1-:'.*.1 H.om = i]‘ffiﬂ..-lJ'f n,m (9.17)
unknown quantities known quantities

Thus the 2™ type boundary condition can be directly written on the right side of the equation.
With introduction of the potential differences at volume flow place this equation turns into to the
accustomed Mmatrix equation for grid network, whereby for the knots with ond type boundary
condition the right side of is different from zero.
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With 3" type boundary condition (see figure 9.7) we proceed directly in principle. The balance
equation is built for the knot, on which the boundary condition affects. The boundary condition 3.
Kind is by definition a potential decrease of a flow resistance, which is nothing else but a variable
flow rate in turn. With 3™ type boundary condition the potential difference between a given
potential (e.g. water level of a receiving stream or another surface water) and the water level at
the point of aquifer, where the boundary condition affects, will be built:

m+1

m

m-1

figure 9.7: consideration of a 31 type boundary condition

1';!.'—|.J.' + 1':;J Hl.m + i:'.*.—I.m + 1':'.*. Hl,m + i.J'Hi FoArtnm T {
1:‘.— Ln + 1':‘|'| L+ 1.u.'—l..'.*.' + 1-u.ll Lm + ”ru.-a.'.".'r. n,m I;.il.';,__.;, -'I"f‘n'u_:' =10

} :1,._ Ln T+ 1:1” Int+ r“J.I—I.u.l + 1'.I.l.'| Im T+ 'r"rms-.'.".'r. nm - -'rl'J.l.u.l = Erru.lx.'."m nam - -'Il'}‘n'u

o

unknown quantities known quantities
(9.18)
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With introduction of potential difference for all volume flows:

fr‘_1-:.|—|_u.||;j-'1.|_u.| -“"r.—l..'r._]‘l‘
':‘II;,IJJ.I.IJ—||;'|I'IJJ.I.IJ - 1+

G nm (Pom — Pngim )+ (9.19)

(ranatrim :I.I.I.l.lf'l nm

{‘Ti-' JJ.UJU"JJ.IJJ -“"r...-r- Hl l' = {rm.m.l_w';m ra..'r.l-“"}‘.'uax ",

or arranged according to A:

-'I":I.I—I.u.l[L ':‘T.l-n—l..'r.l,H'
hpm 1 —Gynm1)+
-'r":l.l.u.ll;ffl.r n-lm+ Gram+ ':‘r;,l nm—1 + (’.u nm T (f””,,,_..;;.” r.l..'r.l,]+ (9.20)

Pl ':‘T;,l nm)t

-'I".'.ll I..'r.l|:_ If’IJ' ", l' = fr‘rl.‘nxr.l'l'i.':'.' J.l.u.l-'r"}‘n'.'Jm n,m

Thus we recognize that with existence of a 3" type boundary condition the main diagonal also
has further addends besides the right side different from zero.

1* type boundary conditions will be treated in the discontinuous model as a special case of 31
type boundary condition with evanescent flow resistance. Since the balance equations of the
knots orient flow rates, the potential of the boundary condition won’t arise explicitly.
Hydraulically this mathematical step is quite meaningfully interpretable, since the 3 type
boundary conditions can be also regarded as combination of a 1*' type boundary condition and a
flow resistance. If the flow resistance approaches to zero, i.e. the potential loss between
groundwater level and surface water disappears, this is equated with the influence of a 1% type
boundary condition. Based on this conclusion the derivation can be taken over according to the
above statements of 3™ type boundary condition:
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"r'lil.'l I..'.*.ll;L fr'_1-;|.|_u.|_] = “”” 1. Art J.'.u.'-'l"f‘n'ua:-u.u.l

In this equation Ganstrom n.m = GRB 1.Artn.m 18 S€t since it is a matter of mathematical shaping of 1
type boundary condition. An evanescent resistance, i.e. Ransrom — 0, means a conductivity
Gra1.Artn,m — . This is not numerically realizable here. Since Grpi artnm has influent
conductivity in additive linkage to the others at the knot n,m, it is sufficient that the conductivity
Grai.artnm dominates the summation of conductivity. This is given, if the following inequation is
fulfilled:

GrpilArtnm == '”.1' n—l.m + (‘r.l' nm (‘ri.' nm—1+ "rrli.'J.'.u.l

This inequation can be regarded as fulfilled if:

':‘r.frH LArtnm = 100 - ':_”.l-:.l— Lm T+ ”.l-.‘.l..lr.l + ”,Lr.‘...lr.—l + “;,l JJ.I.I.I_:I

Due to of numerical instabilities within the equation solution Grpi ar n.m Should not be select too
large.

In some simulation programs 1* type boundary conditions are also interpreted as infinitely large
storage effect. This however only works in the application of unsteady flow regime.

If the boundary conditions are located outside the nodes, which is in the majority of cases, and
not all the field element boundary condition properties are arranged, then the boundary condition
can be connected with four of resistances of neighbouring knots (see figure 9.8). The
computation of resistances and the associated allocation of boundary condition effect on the
neighbouring knots can be achieved according to geometrical conditions, i.e. according to the
distance between boundary condition and knots and the appropriate effect range. The effect
range results from the gravity centre of the representative area between the connecting lines of
gravity centres and the adjacent knots. And the gravity centres should have coordinates Xy m;

YMn,m-
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n,m+l n+1,m+l

n,m n+1,m

figure 9.8: outside knots lying boundary conditions

h ]
Clpmnn = T:'a..'r.lF it i(9.22)
i 3 .2
b= '|u. LT m — PMnrlm) W m — Uat L) i9.23)
Iy a 2
I = V Tm — TREwm )+ (nm — YiEnm) (4.24)

The mathematical formulation of different kinds of boundary conditions can be achieved
according to above forms for 1% 2™ 3™ type boundary conditions.
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9.1.2 Finite Element Method

The finite element method (FEM) represents a further kind of continuum transfer into a
quantized representation. It differs from the FDM (see section 9.1.1 finite differences method,
page 237) in the determination of planning elements and parameters. While in the FDM the
balance is essentially computed on the basis of the knot equation, in the FEM the balance takes
sides with planning elements.

Arbitrary compounds in the form of polyhedrons can be selected as planning elements. In the
two-dimensional level the planning elements become planes, which are formed by arbitrary
closed polygons. The simplest form is formation of triangle elements. Each higher order planning
elements can be formed by the summary of more triangles.

In the planning elements potential functions, e.g. water level, piezometer head, concentration
distribution, temperature or others, are presupposed as linear, homogeneous conditions. Thus the
distribution can be computed analytically within the planning elements. This computation can be
achieved by means of variation calculation or according to GALERKIN method.

According to the principle of variation calculation an approximation function P*(X,y) of the
quantized continuums is looked for the potential distribution P y) (e.g. h, zg, @) in the entire
regarded area G. Since by definition linear system status dominates within the planning element,
for a triangle element:

Phpw=0t+bh rt+e-y (9.25)
In any cases this equation must fulfil the potential distribution at the supporting place, the triangle
points i, j, k:

Plaup=a+b -1 +c-y
Py =0+b 2y +ey,
"H,',‘ (g = o + h- Tk —+ - 'Ilrflh

Then we get three equations with three unknown quantities a, b, and ¢, which can be solved. As
matrix equation:

i Loay B
h = 1 .?'_.l _|'f_|| ’ I :'; [U-j f":'

i | TR T T

To insert the solution into the equation about P*(, ,, yields the solution of searched function. For
the planning element m the potential distribution can be expressed as following:

Polry) = Wilzy) - B+ Wile,y) - P+ Wiz, y) - By
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the weight functions W(x, y) are linear in x and y direction in the region G and subject to
orthogonal conditions, i.e.:

_ 1 n=1m
WalTm, Y ) =

0 no==m
m,n < i, g,k
Individually:
Wil y) = i (g -t — - wy) + (g — ) -2+ (20— 2y) - ]

1

. _ 1 _ . .
Ha-i.-r'-.w=Q[L.ru-m Ty M)+ (G — )T+ (2 — x4 - ]

Wilry) = g wy — oy + (e — ) -+ (my — ) -y

) 1
mit: A = 5 [ (g — W)+ oy (e — w0 +rp (e — )]

A is the surface area of the planning triangle, and:

Wilz w) + Wilz oyl + Welr.y) =1 i9.27)

P’ is continuous in the entire range G. If the basic values are known at the knots, the function is
representable in the whole area. In the following it is to be demonstrated how to determine the
basic values p; of the continuum such that the potential values P*; of the quantized area are
adapted in best way. This is achieved according to GALERKIN method.

The set up differential equations apply to the continuum exactly. In the case of the horizontal
planes groundwater flow equation (see equation 7.14, page 186):

i -"J].?.r,- il [},?“
B (TW) oy (TW) ="

In quantized system in contrast only following approximation is valid:

il dzh’ i iz}
i il i By .yl <0
il ( J.J') * iy ( ihy ) bl

(X, y) is designated as residue. The better the quantization area to the continuum adapts, the
smaller the residue is. The approximation solution P*i, here concretely z r;, converges for the
continuum solution P or zg or other expressions in case of infinitely small planning elements or
infinitely large number of supporting places, knots and planning elements. And the residue
becomes zero.

According to the weighted residues method the approximation solution will be searched in such a
way that the residue disappears at the weighted mean. This is accomplished with the following
expression for each planning element:
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// Wiz, y) - rle ) dG =0 (9.28)

Under constant transmissibility condition in individual planning elements, the residue can be
written by definition:

u?* a2t
Wil +—LE )V de-dy=0 0.20

It was still considered that the time dependence should be identically zero. This applies to the
steady processes.

But also the unsteady processes can be treated in such way, since the time dependence is regarded
independent of local quantization (see section 9.2 time quantization method, page 258).

This area integral must be solved for each supporting point or net point. We get n equations
weighting functions with n unknowns. For the approximation solution z  at the net point a linear
substitution was selected, which however has no second derivative. On this account the integral
must be transformed with 1 Green’s formula. Generally:

r O O o fow ou  ow Oul | C Ow
w- (28 L TN dady = LRI ey + [ wZEaB
ol oty dJdr  dr iy oy on

& (£

(9.30)

Thereby B means the edge of the area and n is unit normal, which stands perpendicularly on the
edge and to is directed towards outside. w(X, y) and u(x, y) are arbitrary scalar potential
functions. This equation applies to residue:

ST s oW, Osh OWS
/”f( RO PR ”; /!
/. dr O oy Oy

(

i’; =0 (9.31)

The line integral of the edge B describes the potential- 1ndependent flow over the edge and can be
regarded as boundary condition for the planning element n:

g - _
/!-H; ;f" dB = /11__-,;:.,-,!,!-.’:1'

B B

whereby q’n means the specific flow rate per unit length and V is the influx to the knot n. In the
same way internal boundary conditions e.g. wells can be also considered.

Similar to the finite differences method a high-dimensional equation system also develops here in
the FEM. In contrast to FDM the FEM does not produce diagonal band matrices, but an irregular
matrix structure develops as a function of the number of affecting planning elements. This leads
to a increased numerical expenditure in the solution equation system.
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9.2 Time quantization method

oh i confined )
div(T erad h) = ~S—  mit h = aquifer
ol

'n unconfined

On the basis of general form of horizontal planes groundwater flow equation the independent of
treatment on the left side, local functionality, on the right side, the time dependence of a
quantization must be undergone. Quantization of place dependence can be achieved by the
described method in the section 9.1. The temporal derivative must be transferred into a difference
quotient, since otherwise there are no possible simple numerical treatment. The construction of an
appropriate equation system is only again possible by this transfer. The transfer from the
derivative into a difference quotient should be visualised by first backward difference method as
implicit procedure.

ah hy — by a
ot At

N Sekante Az/At

Tangente 5z/6t

figure 9.9: Relationship from tangent to secant with a typical drawdown procedure

Due to the introduction of the temporal difference quotient, a time point must be also arranged at
the convection part, i.e. the left side of the equation. Different methods for time quantization are
differentiated for allocating the time to the left side of the differential equation, i.e. the local flow
process (see figure 9.9). The most substantial distinctions lie between one- and multi-step
procedures as well as between the explicit and implicit procedures. With the explicit one step
method the equation system can be solved directly, since the parameters are known from the
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preceding time step. The explicit method, also designated as forward difference, however has
large disadvantage that for mathematical stability reasons only very small time steps (in minute
order of magnitude) are realizable and an extremely large number of time steps (total simulation
time divide by the time increments) must be worked out for a test run. The implicit one step
method is also called backward difference method. It also yields stable solutions for large time
steps and thus represents the standard method for numerical simulation systems. A series
procedures are developed to decrease the quantization error (to multi-step method, Predictor
Corrector method, higher order method, see figure 9.10), and also a special extrapolation
procedure by GRABER.
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figure 9.10: Argument association in time quantization of a 1-D-field problem
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9.2.1 Backward difference - Implicit method

In the implicit one step method, also designated as backward difference or LIEMANN method,
the local flow part of the horizontal planes groundwater flow equation will be considered to time
point ¢:

Ir},n'l.f

div(T erad h) = -5— mit h = j confined 1

aquifer  (9.32)
Ot |>»x unconfined |

After the transfer from the temporal derivative into the difference quotients:

div (T erad h), ~ —§—+ *t=at (9.33)

|t A.’

Instead of the squiggly equal sign the equals sign is mostly used, which actually is not exact. If
we implement quantization again also on the left side and insert the (local-) conductivity
according to physical FDM method, then balance equation at knot n, m arises (see figure 9.11):

[]l..'- An T+ ]l.'».-+1 . 1.-.-.,.. 1m + l"..r-.-+l.--. + i.-_'-.'.:: n } =0
[1‘:, 1+ Vet + Voctm + Vonstom |+ Czettenm (henm — haenm) =0
[1-]_--1 n F Vet + Voo 1m + 1".-.:+|_.».-] + Gzeittnm henm = Gzeit tnm - Matnm
unknown quantities known Quaﬁ;[ities
(9.34)
n-1 n n+1

figure 9.11: consideration of time quantization
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The expression
S ArpAym = Cym (9.36)

will be designated as hydraulic storage effect or capacity. The so called time conductivity is
introduced For the quotient from capacity and time step.

S Au |,-~A'flr|_- y ( ‘:.- m -
- = (sonm = — {L_}_j"_l

A 1.m A

This represents flow rate in connection with the temporal potential, which is released or received
from aquifer due to storage effect within the time step At .

F:Zeit nm — (_:Zez'! tn.m ':'F?f.n.m - h—.ﬂ.t.n.m]‘ (938)

If this is inserted into the upper equation system and within a row we arrange the known and
unknown variables, then we get the following system, in which only known quantities stand on
the right side:

fty—1 Grpn—1m)+
| 1| { 1I+
| - tm G+ G a1 + Gy + G )4
(9.39)
| "l""\.";-i-ll_{’l'.". |+
M1 (=G n '
= N _\“"if:

Thus the pentadiagonal equation system remains. A known quantity from the preceding time step
was added on the right side. The main diagonal was also extended by the addends G, m. The
developed matrix equation is not explicitly solvable due to the potential dependence of
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conductivity, in particular the transmissibility with unconfined aquifer. Therefore iteration must
be carried out. In the first step the conductivity G is computed according to the initial water
levels (zry — At). For groundwater drawdown procedures this means that the transmissibility and
the conductivity are assumed too large. The matrix can be solved with these values, and we get
water levels zp", which are too low compared with real situation. Improved conductivity G*
can be computed with this first approximation zg”, which leads to the second approximation of
water height zg®. This exceeds the true solution, since the conductivity was assumed too small
and too little discharge was realized. The solutions approach to true value in form of a damped
oscillation. This iteration process will be continued until the changes between two iterations do
not exceed an error bound any longer. Then we get the solution for the time step At. Nevertheless
the iteration within the time step remains a quantization error, which grows proportionally with
At, since the secant between the points t and t - At is calculated instead of tangent at the point .
Since the groundwater flow processes accordingly approach to an abating exponential function
asymptotic steady final state, the time quantization error is not only dependent on the increment
At, but also dependent on the dynamics of process. In the figures 9.12 and 9.13 the results are
displayed to defined time for the example of one dimensional ditch flow with different time
increments. The results with the increment At /24 are assumed accurate. We clearly recognize the
strong dependence of time quantization error on temporal gradients. In figure 9.14 the
convergence of the solution as a function of time increment is observed. At the same time we
recognize the small quantization errors of extrapolation.
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drawdown procedure t/24 - ---- LIEBMANN

Zr = Zr(x) parameter: t At ———LIEBMANN
At GRABER
Z, )
R /R
% m 1‘ (= 1d N
100t 50 _— 50
t=10d
801 40 —————— L T
1= 1Mon,
60+ 30 30
401 20 20
o t=la
20 10 10
0 N
0 25 50 75 100 125 1s0 175 200 225 250 XM

figure 9.12: Time quantized computed drawdown of a ditch flow

arising t/24 - - --- LIEBMANN
7R = Zr(x) At ———LIEBMANN
parameter: t At GRABER

% m

100t 50 50

801 40 40

60t 30
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figure 9.13: Time quantized computed groundwater rise of a ditch flow
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figure 9.14: Dependence of the time quantization error on the time increment
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9.2.2 Mixed methods

The backward difference is often applied for simplifying time quantization like already described.
That means the parameters will be determined for the time point ¢. This leads to difficulties with
nonlinear parameters, like under unconfined groundwater conditions , since they must be adjusted
iteratively. There is therefore a series attempts, by weighted allocation of local partial derivative
as well as the parameter to quantized time, in order to achieve an error decrease. Generally we
can write:

(1 —~) div (T erad h he—ar +7 div (T grad ,'r.-l“
' : (9.40)
(h,

— |:|] - _».": " 4 - L-\b] My Al

_A."

Depending upon method selection (see figure 9.10, page 260) we get the following y-values:

0 explicit method

172 CRANK-NICOLSON scheme
'Y =
2/3  GALERKIN-weighting

1 implicit method

Apart from the one step method (also with iteration cycles), in which only the time point # and t -
At play a role, multi-step procedures are frequently used for the simulation to decrease the time
quantization error. The Predictor Corrector method is common. In the Douglas JONES method, a
two-step method, a half step At/2 will be attended according to implicit solution scheme (A = 1),
and all parameters are adjusted to time t - At and h¢ay» (Predictor step) in the substitution. The
CRANK NICOLSON Scheme (A = 1/2) realizes a total step At (Corrector step), whereby all
parameters are set to time point t - At/2 (see section 5.4.1 numerical integration, page 149). Very
high approximation accuracies can be also obtained that not only the time derivatives at local
quantization point P, ,, but also at neighboring knots are taken into consideration. In simplest
form according to the Simpson’s rule (by an example of one dimensional case):

dh _1{dn +ﬂ +ﬂ | (9.41)
rlrlr B G flrlr -1 flrlr |n flrlr |n+ I) -

A special scheme is suggested by STOY AN, with which all partial derivatives are subject to a
controlled weighting. Thus a very stable and exact numerical solution is obtained, which changes
into analytical solution for the case of net convection. The disadvantage of this method consists
of the fact that we try to reduce the time quantization error effects by the manipulation of the
differential equation remainder, usually the parameter of local convection term (the right side of
the differential equation). Thus the cause of error remains untouched. It generally leads to no
satisfactory solution and numerical instabilities possibly.
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9.2.3 Extrapolation method

a very effective method to decrease time quantization error is indicated by GRABER in
extrapolation method. For the balancing processes, in which the horizontal planes groundwater
flow arises, the function h = h(; is always continuous monotonically increasing or decreasing
between the time points t - At and t. It yields that the secant of backward difference is always
smaller than the tangent at the point t according to amount. Thus the following inequation:

i
i

fy — By
AV

The inequation can be changed into equation by introducing a correction factor:

idh Fy — By ag .
- K AL i9.42)

Thus the time quantization error is reduced and can converge to zero by proper selection of K. K
is > 1 by definition. Approximately the local point P, ,, can be represented by the following
equivalent circuit diagram (see figure 9.15). H stands for equivalent potential (1* type boundary
condition) and R is an equivalent resistance, which summarizes the hydraulic characteristics of
aquifer between the neighbour knots and the regarded knots. It could be e.g. the entire
quantization network or a 1% type boundary condition. C; stands for the effective storage effect of
the aquifer in this time step.

figure 9.15: equivalent circuit diagram of local point Py

For this equivalent circuit we get (see sections 5.2.1 first order ordinary differential equations,
page 111 and 12.1 transmission behaviour with first order delay, page 334):

) _ 4
Ry me = k” "I'IH..'.‘.'I'—_";I'_:I (1 . ) (9.43)
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whereby r is designated as time constant 7 = R C. In place of the capacity Ct an equivalent
resistance R, can be computed now, which engenders the same groundwater flow as the capacity
C for time t:

Henme = 1—I mit: Vo= 'thr (944

ar
. _
Cpme T

The difficulty consists of determining time constant 7. An analytical expression cannot be found.
Therefore the quotient At/r is determined from the system behaviour during the offset procedure.
We simulate the system according to backward difference in first step, i.e. with the time
resistance R, n m¢ = At/Cpm . The change between the potentials hy ¢ and hy p, r-ar S€TVES as basis
for the time constant computation. For the case of the drawdown (hnm ¢ > hpm t-a):

Al Dy ae

Hs_ nmt — — (9.435)
Cnmi f-':u.u.l.'

bz,

1
Came  Pume

AL Ryme—ae

fr.=.:|.l.u.lr =

and for a groundwater rising process:

FAY A - Ry me—ae)

= —= - (9.46)
Camt  Pmax by i)

_{‘.‘i..':'.ll' [ — Mnme)
Al I;-'r"ln:n': -'r":l.l.u.l.'—_"u'_:l

Here two relatively simple expressions are developed for the corrected time resistance. These
solutions are numerically stable and are characterised by a good convergence behaviour and a
very small quantization error. Accordingly a 24 times smaller time step is developed (see figure
9.14, page 265) with application of the backward difference. Using larger time steps means a
substantial economisation of computing time.
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9.3 Tasks of numerical calculation

1. By means of one dimensional steady ditch flow calculate the position of free surface as a
function of x, the outflow from head water and the inflow to bottom water (see figure
9.16). Use five quantization elements.
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figure 9.16: stratified aquifer with steady flow regime

2. By means of one dimensional steady ditch flow calculate the position of free surface as a
function of x and ¢ (0 to 2d), the outflow from head water and the inflow to bottom water
(see figure 9.17).

Use five quantization elements and five time steps.
Select the time step according to expected gradients.

e
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figure 9.17: stratified aquifer with steady flow regime
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3. In aaquifer a tunnel (underground) will be built parallel to a river (see figure 9.18).
Compute how does the groundwater condition for steady case change caused by this

construction.
Select a suitable rough quantization scheme.

L IHihm J..- Sm J..- Jom J
[ T i l
Hiangzuizs L
- 20m
=000 B m
I Sm

figure 9.18: tunnel construction in an aquifer

4. In a plain tract the polder area is to be protected against floods by means of a dyke
construction (see figure 9.19) (according to simplified scheme).
Dyke: k = 10"/, n,= 0.15, S = 0.002m™;
Sealing material: k = 10"/, n,= 0.05, So = 0.001m

a) develop the simple discrete scheme to estimate the groundwater flow processes.
b) How much water flows into the polder area per meter dyke length?

55

HW Sm

1 in

Dichiung Eermdichmg

1 m 10 m 1.5 m 1tk m

figure 9.19: dyke construction and core seal
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5. Expected groundwater flow conditions will be simulated for an induced recharge
waterworks (see figure 9.20).

Gegeben: V' = 0,00Lm*s™, Sy = 0,0000m~", ng = 0,25, k = 0,001ms",

Zii—my = 10m,
hygy = 10m. M = 15m_bh = 1m

a) develop the simple quantization scheme with three knots to estimate the groundwater
flow processes according to the given geometry.

b) calculate the water level zg() in the GWOT for time point t =1d.

W
idealer Fluss GWEER Bryprnen B

e

A

| Siien | S0m | 15m

figure 9.20: aquifer with river and well
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6. A numerical groundwater flow model is built for an induce recharge waterworks (see

230

figure 9.21) with parallel flow regime. The river is to be considered as idealized boundary
condition.

k= 1072 iy — 15m: 200 — 15m: S = 0,25: V = 504 g — 0,001=Lr: b — 100m;
kicorm = 5+ 1072 My am = 1m; B = 6,35Tm

Flimss Einannen Br GWHR

Hamgenl s

—

1

PLITH Slim Slim S0m S

Figure 9.21: influence of river and hanging inflow on the aquifer

a) select a suitable simple quantization scheme with maximal five elements, in order
to calculate the water level at gauge P in steady case most possible.

b) Formulate the balance equations at the centre of the elements and demonstrate it
in matrix form.

c¢) calculate the hydraulic conductivity for the flow.

d) How does the equation system and the result change, if the river is not idealized,
but imperfection a colmation are considered?
Outline the solution and roughly estimate the result.
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Chapter 10

10 Simulation programme system ASM
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10.1 Tasks

1. Simulate the drawdown for the given points with distance r and at time t, which results from
water conveying V in the well for following aquifer and state the result graphically.

k=1 1[]‘3%’: M=10m; 5 =0,001;a = % =0, 1o = 0. 25m; ’l.' = [].[115%'i
h, = 16m;
r = o 10m; 20m; 50m
i = 1min; 2medn; Smun: 10min:; 20mdn; 30min; 45midn:; 60muan; 90min: 120min
2. Simulate the drawdown at point (r = 10m) for the above mentioned aquifer every 10 minutes

until maximally 100 minutes, if that flow rate of conveying well is subject to following stagger
time. And plot the solution.

Volumenstrom [—"] 0,005 (0,010 0,015 10,0200 0,025 | 0,030 0,000

Firderbeginn [min| | 0 10 20 30 40 50 60

3. A foundation pit should be lowered in an aquifer near a river. The centre of the foundation pit
is 100m far away from the river; the drainage well is 80m. Three wells are arranged parallel to
the river, which are 25m distant from each other. The diameter of wells rp = 0.3m and conveying
capacity is V= 0.015m’/s
The width of the river is B =20m and a colmation layer
kK’ =3-10%m/s; M’ = Im.
The properties of the aquifer:

b=>5- 1{}_4%: ng=0,20; h, = 15m; M = 20m.

Will a drawdown of 2.5m be achieved in 10 days in the centre of the foundation pit?

4. Please apply simulation programme ASM to check whether the centre of the foundation pit is
drained after 7 days with conveying capacity of V = 0.01m’/s, ro = 0.30m and a security of 0.5m
(see figure 10.1).

5. A constant flow rate of 25 /s is conveyed from a well, which connects an ideal river

(Brgioom,500m)). The well has a radius of ro = 0.35m. The aquifer is characterized by the following
parameters:

hy, =15m. M =1Tm. k=1-10"3—_S; = 0,0002m™1, ng = 0, 25.
LY
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Simulate the final steady state (the portion of temporal functionality should be smaller than

0.001) for the point (P200m,600m)). From when to calculate?

V= 0,01m3s!

Fluss l Spundwand | Brunnen Baugrube
......... Ausgangsgrundwasserstand T\ f )
1 .
Kolmationsschic ' Tiefe = 10m
: inatmnswh]cht : M =23m
M =1m k= g !
k' = 1-10%ms" a1
S ,=0,0001m" | h, = 20m
n,=020 ]

P77 7777777777777 7l 777777
T > 50m I om

figure 10.1: aquifer with well and foundation pit

6. Simulate the following one dimensional groundwater flow:

a) By means of one dimensional steady ditch flow (see figure 10.2) simulate the position of free
surface as a function of x and investigate the outflow from head water and the inflow to bottom
water. Use five quantization elements.

el = D10 st e T Py LT R
— " _“_q x . s ol * " s o ]
v k.= 6107 ms? ; - .. ¥ 4 - . im SE
= ' — : I L y & L] B " o
- L L) . . - =, & L " L 4
- dui] k= M0t ms? [hien i E
L - e L ¥ L
S0m

figure 10.2: stratified aquifer with steady flow regime

b) By means of one dimensional unsteady ditch flow (see figure 10.3) simulate the position of
free surface as a function of x and time .
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7. In a aquifer a tunnel (underground) will be built parallel to a river (see figure 10.4). Simulate

how does the groundwater condition for steady case change caused by this construction. Select a

suitable rough quantization scheme.

. Ichl 10°m’, n = .{]_ 15[_'{ -—

.-.I_ k,.=IlU" 1[I5'| I L g - T
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v L7 k610t met |+ oo il e S U s 100wt n =023
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Il B ke 110t mst [ T i i 18,=1-10"m, n=0,15]]

figure 10.3: stratified aquifer with unsteady flow regime
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figure 10.4: tunnel construction in an aquifer
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8. In a plain tract the polder area is to be protected against floods by means of a dyke construction
according to simple scheme in figure 10.5.

a) Determine the time, when a steady flow regime appears, if the flood stands 5m over normal
for long time.

b) How much water flows into the polder area per meter dyke length?

Dyke: k= 10"/, n,= 0.15, So = 0.002m™;

Sealing material: k = 10"/, n,= 0.05, So = 0.001m’

55 im

HW 5m

hm

Dichiung Kemdichiung

1 m 10 m 1.5m 10 m |
|" HE HE "I‘ *

figure 10.5: dyke construction with core seal

9. Model the following horizontal aquifer by means of program system ASM, which is limited on
the right and left side by two perfect complete receiving streams with a water height of 50m. The

aquifer possesses a thickness of 20m, a transmissibility of T = 0.01m?/s, a storage coefficient of S
=0.001 and a porosity of 0.1. A well with a surveying capacity of V = 0.05m’/s lies in the centre

of the model area.

c) Simulate the water level distribution (contour line) after one day well surveying.

d) Graphically place the water level hydrograph curves at the well every 200m (parallel and
perpendicular to the receiving stream).

e) Compute the water balance for the model area after one-day surveying, as well as the inflow
from left receiving stream

f) Check the hydraulic system of the task of ¢) the influence of the local and time quantization
increments and solution methods. First plot the hydro contour line after one day and compare.

236



237



Part 111

System theory and Modelling
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Chapter 11

11 Fundamentals
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The system theory makes up the theoretical frame, with which the control- and feedback control
engineering can be scientifically investigated. The application of this theory in the water
management is particularly important for the process analysis, i.e. for the modelling, as well as
for the data extraction, transmission and processing. The system theory yields the fundamentals
for the terms information and system. The introduction of information concepts for physical or
chemical data enables the possibility to apply different methods of computer science, cybernetics,
mathematics and electro technology in planning and realization of water management
monitoring-control- and automation systems.

11.1 Model classification

The modelling or the process analysis can be carried out in theoretical or experimental way.

The physicochemical processes are analysed and mathematically formulated under the help of the
scientific laws in the theoretical modelling and process analysis. In this way the model
structures, if possible, the model parameters of the internal influence mechanism are
determinable. Analysing the objects takes place from inside to outside. The mathematical models
are scientifically justified.

The input- and output signals of objects are measured and evaluated in the experimental
modelling and process analysis. Natural or artificial test signals are applied. The analysis of
objects takes place from the outside.

The disadvantages of theoretical modelling and process analysis are unreliability with
insufficient process knowledge and high expenditure with complex processes. The disadvantages
of experimental modelling and process analysis consist of the only selective model validity in
contrast to the necessity in the real experimental process and the difficulty of the scientific
interpretation.

Usually it is favourable to combine both methods and to a large extent the model structure are
theoretically and the model parameters are experimentally determined.

The justified models play a dominant role for the migration processes. The experimental
modelling above all gains importance lately. The results of the experimental process analysis, the
transfer functions, are usually difficult to interpret or physically imagine with the real processes.
Therefore this method often comes across baseless scepticism.

Like migration processes models the computers, hard- and software, can be also assumed as
models (see figure 11.1). An important problem, which arises during processing of migration
problems on computers, is the coupling of migration models to models on computers. In this
connection the computer is regarded as simulators for the migration processes. However the
coupling is impossible trouble free, if the models of simulators are not identical. Such differences
arise e.g. in the consideration of the arguments (continuous, discontinuous) or the allocation of
parameters and variables of state. In these cases an approximation must be accomplished between
the two models.
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figure 11.1: coupling of migration- and simulator model

In investigation area the model basis contains different mathematical models of dynamic
procedures, chemical processes and biological phenomena, i.e. the underground flow processes
with the coupled material -, energy -, exchange -, and transformation processes as well as the
migration processes in soil- and groundwater region. Thereby basis is generally nonlinear, and
coupled material circulation. Simplified, aggregate models can be found for special cases.

KRUG classifies the mathematical models into the justified and describable models (see
figure11.2) according to the model development background.

| Mathematische Modelle |

///,/\'\

| Begrimdbare Modelle | [Bc:«uhmihharu Modelle

|| ey

Theoretische | |[Halbempirischg | Empirische

Analvtische Algorithmische
Modelle Modelle

Figure 11.2: model classification by KRUG

The describable models are used e.g. for ecological systems and population problems. For the
modelling of technical systems the class of the justified models is meaningful.
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These are classified in:

e linear - non-linear

e continuous - discontinuous and

e dynamic - static

The question of modelling is in connection with the process control extremely important. The
achievable quality of the control- and feedback control task solution depends particularly on
whether sufficient qualitative and quantitative knowledge of plant controlled system, here the soil
and groundwater region, are available. The concept of modelling must be considered closely

connected with process analysis. TOPFER/BESCH suggests following classification principles
for model application in the automation technical investigation area.

Model Classification according to:
e Model extraction method

Theoretical model extraction/process analysis (laws of nature)
Experimental model extraction/process analysis (experiments)

e Model purpose of use

Construction-, calculation-, behaviour model
handling-, function model

e Model notation

Mathematical models in equation form/parametric models (equations)

Mathematical models in graphic form (signal flow chart), non parametric models (curve, pair of
variates)

Physical models (analogy model, graphic model)

e Model conclusion

Static models
Dynamic models

e Model adaptability
Prediction models
Adaptive Models
Adapted Models

e Relationship of variables
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Deterministic/stochastic models
Linear/non-linear models

e Model validity

Type models (for classes of Objects)
Special models (for concrete object)

The term model is usually not used uniformly. We can understand it as a triangle relation
between model, object and subject. The model is characterized not only by, about what the
model is, but also by for what it is. The object is also denoted by model original. The relationship
between model and original is always a kind of image relation. The quality of a model is
measured by

e rclative compatibility in view to the subject

e rclation fidelity of the image and the behaviour

e application simplicity

The status of process analysis, model and simulation within the scope of control and regulation is
shown in the following figures 11.3 and 11.4. Thereby the model formulation of the soil- and
groundwater processes should be understood in further process analysis. This can be also called
procedure modelling. In contrary the progress of original process is reproduced in the simulation.

The necessary parameters and variables of state are communicated to models and the process
cycle starts.
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figure 11.3: devices- and technical programming realization
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11.2 Methods of process analysis

By means of process analysis methods a mathematical description of the behaviour of transfer
elements is to be extracted. This process is also denote by modelling. These models can be
attained in two different ways, on one hand by means of theoretical, on the other hand by means
of experimental Process analysis. While the theoretical process analysis yields the model
structure, the related parameters must be determined or improved by the experimental analysis. In
contrast to the theoretical proceeding an investigation of the output signals takes place as system
response to input signals in the experimental process analysis. Both methods form a unity and

complement each other, because an experimental analysis without theoretical advance
information and a theoretical analysis without experimental supporting are hardly feasible.

11.2.1 Theoretical Process analysis

With the theoretical process analysis based on internal structure the transfer elements are
tempted in order to find the mathematical descriptions (models) between in- and output variables.
Transfer functions, which are formed on the basis of the theoretical process analysis, are always
justified by natural laws. They always possess physical or chemical bases in water management
application.

The characteristics of the theoretical process analysis consist of the fact that:

® the model can be already carried out before the practical realization,

® the analysis results with same process type are transferable,

® the connections between technological and constructional data remain,
® the process determinant variables are identified in the system and

® important statements about the model structure are attained.

The difficulties of this method consist of the fact that:

® the expenditure is very high and the models are complicated,

® the necessary process parameters can be achieved often very hard and only inaccurately,
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® the proceeding is poor with respect to algorithm and

® the physicochemical process must be acquainted sufficiently.

For setting up mathematical models within the scope of theoretical process analysis a fact has
been proved that, large systems by division into subsystems and then by individual balance
equations (mass-, energy and momentum conservation law as well as source- and sink activities)
are analysable.

11.2.2 Experimental process analysis

The experimental process analysis in contrast to the theoretical assumes the investigation of
system in- and output signals. The systems are thereby regarded as transfer elements. Artificial
experiments are in progress at the original system, and special attention must be dedicated to the
choice of input signals. If the execution of experiments is not possible, also natural phenomena
(e.g. flood waves) can be used as database. We also mention that the experimental process
analysis checks the systems from the outside.

The methods of experimental process analysis are also known as black box method in
cybernetics.

Both methods form a unity and complement each other, because an experimental analysis without
theoretical advance information and a theoretical analysis without experimental supporting are
hardly feasible.

In table 11.1 some selected characteristics of the two kinds of process analysis are compared.
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11.3 Signal representation

Processes can be characterized by means of signals. In case of water management processes it
means that these can be described by in- and output variables (e.g. water level, flow, chemical
concentrations, temperature).

We call a function carried by physical variables signal, if it has a parameter, the image function is
a variable of the physicotechnical space. In principle a signal is represented by a four dimensional
function x = f{x, y, z, t) mathematically. In the mathematical description of signals we consider
the double meaning of symbol "x". It acts as general signal note and as character of local
coordinate. Often it is more favourable to use as abbreviation of each physical variable than
signal characteristics. Signal Parameters are called information parameters, and physical
variables are signal carriers, by which the signal is carried. Examples are specified in table 11.2.

Table 11.2: classification of information parameter and signal carrier

| Anwendung | Informationsparam. |  Signaltriiger |
Elektrizitit 220V elektrischer Strom
14 elektrischer Strom
Hydraulik 10 Flusswasserstand
lm* Wasserstrom
Thermik 27K Wirmepotential
LEW Warmestrom

In communications technology such signals are used e.g. in the form of voltage states, current
and power changes. According to above definition signal and information concept can be also
applied in other technical systems, like here in water technical processes. For example the water
level, the flow rate and the temperature also appear as signal carriers analogously to current and
voltage. Therefore the water level is expressed as three dimensional signal x = f(x, y, ¢). In
addition, chemical material concentrations are conceivable as signal.

For more simple representation usually only time is mentioned as independent variable in the
following consideration. This should be without loss of generality. The implementations also
apply exactly to the dependence concerning local coordinates.

The description of signals can be done with a diagram and by means of mathematical functions.
The signals are usually defined with a start time 7 = 0. It is a matter of relative time to an event. In
the mathematical description the original procedure in the so called time domain is usually
distinguished from the transformed procedure in complex variable domain. Common
transformations for signals are FOURIER- and LAPLACE transformation.

Different representations have proved their worth for the mathematical description of technical
signals. The basic signals are of great importance (see section 11.3.1 basic signal forms, page
295), since they are the basis of all arbitrary signal forms. By means of basic signals arbitrary
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signals can be generated (see section 11.3.3 signal synthesis, page 301). Likewise arbitrary signal
forms can be decomposed into these basic signals (see section 11.3.4 signal analysis, page 301).

11.3.1 Basic signal forms

The most common basic signal forms (see figure 11.5) are the identical magnitude, sine
function, step function (unit step) and the DIRAC impulse.

Identical magnitude Sinusoidal signal

o) x=k x4 x=ksinimt)

L
w

Bar signal DIRAC impulse
_ x t=1 i t=0
Nk = =% X =
o, t=0 o 1=10
o ar

L 3

-

figure 11.5: basic signal form

The unit step is a normalised signal with step height (step height = 1) and is represented by 1(¢).
The DIRAC impulse only affects at # = 0 and has an infinite step height there. Unit step and
DIRAC impulse are connected with each other mathematically by the integration or deviation.
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11.3.2 Application of selected test signals

Test signals can be effectively used for the execution of the experimental process analysis (see
figure 11.6). With these a special experiment must be accomplished to the real object. It is
possible under different technical or technological conditions that only special test signals can be
used. Since the same system description develops independently of test signal type and the
different descriptive models are transferable, there are no restrictions in the experimental process
analysis method.

Apart from the application of these special test signals the system reaction of natural events, i.e.
natural signals, like flood waves, precipitation events etc. can be also drawn on for the
determination of transient characteristic. This will be realized by the application of faltung
operation (see to section 12.3 arbitrary transient characteristic, page 355).

There are following special definitions for the test signals according to TOPFER, whereby the
auxiliary term "unit -" always contains a normalisation to the value one.

11.3.2.1 Impulse function

The impulse function is defined as:

0 fir L=
Teli) = 4 _L fir 0 < f < Af ¢ i11.1)
M

0 fir i = Ad

. E

whereby At is the impulse width. The area of impulses amount to:

J.r_
A= /..",[f]-'” i11.2)
|

The area for a impulse with constant height and a definite impulse duration:

A=mr, Al i11.3)

The impulse area embodies an appropriate effect in form mass- or energy deposit. A finite pulse
width will be always available with technical impulses. If the pulse width is smaller than a tenth
of the smallest time constant (A7 < 0.1r) (see section 12.2 second order transient characteristic,
page 340), then it can be regarded as an approximately ideal impulse.

252



If we presuppose the fact that the area remains constant, and for At — 0 the pulse amplitude must

approach to infinite xe — oo (cp. also see section 12.2.3 DIRAC Impulse as input signal, page
349),

lim .- A=A il1.4y

Tp— i

0 fir =10

Telll = § = fir =10 ¢

0 fir =10

whereby the impulse area has a definite value:

A= [.?',.[.fjf.f.f (11.5)

the so called DIRAC impulse, also designated as unit impulse, arises when the impulse area is
normalised to value one:

0 fir ¢ =0
- Tell]
o) = liJ =4 ~ fir i=0 ¢
0 fir ¢ =10
o
Asipn = /c‘f[ﬂlm =1 i11.6)
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11.3.2.2 step function

The step function is defined as:

0 fir =1
r () =
Te, Hr & =10

If the step height is normalised, we get the unit step:

- 0 fir <0
(1) = 2 (11.7)

Ten 1 fiir >0

Please note that the bar signal already takes value x. at the time ¢ = 0.

11.3.2.3 ramp function

The ramp function, also designated as slope function, is defined as:

0 fir =10
Tall) =
c-f fiir =10

A unit function can be also generated here by normalization. The unit ramp function:

0 fir £=0
Eofiir £ =10

(i) = .r'r-i;U

Among the different illustrated test signals, in particular the unit signals, such connection exists
that they are transferable with each other by integration or deviation (see table 11.3).
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Table 11.3: relationship between different basic signals
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11.3.3 Signal syntheses

Several input signals x. are additively merged to an output signal x, at a mixing place in the
signal synthesis (overlay).

n
.rl.-| = E .rr-f [ | |"-'I:|
=1

The output signal can be determined based on mathematical equation of the mixing place by a
signed addition or by means of graphic methods (see figure 11.7).

11.3.4 Signal analysis

The signal analysis of arbitrary signal forms can be achieved via a decomposition in basic signal
forms. The most common method is Fourier series decomposition, with which periodic signal
sequences are approximated by different frequencies sinusoidal oscillations. A practically well
manageable method with for deadbeat signals, i.e. one time expiring signals, is the approximation
through temporally staggered signals. In the following the graphic method should be described,
since in contrast to mathematical one it is substantially more simply manageable and more
descriptive.

The first step with signal analysis by means of bar signals consists of the fact that arbitrary time
function is approximated by a echelon form signals (see figure 11.8). The time of echelon flank
and the step height should be selected in such a way that the smallest mean error occurs.

It has to be proved the integrals of the original curve and the step function draw near. It means
that the same areas must be represented by both curves (see script for lecture groundwater
measuring technique, section error calculation).

Arbitrary signals can be also decomposed into a sum of impulses, particularly into an infinite sum

of DIRAC impulses. This leads to faltung integral method (see section 12.3 arbitrary transient
characteristic, page 355).
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Here it should be pointed out again that the exemplary signal representation is applicable to all
arguments as time function. The special place dependence in x; and y, direction plays a important
role in soil and groundwater range processes as well as in contaminated site treatment.

11.3.5 Quantization

The display format of signals can be classified according to different criteria. With respect to
technology we differentiate signal classifications according to information parameter
quantization and according to independent variable quantization.

In the classification according to information parameter quantization we get:

e analogy signals, whose information parameter can be assumed any intermediate value
in a metric magnitude and

e discrete signals, whose information parameter can be assumed only definite (finitely
many) values within certain limits.

The two mentioned classification principles can be also combined and we get the display format
shown in the figure 11.9.

The following subdivisions can be made for the class of independent variable quantization:

e continuous signals, for those the information parameter to any value
and

e discontinuous signals, for those the information parameter can be only indicated for
finitely many values of arguments.

Some measuring instruments and methods are specified in table 11.4 as examples of appearances
of different signal forms.

260



Quatization of independent variables

kontinuierlich diskontinuierlich

o

=

=

=

B =]

= =

= [

= =

2 =

-

=

=

=

=

£

=)

b=

__' A
2 X
2l ]
s | 2

T [l T
A .
=

=

=

=

figure 11.9: representation forms of signals

It is still pointed out that the use of term cannot be always kept exactly as the German industry
standards specified. These will be after all conditional due to different application of some terms
in the foreign language literature. Thus there are no clear separation between the terms "discrete"
and "discontinous". The word "discretisation" is often used for "independent variable
quantization". Also the term "digital" (digital signals) is often used for discrete measured values,
if they are indicated by means of number tablets. Digital measured values are rightly measured
values from an information parameter quantization, whereby only the quantization stages "0" and
"1" (or "0" and "L") are allowed.

Table 11.4: Measuring instruments and methods and signal forms
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Signalform

Elektrotechnik

Geohydraulik

analog-kontinuierlich

N-Y-Schreiber
Plotter

Schreibpegel

analog-diskontinuierlich

Pumktschreiber
Fallbiigelschreiber

Tiefenlot

diskret-kontinuierlich

Digitalvoltmeter
i Stufenverschliisselung)

Widerstandsmesskette

diskret-diskontinuierlich

Digitalvoltmeter
i£eitverschliisselung )

Brunnenpfeife




11.4 Transmission systems

The following methods serve the determination of dynamic behaviour of undisturbed systems.
Since this is only technically idealized possibility, it must be required that the input signals
substantially dominate compared to the disturbing signals.

Further important prerequisites for application of the methods are:

e the system is undisturbed (disturb << wanted signal).

e the system behaviour is linear.
e the system behaviour is time-invariant.
e the system has only one input- and one output signal.

e the system behaviour is describable by concentrated parameters.

In the system theory, particularly in connection with the experimental process analysis, each
process can be represented as so called "black box", which is only characterized by the relation of
in- and output variables. This "black box" is then designated as system.

A system is always identified by the boundary to its environment and coupled information
exchange (see figure 11.10). With respect to the system theory we differentiate between concrete
and mathematical systems. A concrete system is a spatially delimited part of reality, including
some selected connections in its internal structure and its environment. The mathematical

systems contain variables, equations or operators.

iy
=

Eingang Ausgang

Svstem -

b=

Umgebung

Umeebun

figure 11.10: system with its connection to environment
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11.4.1 Mathematical description

Different methods emerge in the description of systems. The approach in connection with
technical systems as transmission systems is most widely used. Each system is identified by a
input quantity, which is a quantity dedicated by output variables (see figure 11.11). This
functional connection between the out- and input variables is called transient characteristic.
In the following for each case only the relation of a input- or an output variable is regarded.
System with several in- and output variables, so called multi signal systems, can be treated with
coupled equation system method.

Ubertragungsverhalten

4

X,
o— / —0

figure 11.11: transfer element

The description of the systems by the influence in- and output signals can take place in diverse
forms. The most common is the mathematical equations and the time response diagram of step
response function. Three kinds of definition equations are used for the description of transient
characteristic. According to the basic signal relation, which are applied at input, we get the
transit-, weight- and transfer function:

e The transit function h(t)
we get if a unit bar signal is applied at input. This is also designated as step response
function:

.“”:Irll =Ty To=1[t) | | | |f_|]

e The weight function g(t)
is yielded if a DIRAC impulse act on input, and is also designated as impulse response
function:

.r.lll:'rll = -"I-'I Te=0i1] [l | | |:|

e The transfer function G(p)

IS YIELDED FROM LAPLACE TRANSFORMATION DESCRIPTION OF OUTPUT
SIGNAL IF THE INPUT SIGNAL IS DIRAC IMPULSE:

Gipl = Xa | xo—pfann (11.12)
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We differentiate between the time- (original-) domain and the complex variable domain in the
description of the transient characteristic (see figure 11.12), with signals, and the transfer
function, a transformation is subordinated. The most common integral transformations are
FOURIER and LAPLACE transformations (see section 5.3.2 LAPLACE transformation, page
135). The advantage of the application of transformations consists of the fact that complicated
arithmetic operations can be usually simplified with transfer functions in the complex variable
domain based on four basic arithmetic operations. The disadvantage includes the poor
descriptiveness of the complex variable domain as well as the expenditure to transform signals
and mathematical models into complex variable domain and back again after solving the transfer
function (inverse transformation). While prefabricated correspondences usually exist for the
forward direction, the inverse transformation often proves more complex.

The designations of signals and transfer functions are lowercase letters in the time domain, in
contrast capital letters in complex variable domain.

Bild- bzw. Frequenzbereich

komplexes Eingangssignal Ubertragungsfunktion komplexes Ausgangssignal |:
XAp) Gip) X,(p) = G(p)- X(p)
] Hintransformation J | Ricktransformation I
| beliebiges Eingangssignal | | Gewichtsfunktion | .| Ausgangssignal
%At eit) x,(t) = g(t)=x.(t)

Original- bzw. Zeitbereich

figure 11.12: relationship between time- and complex variable domain

The FOURIER transformation and its inverse transformation are defined as:

FourlER-Transformation X {(jw) = I {xz(f)} = /.rl;lfje-'f*'rni'lf (11.13)

—

_ L[ |
Inverse transformation ()= F7U X (jw) = 7 / X(jwe™dw:  (11.14)

— 3

The LAPLACE transformation and its inverse transformation are defined as:

LAPLACE-Transformation Xip)=Lirit)} = /.?'i_lf_]f-”"f.ff (11.15)
III

- Je

Inverse transformation ~ x(f) = L= {X(p} = XipePdp  (11.16)

1
2mj

n'l—_.l.t.
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While the FOURIER transformation is favourable for periodic or periodised signals, the
LAPLACE transformation has been proved its worth for application to bar signals (e.g. switching
operation) and impulses (DIRAC impulse). Particularly the LAPLACE transformation is also
used for the computation of transient characteristic of arbitrary input signals (see section 12.3
faltung operation, page 355).

These three types, transition -, weight- and transfer function, the mathematical representation of
transient characteristic, are equivalent, since they are only different mathematical computation
forms for the same physical or chemical technical processes. They are therefore transferable with
each other by means of mathematical connection (see table 11.5). According to definition, an
integral or differential connection exists between unit bar signal and DIRAC impulse (also see
table 11.3, page 299), and the arithmetic rules for LAPLACE transformation (see section 5.3.2
LAPLACE transformation, page 135), yield the connections between different description types.

Table 11.5: relationship between different functions of transient characteristic
h{t) g(t) G(p)
i
h{t) hit) = [g{T)dr hii) = L™ {%EHM}
! )

g0 | glt) = —— glt) = L= G(p))
: i
Gip) Gip)=p Lihii)} Gp) = Lgli)]

The methods of experimental process analysis introduced in the following can be only applied
under definite conditions. Usually these conditions can be met in the water management
processes investigation. Advanced methods are subject to special literature or are still the
research subject nowadays.
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11.4.2 Basic transient characteristic

The basic forms of technical system transient characteristic can be described in proportional,
integral and differential forms as well as delay- and duration behaviour.

The system designations concerning the transient characteristic are done by capitalized initial

letters of the characteristic or by the system response pictogram on a bar signal at input, i.e. via

step response. Examples of the particular transient characteristic are summarized in table 11.6.

Table 11.6: transient characteristic

| Ubertragungsverhalten | Bezeichnung |

Beispiel

proportional r Hebelanordnungen
integral | Flllung eines Behilters (V' = consl)
differential D Druckstoli in Rohrleitungen
— Fillung eines Behalters (V' = f(i))
Verzdgerungsverhalten - )
| Ordnun. I Strémungsprozesse
. L ) .
N ( Rohrleitmg, Grundwasser)
_— Fiillung von Kaskadenbehilter
Verzdeerungsverhalten - s
) Ordnuna Iy [ransportprozesse
Lo L ) .
N { Rohrleitmg, Grundwasser)
Laulzeitverhalten Ty, Forderband. Mischrohr

These basic forms will be described exemplary based on some examples. More detailed
descriptions for 1% and 2™ delay elements are given in chapter 12 model regulation, page 333.

267



11.4.2.1 Proportional characteristic => P-element

Example: first class lever
Law of lever:

o Fo=—ly- Iy (11.17)

[ length of the fulcrum
F force at the fulcrum

If we set the forces as input- and the others as output signals, we get proportional transient
characteristic:

Iy

i
! IrI'I

o O i11.18)
T, =N r, (11.19

The transfer factor K can be determined either in way of theoretical process analysis from
geometrical conditions of the lever arms:

i s
g (11.20)

or by an experiment, the experimental process analysis, by means of known input signals, e.g. the
test signal unit step 1(t), and measured output signal. In this case:

R r
K== bzw. (11.21)
Ta

| (11.22)

The transient characteristics are determined by inserting the appropriate input signals into the
equation 11.19 as follows:

e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:

'“"i.'r.] = Ta |ze=1[t)
— K 1(1)

hit) = K (11.23)
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e weight function g(t)
In this case the DIRAC impulse will be used as input signal:

Qi) = Ta |r =80
gy = K- ali) (11.24)

e transfer function G(p)
The transfer equation of time domain must be transformed in complex variable domain by

means of LAPLACE operation in this transfer function:

Gip) = Xa | xo—pdam

— LIK - 8(1))
— K L5(t)!
Gp) = K (1125

Since only linear systems are regarded according to prerequisite, K = is const. Otherwise
L{3(H)} = 1.

11.4.2.2 Integral characteristic => I-element

Example: Filling procedure with constant flow rate
The filling of a container with surface area 4 by a constant flow rate V leads to a rise of water

height H in this container (see figure 11.13).

v

—]

hit)

figure 11.13: Filling procedure with constant flow rate
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If we check the dependence of the rising of water height H on the influent flow rate V, then we
find out the following relation:

V= A H (11.26)
|I.

V= v (11.27)
"oy

If we equate these two volumes and solve the equation respective to H, then we get:

t
1 .
H=—l[i'rﬁ (11.28)

For V = const.

H=—V.¢ (11.29)

If we consider again the system as transfer element with x, and x,, then

[}

Ty = h'/.rr. il i(11.30
o

This equation represents an integral transient characteristic with a proportionality factor K. This
can be also decomposed into a series connection (see section 11.4.3 combined transient
characteristic, page 326) of a pure p-element and a pure I-part.

For x. = const.
To=MN 101 1130
Also here the transmission constant K can be determined in two ways, by means of theoretical or

experimental process analysis. In the first case, equation 11.28, which was derived on the basis of
physical laws, is definite:

K (11.32)

| —
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In the second case, the experimental process analysis based on equation 11.30 yields under the
condition x, = const.:

vy, =K 1, (11.33)

a

~ T T
Kog, =2 (11.34)
iy —1in

Particularly if the unit step x, = 1(t) is used as x,, K can be determined by the straight line slope
Xa =Kt | xe=1(t)

(=TT (11.35)
For =0 and x,y =0,

R T
_||'1|_ — LI ra=1(t) [l |.7'f'|]

The transient characteristics are determined by inserting corresponding input signals into the
equation 11.30 as follows:

e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:

-'r”;'r,.l =Ty |z=1(t)
|I|
= h’/ 1(t) e
o
hit) = K - (11.37)

e weight function g(t)
In this case the DIRAC impulse x. = o(t) will be used as input signal:

gt} = Ta o s

i

=K [Hii_lf] il

1
glt) = K (11.38)

according to definition:
i

[ s(t)dt = 1
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e transfer function G(p)
The transfer equation of time domain must be transformed in complex variable domain by
means of LAPLACE operation in this transfer function:

Gilp) = Xo x—pysan
r|
- f_{h'/r’ii_.fj dt

1]
i

KL /a'u__w il — K- L{1]

1
Gip) =K - — i(11.39)
j.l
since here applies:
t
[ﬁm di =1 (11.40)
III
1
Lil} = - (1141
?

11.4.2.3 Differential characteristic => D-element

Example:

Transfer elements with differential behaviour come up in electro-technology and serve in control
practice to affect processes with a certain mass- or energy deposit in a definite objective. In water
management practice it appears in connection with oscillation phenomena such as water hammer
in pipes. Differential transient characteristic is characterized by equation 11.42.

o .
.J”=h-W i11.42)

e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:

"I”;'r.:' = Ty |re=1it]

L)
=R
il

hit) = I - dli) (11.43)
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e weight function g(t)
In this case the DIRAC impulse x, = 6(t) will be used as input signal:

”|:|I"| = Ta | §ed

501
e da(i)
it

git) = n.d. i11.44)

e transfer function G(p)
The transfer equation of time domain must be transformed in complex variable domain by
means of LAPLACE operation in this transfer function:

Gip) = Xa xo—Liai)

i)
- Lk di !

1o (il
Oy K (pL 1S — a(0))
i

Gip)=HK p i(11.45)

11.4.2.4 First order delay => PT;-element

Example: Filling procedure with variable discharge

If a container is connected with a receiving stream through a hydraulic resistance Rjyq, (€.g. gate
valve, pipe), the container will have the same water level as in the receiving stream after
infinitely long time. The container has a surface area 4, and the water level in receiving stream
and in the container are Hr and H respectively. The time dependence of water level H is wanted,
if the water level H;, has the value H,,,, over the entire period. H should be equal to zero at time ¢
=0 (see figure 11.14). Thus the following equations apply:
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figure 11.14: Filling procedure with variable flow rate

V=H A (11.46)
1 T
H=—L/i'fﬁ b, (11.47)
" n
g all
V=4 [1.48
di [ :
: Hipar — H)
i.=|:_ TLT J [||___1-.J:|
i;.lur.-f_ll
| i il . |:_Hu.lr|.1' H.]
dt  Rpgr

i H H 5 [
—
df HJ'.I;rrl'." HJ'J;,Irl'J'
afl

Az H"'”’”'W + H = Hys (11.307

If we consider again the system as transfer element with x, and x,, and then the equation is, 7 =
AZ : Rhydr:

i, i _
T-&+.r'r.=h.rr. i11.51)
i
This differential equation has the solution (see section 5.2.1 solution of differential equation,

page 111) for the case x. = const:

g = Kz, (1 e-'_+) (11.52)

Methods for the determination of the parameters K and T are described in detail in section 12.1
model regulation, page 334.

The transient characteristics are determined by inserting corresponding input signals into the
equation 11.51 as follows:
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e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:

-'r”;'r,.l = Ta |z=1(t)
= (1 e-'_'fl_') 1)
h(t) = K (1 f--'f":] (11.53)

e weight function g(t)
In this case the DIRAC impulse x, = 6(t) will be used as input signal. The weight function
is expressed as derivative of transit function:

dfii )
F?U_] = Ta |p=&t1= t_lrt. !
d (h‘ (1 e.-—-%-))
B il
;‘I.- |3
(1) = ot 11.54
alt) = e (11.54)

e transfer function G(p)

The transfer equation of time domain must be transformed in complex variable domain by
means of LAPLACE operation in this transfer function. Here we assume the differential
equation of transient characteristic (see equation 11.52):

Gipl = Xa | xo=rnpomo

ity . .
T—L + Ta = WiTa i(11.55)
it

the LAPLACE transformed form (see section 5.3.3 solution of differential equation with
LAPLACE transformation, page 141)

T p Xo— Tan+ Xo= LIK - (1)) (11.56)

mit Lydit) =1 Tap = ]

K

m i 11.57)

Glp) = Xa | xo—L{ar}=

11.4.2.5 Second order delay => PT,-clement
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Example: filling procedure of two cascaded containers with variable discharge

Two containers with the surface areas A, and Az as well as the water levels H, and Hs are
cascaded connected one after another. The first one is arranged as the preceding 1* order delay
behaviour example and connected receiving stream through the hydraulic resistance Rpyqr. ;.
Second is coupled to the first container through hydraulic resistance Rpyq->. The water level in the
receiving stream remains constant value H,,, (see figure 11.15).

h, (1) h,(t)

Rh:".lr':

figure 11.15: coupled storage cascade

The water level in 1% container results from the derivation according to equation 11.50:

i )
Aa H“Jm | i : + Hy = Hyox i(11.58)

or with T; = 4> * Ruyar.1:

1H,
Tf—’ Hy = Hpr (11.59)

Similarly the water level in 2™ container:

iy

As - Ripara—"

+|F.Ir5—.|”:| [ll{‘f]:l

or with Tg = A3 . Rhydr,gi

TJ@ .”;—H-:u [ll'i‘l:'

Inserting equation 11.61 into equation 11.59:

i Trrfh H.
Tlr ( : il :I Tgr”h + ”::‘. = H.'r.lru' (11.62)
il i
i*H. 1H;
TI Tﬂrflrlf-:u ; + |‘T| + Tl,l rlr_lr; + ”:5 = ”.'r.lru' (11.63)
2 i

If we consider again the system as transfer element with x, and x,, and then the equation:
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2 d "
TW;&@ + 17+ T-z]& + 1, = K, i11.64)
ii? i

This differential equation has solution (see section 5.2.2.2 solution of differential equation, page
125) in case of x, = const. The determination of the Parameter K, T, and T, as well as the
solution steps are described in detail in the section 12.2 transient characteristic with 2™ order

delay.
7, = K, (1 rﬁ) (1 ;--ﬁ) (11.65)

The transient characteristics are determined by inserting corresponding input signals into the
equation 11.64 as follows:

e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:

hit) = zq |a, 1t

M_r_]=h'(1 e-"’rT) (1 e-'_"!E) (11.66)

e weight function g(t)
In this case the DIRAC impulse x, = 6(t) will be used as input signal. The weight function
is expressed as derivative of transit function:

‘o dhit)
F?ln.lr.ll = Ta |p=8t= T
(K1) (1))
N i

=K | —+ — 11.67
gie) 1 ( T + P ) i ]

e transfer function G(p)

The transfer equation of time domain must be transformed in complex variable domain by
means of LAPLACE operation in this transfer function. Here we assume the differential
equation of transient characteristic (see equation 11.64):
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Gip) = Xa | xo—ryain

d*r _ T . ,
T'T'"Tﬂn + (T + Ty) Trﬂ + 1=K -1, (11.68)

the LAPLACE transformed form (see section 5.3.3 solution of differential equation with
LAPLACE transformation, page 141)

nry - !’2 XN —pergn v+ (T +Te) o p- Xy — 2 + Xy = LK - 501

i11.649)

with L{8(6)} = 1 and x.0 =0

NTh-p* Xa+ (Ti+Ta) p- Xa+ Xa= K |x, 11500 (11.70)

K
T|Tg-jf2+I;T| +Ta) - p+1 o

Wa | Xo—L{ait1)

K
o(pl = [1.71
\E) i1+T p - (L+Tap) [ ]

11.4.2.6 Duration behaviour => PT -element

Example:

The duration behaviour arises in transportation processes, but a change in the balance occurs, i.e.
in the case of pure transport without accumulation effect. Thus this process can be also described
by a coordinate transformation. This behaviour also plays an important role, if processes should
be considered together with different starting points. In these cases different starting points can be
convinced different durations.

The equation for this duration behaviour:

all) = K -xe(t —T7,) (11.72)

The transient characteristics are determined by inserting corresponding input signals into the
equation 11.72 as follows:

e transit function h(t)
According to definition x, = 1(¢) will be inserted. Thus:
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f"“J = Ta |ze=1{t)
— K1t T
A() = K -1(t — Ty) (11.73)

e weight function g(t)
In this case the DIRAC impulse x, = (t) will be used as input signal:

.-J,|:|I"| = Ty |ra=dit)
=N - r'JI:lll TjJ

gli) = K-8k — T4 i11.74)

according to definition:
i

[ Sl = 1

e transfer function G(p)
The transfer equation of time domain must be transformed in complex variable domain by
means of LAPLACE operation in this transfer function:

Glp) = Xy e ngsn
= LK -8t —T7))
— K- LI&(t — Ty))
S e R TTAY

G(p) = K- e eP (11.75)

the LAPLACE transformed form (see section 5.3.2 LAPLACE transformation, page 135):

LAJit—a)} =e L[] (11.76)

and L{5(1)} = 1.
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11.4.2.7 Overview of basic transient characteristic

An overview of different basic form of the transient characteristic step response functions is
summarized in figure 11.16.

The different kinds of the mathematical representation of transient characteristic, transition-,
weight- and transfer function, for the basic transfer elements are displayed in table 11.7.

Proportionales Verhalten Xg = k-Xg
‘e Xa | k., %e
t t
Integrales Verhalten %g= k| xedt
Xeg Xa . k. Xe
t t
e " i _ d Xe
Differentielles Verhalten Xa=
t
Xeg % a 1

Verziigerungsverhalten 1. Ordnung a=k(l-€ -1T) xg

1 1

e

xg ] '
= k, %
‘ 077
t T t
Verzogernmgsverhalten 2. Ordoung x a= k{l-etT, ) {1-eUT, e
X @ i A '
| | o
1 t
Laufzeitverhalten xg () = % (t-T,)
Xe Xa
T,

1 i
figure 11.16: basic forms of transient characteristic
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table 11.7: basic transient characteristic with mathematical description
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11.4.3 Combined transient characteristic

The interconnection of linear transfer elements can be ascribed to three basic types,
e the series connection,
e the parallel connection and
e the circle circuit (also designated as feedback or back coupling)

Transfer functions are shown in figure 11.7. And mathematical description is table 11.8.

i (Gilp)
? Gilp) > Gip) *—: Series connection
...................................................... -

aj circle circuit

_ ......... - - - = - G(Pj
- G(p) [ GAp)

BY b

figure 11.7: interconnection of linear transfer elements
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Table 11.8: composite transfer elements

(d)eey - (d)1o+ 1

(d)1o = (d)o SERY
- . % % - A VT 'y ) % . _._”._____.Iqu_._”.____;u | .
(d)oy + (d)vey = (d)sy | (36 ()W = ()6 | (1)1 . . = (1™ [RIILELH |
(" laheg = (@ Eyia)'d] ‘
T
(VT - (el Vey = (dyey | (080« ()00 = ()8 ::..s.E = (1)%E BB |

(e Fgla)'d

UONHUNISTUNTRALIDG

UO U MIT)

SUNYRE[EHUIII(]

| 1aes3umeyas
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According to the formation law of in series connected transfer elements the transfer function of
a 2" order delay element can be calculated as two in series connected 1* order delay elements
(see figure 11.18):

G(p)
_.} PT| | . F’T‘..-\. E—

X, “ X

figure 11.18: two series connected PT,-elements

l:f |: ' 'ﬁ'-|
¥ ] _—_—_—
Rye 1+ pTh
o o
Cralp) = T 9Tn
Gip) = Ghip) - Galp) (11.77)
. K K
14Ty 14 pTh
K
Gip) = k PT,-Glied (11.78)

1+ pT (L + pT)

The combined transient characteristic of parallel connected transfer elements can be generated
from the addition of individual transfer elements mixture in linear transfer elements. Therefore
basic transfer elements are occupied with the same input signal and the outputs are added at
mixing place, i.e. the elements are parallel connected (see figures 11.19 and 11.20).

For Pl-element:

Ghip) = Gplp) = K,

i

Galp) = Gilp) = —
p

Glpl = Ghlp) + Galp) (11.79)

K
2 i 11.%07
1)

Cp) = Gpilp) = Ky + ;
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figure 11.19: realisation of a PI-element

The transfer function for PI-element:

G ip) = Gpip) = K
Galp) = Gi(p) = 22

salp) = Grip) = 5

ff;;l:_p_] = I::';]I;_f.-'_] = fq. P

Giip) = Giip) + Galpl + Galp)

K,
Q(p) = Cprplp) = Ki + % +Ks-p (11.81)
?

The circle circuit (feedback systems), which appears in closed control process, is to be explained
based on filling level control. This regulation process (seeing figure 11.21) is avowed in
GRABER "groundwater measuring technique". We recognize that the forward directional
transfer element, filling of the container, has integral transient characteristic; the feedback
according to technical construction, float with attached lever and gate valve, has proportional
behaviour. So it results in the computation of total transient characteristic according to figure
11.17 (circle circuit, layout b) and table 11.8, page 327:
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X
o — = =

L

1

figure 11.20: realisation of a PID-element

Ghip) = Gplp) = K

Fa

Galp) = Gylp) = =2
P

Cy(p)
1+ Gyip) - Galp)

K2
—_F

Ra -
1+ ra Ka

Gp) =

. |
Ao 9

- l|’.-"|‘ .IhL-| : .Ihl.-:z - h.llh.:!.l +1

it T =
t+71p e

Gp) =

—F

(11.82)
(11.83)
(11.54)



This transfer function corresponds to a behaviour of 1% order delay element.

How to attain transient characteristic in experimental away is shown in figure 11.21, and it
corresponds likewise to delay characteristic.

;/’;; Route: filling procedure
Setting: lever and gate valve

X: actual water level H
W reference water level Hyax

3 Z: outflow V
"I" .
. y: inflow V
v, H,.. Xyt difference Hyax - H
R S— |
Z
Einrichtung Strecke
W ."E-.'. F :'- I X .
v
Hrﬂw

1

i i

figure 11.21: feedback system for water level control
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Chapter 12

12 Model regulation based on parameter
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Concrete models and the determination of their characteristics and parameters will be described
in the following sections. 1* and 2™ order delay elements play a special role for water
management systems. We find this behaviour in filling- and transportation procedure not only in
geohydraulics, in surface waters, as also in pipes.

Descriptive procedures are described in this section, which can be also partly graphically solved.
Computational procedures, which are based on method i.e. the adjustment of measured values in
regression functions, are treated in part [V indirect parameter identification, page 373. With these
procedures optimisation will be applied, e.g. least squares (MKQ).

12.1 transient characteristic with 1% order delay

12.1.1 Mathematical description

The behaviour of water management systems corresponding to a 1* order delay can be found in
all filling procedures with storage effect in connection with flow resistance (see figure 12.1). For
determination of the required hydraulic parameters e.g. the so called pumping tests are used as
filling attempts, which can be evaluated by means of the following described methods.

o —
=
-

figure 12.1: equivalent circuit diagram of a transfer element with 1* order delay

According to section 5.2.1 solution methods of ordinary differential equations, page 111, the
systems, which consist of a flow resistance and a storage capacity (see figure 12.1) can be
described by the following differential equation:

e
ROZS v — Kot (12.1)
df

ir,

T— + 1y = Nirell) mit T = R’
it
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The solution of this differential equation with the boundary condition, the input signals (see
figure 12.2) (x. =0 = X0 - 1(#)): (see section 5.2.1 first order ordinary differential equations, page
111):

v, = KTy (1 -!-'_‘5') (12.2)

hit) = ra s, 1= K- (1 F'_?I_')
Considering the impulse response g(t) is equal to the differential of step response:

_dhit) K o i12.3)
it T

g L)

The differential equation can be also solved by means of LAPLACE transformation (see section
5.3.2 LAPLACE transformation, page 135):

dr, L Kr,
L{T+F.rr.} = f{ T }
idr, 1
f,{ pr } + L {T.r,.} =L

[

——

[

r’ll
ik

‘n_v_p'

1 K
j.-'ulr. ':.'.".-|: Tar—n + ?.Ir :.I'”: = ?.Ir :.I',--: i12.4)
bzw. mit Ty =10
K Lir|
Lira}l == ——F
T (r+ 1)

The transfer function G(p) can be determined from this equation, while according to definition
we consider L{5(¢)} = 1 as LAPLACE transformed DIRAC impulse input signal.

. . K " =
Gip) = Lirat lnngsen= Xa e pfapn= T m) (12.5)

These results are already contained in table 11.7, page 325 and have been verified.
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v - L -
Xe Xg

0,632X g+
T
> >

K, xg

X
o i

figure 12.2: transient characteristic and circuit of a PT,-element

If such a RC circuit (see figure 12.2) shows a 1* order delay behaviour, then we can conclude
backwards uniquely that the 1* order delay behaviour of any system can be alternatively
reproduced by such RC circuit. The task of the experimental process analysis is to determine
these substitute parameters from the transient characteristic. This does not have to be absolutely
physically interpretable. These are parameters, which show the same behaviour in the equivalent
network as the original system. The equivalent network is a model original procedure.

The determination of the transfer factor K and the time constants 7 is necessary for clear
description of this behaviour. The basic approach of experimental process analysis enables it
possible based on a step response function, i.e. the clear regulation of these constants is possible

by original reaction on a bar signal.

The transfer factor K can be determined from the transfer element behaviour with 1% order
delay for infinite time:

ro= K1y (1 e--?"') (12.6)

with t — oo:

(12.7)
for a bar signal:
Fat=0 = Tet=nc [l:H:l

Thus the step response can be also written in following form:
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Ty = Tgae (1 e-“?') (12.9y

From the comparison between the input curve and the output curve (see figure 12.2) or also from
above equation we recognize that a proportional behaviour exists in infinite.

There are several ways to determine time constant T:

e determination of time, in which an integer multiple of time constant available

e determination of slope at zero point.
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12.1.2 Time constant from integer multiples

For the case that the time is an integral multiples of time constant:

. il .
TatonT = Tgae (1 — 7] mitn = 7= 01203 i(12.10)

For bar signal as input function applies by definition x¢o = X« and the following table:

n ='[T 0 1 1,2 2 3 1
x"f' 0 | 0,632 | 0,609 | 0,865 | 0,950 | 0,082
with
e L (12.11)
e

This table can be evaluated in such a way that we look for the point on the ordinate, where the
ratio X, / Xas 1S a certain value. According to the table a definite ratio between time ¢ and time
constant 7 belongs to this point on the curve (see figure 12.3).

x L
=
Ratio =1
Xa / Xaoo -+ |
[ ]
o)
[
= i
il ¥ 3 4 3 i 7
Ratio t/T

figure 12.3: time constant determination from its multiple
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12.1.3 time constant from slope

The time constant can be also calculated from the tangent at any point 7 . According to equation
12.9:

— T fiir t =0 (12.12)

08

Ratio
Xa / Xaoo

s

] 2 ; Il % |I1. :.l
Ratio t/T

Figure 12.4: tangent intersection and time constant

We can see an intersection with asymptote of step response function X, during setting up the
straight line equation for tangent. This intersection has a distance tscp, = 7.

Ta..

T

Tran a = Irh.l"ull:l Ta 0

bschn = T
Since the measuring errors are largest at the beginning of measurement series, i.e. at time zero,
we can also set the tangent at any place. Time difference between tangent point and intersection

with the asymptote of step response is then equal to the time constant, because the exponential
function possesses a constant slope (see figurel2.4).
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12.2 transient characteristic with 2"® order delay

12.2.1 Mathematical description

The behaviour of water management systems corresponding to a 2" order delay can be found in
all transportation procedures with storage effect in connection with flow resistance (see figure
12.5). The tracer tests are implemented to determine the associated hydraulic transportation
parameters, which can be evaluated by means of following described methods. Also here we can
assume the solution of an appropriate differential equation. According to the equivalent circuit
diagram (see figure 12.5) we can set up the following differential equation:

figure 12.5: equivalent circuit diagram of a transfer element with 2" order delay

ir
RiC M 4 gy = K ey (12.13)
it
. rf.I'”;g .
Ralla—— 4+ 10 = KWare 1214
i
with coupled conditions:
Tey = Ty, (12.15)
Te = T,
‘III'I =1 i
and the time constant:
I =R (12.16)
Ty = Rally

we get
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dr h
=" 4 2, = KyTe

i
[Tz%" + .l'”:| .
f\-g e
(TaBebra) e
T e (T ”I’-_+ *a) = Kz,
df fa
d2r, dr, i o
N nl'_.fﬂl + TITFI + TQT;I + o= K Kar,
Py, e, )
T|T3T;+Tlr'i_?"| +Ta)+xy= K, (12.17)

We get the solution of this differential equation e.g. through the substitution method (see section
5.2.2.2 differential equation of type b, page 125). The characteristic equation of the homogeneous
differential equation:

ad? 4+ bA+e=10 (12.18)
wobei o= T\ T,
b=T+Ts und

=1 ist.

with new constants d = b/a and f =c/a:

Mydd+ =0 (12.19)

| B
-
=5
%]

Ara =

With the solution of this quadratic equation we differentiate three cases depending upon radian
value. For the regarded technical systems here only the positive case, different from zero radian
plays a role.

* )
T = [, bew b® = 2. p-a

(T +T)* =2 (Ty Ty

Thus we get:
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T +Ts ."I T+Th\ 1
o V\2 T ) TT

b 1 f .
B : N+ 2 1T

1 / 7
= — T To) =4/ (T Ta)
T ( (14 Ta) =4/ Uh 2) )
=5 -h—Tat il - Ta))
P

Ao= ——
! T

This yields the solution of differential equation:

o = To(t) (h‘w‘f’T + h'ge-'_?r?) (12.20)

The constants K; and K, can be determined base on concrete initial- or boundary conditions.
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12.2.2 Unit Step as input signal (transfer function h(t))

For above transfer element the model parameters can be determined as the behaviour excited by a
jump, the step response, in the 1* order delay elements (see figure 12.6).

] a

R,

figure 12.6: Step response function and equivalent circuit diagram of a PT, T -element

The behaviour can be described according to the derivation and under the consideration of
excitement of a bar signal as follows. 2™ order delay elements, e.g. transportation processes, are
bonded by their convective portion at delay characteristics. Therefore generally another delay Ty,
i.e. a time lag, should be considered.

Assuming general solution of differential equation (see equation 12.20, page 342) under special
condition of a bar signal x.(?) = x. - 1(¢):

=T =T

Ta = Telt) ("""_T"LJF e ) (12.21)

ta= K- (1 r—f‘*) (1 r—e”‘) (12.22)

The proportional transfer factor K, both time constants T, and T, as well as the delay T; must be
determined on the basis of complicated structure parameter here. Again selected values of the
step response function will be used. The transfer function G(p) can be assumed following shape
for the 2™ order delay elements (PT,Ty):

Ke— e
3 p) = firTy £ T¢ So called model 1 12.23
W= a s T (12.23)
ey
i [!*’J — hF—JHE fiir TI — Tj_) So called model 11 (1224
1+ pT)

The distinction, which type of model deals with appropriate measurement series of characterized
transfer element, is achieved by STREJC in table 12.1.
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Figure 12.1: classification of model type according STREJC

Modelltyp Zaw it
xl’l x-’l-

| (0, 264 0104

1T = 0264 | = 0104

The transfer constant K again results from the behaviour in infinite:

Tar—me = W - T, dae ™ =1

f - -J‘II'I.K.

Fein

and thus:

-7 BT
.1',,=.?',,._1[:1 e-'_T'lL)(l e__fL) (12.25)

The delay Ty can be read directly from the diagram of the step response (see figure 12.7). The
occurrence of a delay must be considered as shift of time axis. The appropriate variables (x,m,
Xawr 11y Xao) can be taken from figure 12.7.

figure 12.7: parameter of step response
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12.2.2.1 Model type 1

In this type of model, the case of different time constants T; # T, the conditional equations must
be found for both two time constants. According to the literature [STREJC] it is known that the
value X, 07 = 0.7 X, is nearly independent of the ratio of two time constants, but is strongly
dependent on the sum of two time constants. With an error smaller than 1.7% we can apply:

forree = 1, 2(T1 + T3]

0,

T|=m (12.26)

=1
ol ﬁr

figure 12.8: determination of parameters T, and T,

On the other hand we can assume that the function value X074 = X0, 7xax)4) according to figure
12.8 only depends on the ratio T,/T,. The ratio T»/T; will be determined from table 12.2.

Thus two equations are available for determination of the time constants and the task is uniquely
solvable.

It is still to be noted that these transfer elements for large time (t >> Tyw) approximately behave as
1* order transfer elements. Particularly with large difference of time constants the later process is
dominated by process with time constant T, since the processes with time constant T; already
faded away.
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Table 12.2: time constant ratio dependent on step response

X a7/ Ta
X, I
0. 260 (1, 00
(0, 200 1,10
0,174 20
0,150 n, 33
0,135 (1,40
0,131 1,50
0. 126 1, 60
(0,125 1,70
0,124 a0
0,123 1, an
0,123 L. 00
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12.2.2.2 Model type 11

The type of model II is shown in table 12.1 (T1 = T2, i.e. only one time constant), so we can
determine the necessary parameters by table 12.3. In this case the transfer function can be even
extended to arbitrary integer exponents 7n:

, K erl:
G p) =<

Ll—,.u]"lr fiir Modelltyp 11 (T} = Ta) i(12.27)

The determination of K and Ty is independent of model type and can be achieved as described in
model type I (see page 344).

Table 12.3: parameter estimation for model type II

0] Ty | LT

X, e | T T
] il 0 0 0 1
20,104 0.264 1 [ 0,282 2.718
20,2181 0,323 2 | 0,805 ] 3,605
10,310 0.352 3 | 1425 [ 1,163
A 04101 0,371 1 2,100 [ 5110
60,493 0,384 5 | 2.811 [ 5609
70570 0,304 6 | 3.540 [ 6,226
sl0.6421 0,401 7 4,307 [ 6. 711

Base on table 12.3 we have the possibility to determine the time constant T in different ways. By
averaging these values we can obtain a value with a smaller error. This is important since
measuring errors of experiment also completely shrink in the parameter estimation.
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12.2.3 DIRAC impulse as input signal (Weight function g(t))

Apart from the possibility for the determination of transfer parameter treated in the preceding
section, a further way is described here. The parameters of systems, i.e. time constants, transfer
factor etc., should be invariant compared to input signal, since linear systems are considered here.
This circumstance allows to use different test signals for description of the systems, which
however always lead to the same transfer function. In technical test practice usually one or other
input signals will be more feasible. In DIRAC impulse the impressing of a very large impulse
(energy- or mass deposit) in a very short time interval AT << T (proportional to smallest appeared
time constant) is observed. The introduced method here yields expedient value up to a pulse
width of AT < 0.1 T. Thus the circumstances are displayed in figure 12.9.

X H‘.l
F*_ -t l Et
At
] : | S| =
Rl J_ R—.: J-

figure 12.9: 2™ order transfer element (PT>Ty)

In contrast to the preceding section here only transfer elements with same time constant are
considered (see equation 12.28). This is designated as model type II in the section 12.2.2.2.

KM

Grip) = (12.28)

(1+pT)"

According to the relationship of the two output values X,(Tm)/Xa(Tw/2) (see figure 12.10)

the parameters n (number of coupled RC elements = exponent of the denominator polynomial)
and T (time constant) will be determined based on table 12.4. The time Ty, is the point which the
impulse response function, the weighting function g(t) reaches maximally (see figure 12.10). A
possibly appeared delay is also mentioned here. T,,/2 stands for half time value to the maximum.
T, and T,/2 refer to time axis with T shifted.
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X Tm—

figure 12.10: impulse response function g(t) for a 2" order delay element

table 12.4: variables of impulse response function for 2" order delay

xrll;rr.“ .] n L [T -f'rll;T'r- U

(T, /2) T (AK)
1.213 [ 2] | 0,368
1471 | 3| 2 0271
1.785 | 4| 3 0224
2165 | 5| 4 0.196
3603 6] 3 0.175
3185 | 7| 6 0.150

The transfer constant K can be determined by the fourth column in table 12.4. Base on variable

A, the impulse area (A = X, - At), technically realizable impulses can also be evaluated with real
AT< 0.1T.
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12.2.4 Tasks of experimental process analysis

1. Compute the drawdown curve for a conveyor capacity V = 0.005m’/s by means of
transfer element method with a flow rate of V = 0.015m’/s, if a pumping test yields
following values (see table). Depict the result graphically.

Zeit [s] | Absenkung [m| Zeit 5] | Absenkung [m]
320 0,63 2185 (0,92
426 0,60 DE50 (1,96
h64 0,73 3715 (0,99
T3 0,77 45340 1.03
076 0,51 6302 1. 06
1279 0, 85 =202 1. 10
1673 0,58 10,000 1.14

2. Please determine the transfer function including parameters for the following
measurement series, which is originated from a supply function:

t[min| | 0] 1 2 1 8 15

\ [2;] olo1 |01 |01 [o.1 |01

slm| JO[0,1]0,08]0,13]0,19 (0,25

3. The following dependence between flow rate V and groundwater drawdown s is found for
groundwater position in a pumping test:

\ [Ei] 0 | 0,05]|0,05|0,05]0,05|0,05]|0.05|0.05]| 0,05
slem] |0 |0 |3 |8 |20 |30 |35 |37 |38
tfmin] | ~1{0 {1 |2 |4 |10 |20 |40 |100

Calculate the drawdown process with a flow rate of V = 0.15 m’/s. Apply the method of
transfer functions. Plot the measured value and the result.
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4. In pumping test two different position P1 and P2 are far away from the infiltration well
with a distance of r; = 350m and r, = 1000m respectively, and following concentrations C
of positioning tracer are measured. A steady concentration Cg) = 10g/m’ is added in the
infiltration well.

t[107s] 0.5 [1.0[1,5 |20 |25 |30 |35 [40 [45 |50 |55
Cop [5]  204 [ 2.7 | 3,05 | 3,55 | 4,80 | 6,50 | 7,95 | 8,70 [ 9,10 | 9,20 | 9,25

Cpg [Z=] [ 2.4 |27 3,04 3,32 | 3.57 3,81 | 4,01]4.20 [4.37 | 4.53 | 4,67

m

Calculate the transfer functions for this system.

5. Ina tracer test 50kg concentrated NaCl solution infiltrates Smin long into the soil at the
well.
Calculate process of a possible pollutant dispersal, if average 1000kg solution had arrived
into the soil. Place the measured values and prognosticated values graphically.

tlman) || 24 [ 30 |35 |40 (42 |50 |60 |70 |80 |90 | 100|120

-1

[y ]
[
a2
e
[y
cre
g 4
et

"["".+"'] 0 [2,0(70]0,7]0.8

6. In a column flow test the following impulse response function of a pollutant with
concentration 30mg/1 was measured (see figure 12.11).

a) determine the weighting function and the transfer function for these measured
values.

b) prognosticate the concentration after 160min, if the input concentration is of
following characteristic:

tlmin| || O 20 40|60 | 80| 100 | 120 | 140

([—,-—] 40 | 5O 8060 100 kO 10 0

7. Following concentrations were measured according to tracer test in a groundwater
observation tube. 50kg concentrated NaCl solution infiltrated in this tracer test within 5
hours.
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figure 12.11: impulse response of a column flow test

a) calculate process of total salt transport in the observation well, if the following
individual measured values were obtained.
b) places the measuring curve and the computed function graphically.

t[d] ol1|2]4]5 |79

Coaer [Z2] fO |01 2] 1,5]1]0D

c) calculate expected breakthrough curve by means of transfer function method and
plot if an infiltration of 100kg worked within 2.5 hours.

8. The following groundwater levels were measured in a pumping test (see figure 12.12)

a) calculate water deficit (volume) of drawdown funnel, if the aquifer has the
following characteristic values:
h, = 16m, M = 10m, k = 0.001m - 5", So = 0.0001m™", ny = 0.20

b) Compute by means of transfer element method and with a) founded value for the

flow rate V the drawdown curve for conveyor capacity of 0.005m’ - s™.
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Set up the first four equations of faltung integral for the model until observation time
point t = 1d.

=
=
wy
= L1
— ____..-lr"
E E T
R r=g
ER- T
2=
B = ¥a
g 2 )4
8 A ¥
= 2 TF
3 +
]
L]
=)
=
=
1] 2 4 fa ] 10 12 14 16 18

Hadius rin m

figure 12.12: groundwater level dependent on radius
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12.3 Arbitrary transient characteristic and arbitrary
input signals

12.3.1 Introductory

Most natural processes take place one time and are not reproducible. In rarest cases it is also
possible to impress arbitrary test signals on natural ecological processes happened only once, in
order to determine the type and the parameter of the transient characteristic by means of
experimental process analysis. Very often the task consists of one-time natural processes, e.g.
flood waves, precipitation discharge events, groundwater formation rates or pollutant disposals,
by means of mathematical method to derive the relationship between the input- and output
behaviour according to experimental process analysis, i.e. to determine the transient
characteristic. For this reason other methods had to be developed. One of them is the application
of faltung integral / DUHAMEL integral. The basic idea of this method is the decomposition of
arbitrary input signal into a sum of impulses, which then possess a special transient characteristic
individually. The faltung integral is in particular used for single deadbeat events. Afterwards the
portions of the each transferred impulses will be again overlaid. Due to superposition law this
method can be only applied in linear or in piecewise linearized systems. The application of
FOURIER series analysis or syntheses is quoted in periodic functions.

The books can be consulted as literature for this section:

Dyck, S: Grundlagen der Hydrologie
LUCKNER, L.; SCHESTAKOV, W. A.: Migrationsprozesse
WERNSTEDT, J.: Experimentelle Prozessanalyse

Furthermore all books can be recommended, in which applications of faltung integrals on
technical processes are described. The different notations or the different symbols and
abbreviations must be paid attention in a comparative literature study. Following abbreviations
according to international standard in system technology (see table 12.5) will be used.

Table 12.5 comparison of applied abbreviations

Bezeichnung Abkiirzung bei Abkiirzung bei Abkirzung bei
intern. Standard DyCK LUCKNER
DirAC-Impuls ait) palt)

[mpulsantwort
Gewichtsfunktion
Sprungantwort

it hit) hii)

Ubergangsfunktion hit) =t Slt)
Eingangsfunktion r i) pit) HiT)
Ausgangsfunktion Tyli) qit) Plitg)
Verziogerungszeit T Ad T
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12.3.2 Decomposition of arbitrary input function (Signal analysis)

While in the preceding sections selected input signals (e.g. step function, DIRAC impulse) are
discussed, here arbitrary input signals are considered. This is very necessary for many tasks of
water management, hydrology and geohydraulic. Always, if artificial test signals cannot be used,
but natural events must be exploited to experimental systems analysis, only the faltung integral
method described in the following can be applied. Time should be considered as independent
variables. An application of faltung integral on local variables is also conceivable.

The basic idea of the signal analysis consists of the fact that arbitrary time response of a function
can be represented as an infinite sum of selected single signals (see section 11.3.4 signal analysis,
page 301). In principle the different signals can be used. The sinusoidal signals are of special
meaning, which can be found in well known FOURIER series analysis application. The bar
signals and the impulses lead to LAPLACE transformation. Therefore periodic and periodization
functions are analysed by means of FOURIER analysis and unique, deadbeat procedure by means
of LAPLACE transformation.

The arbitrary input signal is decomposed into a sum time shifted impulses in the application of
the faltung integral (see figure 12.13).

-y

— e

At

figure 12.13: approximation of a function by impulse

The effect of a signal on a system is usually characterised by energy- or mass flow. It is defined
by the respective signal variable and the effect duration, i.e. by the function integral of time. With
the approximation of input signal by a sum of individual square pulse, the integral is
approximately described by a sum of the products of pulse amplitude x.(I';) and —width At:
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i n—te
'l.ll

/.?',. (1) de = D" ro (1) Al (12.29)

The individual impulse of time point I';, which affects as input signal of transmission system,
produces individual impulse response functions at system output (see figure 12.14), the weighting
functions gi(z - I;). These are superposed and yield system response to the input signal x.(z). It
should be noted that the superposition can be only applied for linear systems.

For pulse width At — 0 the technical impulse approaches DIRAC impulse and finite sum in
integral representation, whereby an infinite number of impulses is considered.

Xa X3

figure 12.14: impulse response function g(t) for a 2" order delay element
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12.3.3 composition of output function (Signal syntheses)

As already mentioned the output signal by the overlay of sum of individual impulse response
functions, results in weighting functions g« - ;) at time ¢. For computation we must note that all
preceding impulses in time interval 0 to t contribute, since the weighting functions are not yet
faded away at time ¢.

As recognized from figure 12.15, the output signal x,(t) to time ty is composed from the time
shifted weighting functions portions for the time to:

L
L i

i ;—_
ralto) = Y wulte) = 3 (raln) - glis — 7)) (12.30)
i=1

=1

AT is the time lag of DIRAC impulse, the so called aperture time. If we arrange the border
crossing to infinitesimal aperture time, the sum changes into integral form, which can be also
designated as faltung integral or DUHAMEL integral:

[
rall) = f.?',.(?_]-gl;lf T)dT
i

= gli) + reli) (1231

In this case * - operation stands for Faltung operation.
We can also interpret faltung integral in such a way that, all impulses of input signal x.(t) in time

interval 0 < "<t contribute to the value to output signal at time point ¢, which are weighted
according to aperture time (t - /") with the factor g (t - I) in each case.
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figure 12.15: overlay of individual step response function
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Considering the connection between weight- and transfer function we can also carry out
following identical transformation:

dhif — 1)

=agif — T}
df 9\ !

i
i
Talf) = [:Fi_hfj T, (7T
il

!

d [
= — TlrelT T
i hit I (T )T
i
il
= — [R{#) «xali) [2.32
(1) (1) (1232)

With application of LAPLACE transformation the faltung operation changes into multiplication
(see section 5.3.2 LAPLACE transformation, page 135):

LAzali) = Liglt)« xali) ]
t

= I /.fm TirelT)dT
0

= {7(p)- _‘E'.-_.I:_p_:l (1233

In practice the numerical execution of faltung operation must be accomplished in a time
quantization as its derivation. For a process, which begins from time t = 0, can be described in
sum form introduced above as follows:

Tally) = ATglT)ralm))
Talla) = ATg(Ta)re(T1) + ATg(T )26 Ta)

Talls) = ATg(Ta)ra(T1) + ATglma)re(Ta) + ATglT e (T5)

ally) = AT Y g(T)re(Temii1) (12.34)

=1
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This equation system can be transformed in matrix equation:

Taliy)
Talia)

a I|'| |l_lr§ II

Tally)

glm)
glTa)

i I;T::‘._f'

9l Tk

0]
glm)

gi7a)

AT 1)

0

i)

@Te_a)

glir )

TalTy)

(12.35)

With different notations tx = k and 7 = i, and the introduction of aperture time T = Al:

Tall)
Tal)

Tald)

Ta ”.J

gil)
g(2)

g(3)

glt)

0
gil)

ig12)

gli — 1)

i —2)

The matrix equation can be written for short:

or

K”:T'(:'

X,=T"' G- X,

Thus G is designated as inverse matrix of G.
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Tall)
Tal2)

Tald)

Tell)

(12.306)

(12.37)

(12.38)



12.3.4 Determination of weighting function g(t) for general case

The weighting function g(t) will be determined as follows:

gl = Tall) lron=di (1239

The experimental determination of g(t) were treated in the preceding sections. The determination
of the weighting function can be achieved by a test attempt with an impulse as input function (see
section 12.3.2 signal analysis, page 357). If a step function is used as input function, then
weighting function must be obtained by appropriate differentiation (see section 11.4 transmission
systems, table 11.5, page 310).

Experiments on real object will not always be accomplished for regulation of weighting function.
Only in case the real input- and output signals can be obtained for computation of g(t). The
matrix equation for calculation of output signal (see section 12.3.3 signal synthesis, page 359)
can be used for regulation of g(t) or matrix G.

ra(1) g(1) 0 0o - 0 ro(1)

(3 | =T | g(3)  g(2) gll) o0 || x(3) (12.40)
0

k) gli) gli 1) g(i —2) - g(l) re(i)

If both the input- and output function are known for one observation period, the following matrix
equation can be developed from the above equation system:

Ta(1) (1) 0 0 o0 (1)

Tal2) Tel2)  well) i e 0 gl2)

ra(3) | =T | 2e(3) x(2) re(1) o 0 || gl3) (12.41)
0

Talk) Tell) meli —1) ol —2) - me(l) gli)
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The corresponding matrix equation:

Xa=T X G (12.42)
or

G=T"X, X (12.43)

Thus the weighting function g(t) can be described by a value sequence.

In metrological practice the regulation usually looks somewhat different. In above derivation it
was presupposed that the process for t <0 does not exist and started with the first input impulse.
Real processes run off independently of observations. Therefore we must begin at arbitrary time
point with the observation of in- and output signals. The determination accuracy of the weighting
function g(t) must be specified by the administrator. The questions are the measuring expenditure
and of the main dynamic process criteria for specification of the sample width T and the number
of scanning values n. This is the same problem as discontinuous measuring signals treatment and
error description (see GRABER: Lehrbrief Automatisierungstechnik).

If we always specify that m values are considered for the conditional equations, then 2 -+ m
equations are to be set up, in order to determine m supporting places of the weighting function
g(t). Hence we must already observe the process before explicit prognostication about the
duration of 2 - m sampling intervals 7, i.e. a period of 2 - m - T (see figure 12.16). According to
this scheme following equation system can be set up:

Talla) =T g () re () 4+ gim) e (fa) + glTa)xa ({a) + g (T 2 (L)) (12.44)
Falls) = THg(m) ze(fa) + g (7o) Te (ta) + g (Ta) 2 (L) + g (T1) e (E5))
Talle) = Tl (m) re (fa) + g (Ta) e (L) + g (7o) 2o (fe) + g (T2 (Tg))

ralts) = T (g (7) 2e () + g () e (15) + g (Ta) 7 (1) + g (71) 2 (£5))

Thus we have four equations with four unknown weighting function portions, whereby the
equation system is uniquely solvable. Since the observed values, generally measured values of
the input signals as well as the output signals are erroneous, in practice more equations are built,
which leads to an overdetermined equation system. They will be solved by means of special
iterative methods, e.g. HOUSEHOLDER method. The solution is then the value range of
weighting function portions, which fulfils the equation system with the smallest sum of square
deviation.
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figure 12.16: formation of discontinuous response signals from measured values
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12.3.5 Forecast models

In water management using models to prognosticate also shows a main field of application of
faltung operation. The procedure of prognosis contains the algorithm as follows. A precondition
of application faltung integral to prognosticate is that the process was already observed in a lead
time, i.e. before a prognosis the in- and output signals of regarding system must be collected by
means of suitable measurement. We also speak of the model learning curve in this time. These
measured values serve for the determination of weighting function g(t), exactly g(i) or G. How
long does the learning curve last, depends on the historical data base, the precision requirement
and the desired numerical expenditure.

In the following examples the manipulation will be demonstrated (see figure 12.16, page 365). In
this case measured input signal values exist for a range of seven sampling intervals before the
forecast horizon. The output signal was measured from the fourth interval. Based on these values
following four equations with unknown quantities g1 to g4 can be formulated. Therefore only
four supporting places of the weighting function will be proceeded in this example. For real
practical tasks this is quantized too roughly:

Tad =T - (gaTel + §aTea + folen + 171 i12.45)
Tar =T - (4T + G2 + Galey + G120
Tar = T - (g1 Ten + GaTeq + fales + 10 )

Tar =T (1Tea + §aTes + Goles + G105 )

By means of suitable methods for the solution of equation system we get the weighting function
portions gl to g4. These are used into a conditional equation for the first prognosis time step
(x48). Thus the prognosis value can be computed explicitly:

Togprog = 1 - (046t + §aTes + T + 01 Tes) i12.46)

Parallel to prognosis the process should be further supervised metrologically. In this case we get
a new value pair X,spoe and X,seem at time point 8. This can be used to calculate new weighting
function portions. With retention quantity of weighting function portions the input signal x.; will
not be incorporated into calculation any longer. The first equation with the input signal x.; can
however remain in the computation, and then five equations are available for the determination of
four weighting function portions. This overdetermined equation system is then solved iteratively
with an appropriate method, e.g. HOUSEHOLDER method. That founded values represent the
transient characteristic of the regarding system is possibly better than those with the definite
system. This comparison between prognosis and real process is also called constant learning
system.
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12.3.6 Tasks of application of faltung integral:
1. The following groundwater levels were measured in a pumping test (see figure 12.17)

a) calculate water deficit (volume) of drawdown funnel, if the aquifer has the following
characteristic values:
h, = 16m, M = 10m, k = 0.001m - 5", So = 0.0001m™", ny = 0.20

b) Compute by means of transfer element method and with a) founded value for the flow
rate V the drawdown curve for conveyor capacity of 0.005m’ - s~

Set up the first four equations of faltung integral for the model until observation time point

t=1d.
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figure 12.17: groundwater level dependent on radius
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2. Following groundwater level are measured in a pumping test:
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The aquifer has following parameters:

hy = 16m, M = 10m, k = 0.001m - s, Sp = 0.0001, no = 0.20

Set up the first four equations of faltung integral for the model until observation time point t =
135min.
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3. Prognosticate the temperature pattern in a bank filtration frame with application of faltung
integral, if the following measured values are known:
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Calculate the temperature pattern from the sixth time step with application of three faltung
integral equations in each case.

Compare the calculated temperature in the frame to the measured and correct the weighting
function with consideration of measured values.
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Part 1V

Indirect Parameter identification
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The indirect parameter identification is treated here as method for parameter estimation. It stands
in contrast to physical and chemical methods for the direct Parameter estimation which is
described in GRABER " Grundwassermesstechnik". The methods of indirect parameter
identification are mathematical, which according to experimental process analysis determines
parameter for a transmission system. The transient characteristic can be found by means of
experimental or theoretical process analysis. Accordingly the identified parameters are more or
less physically/chemically interpretable. On all accounts parameters can be found, which well
reflect the system behaviour within validity scope of experiment.
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Chapter 13

13 Estimation procedure
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In water management practice the experimental process analysis is primarily used for parameter
estimation. The model structure is specified by a theoretical process analysis. We try to transfer
this model structure into simple mathematical representation. The parameters can be determined
by solving conditional equations or by solving parameter approximation problems. Thus there is
task, on the basis of structure cognition or -assumption, to determine such models, that

« reflects the characteristics of the system so exactly as required and

* eliminates the overlaid influences of noise and errors.

In order to satisfy these demands the comparison of output values of original function as input
function or an independent variable (time or place) with the model is accomplished. In the result
a change of model parameters is to be made or the model changes until the deviation reaches
minimum. The changes can be achieved according to a certain strategy (search algorithms,
optimisation programs), statistically (random number generator) or empirically. The visual
comparison between two diagrams (original- and model output signal) is also possible.

This task is also designated as parameter estimation. In particular the following introduced
approaches will be classified as iterative estimation method.

In the algorithm or iterative model adjustment (see figure 13.1) we try to let the same input
vector, the manipulated vector y affect on the process and model. With a first parameter
substitution, the initial parameter, the model output vector x'\ can be calculated as first
approximation. The deviation of these process output vectors is designated as quality of the
model adaptation. In water management applications the quadratic evaluation will be carried out.
The goal of changing parameters is to minimize the Q value.

¥ Prozess
Parameter s

Giitefunktion

Modell

zeschitzie Parameter § Xna

A

Optimierung

figure 13.1: iterative model adjustment

328



329



Chapter 14

14 Flow parameters
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14.1 Pumping test evaluation

14.1.1 Fundamentals

The evaluation of pumping test, with which e.g. water is conveyed from a well and the drawdown
is recorded as a discontinuous function of place and time, is very significant and representative
method to determine geohydraulic parameter.

Compared to laboratory procedures it has advantages that:
» is accomplished in undisturbed aquifer and

+ advance normally integral statements of the aquifer in regarded flow field section.

The parameter estimation of aquifer occurs in the direct laboratory experiment of soil samples,
which can be achieved by means of Stechzylinder or cuttings. The disadvantages consist the fact
that only a punctiform parameter estimation can be obtained in very inhomogeneous aquifer with
this method. Besides the granular structure of soil is destroyed by the sampling and thus another
is evaluated in lab. A third difference is that in lab the entire water content is determined, while in
nature and with pumping test only the drainable pore volume affects. The representation by
means of definite parameter method increases due to the integral character of the pumping tests
(see table 14.1).

Table 14.1: difference between pumping test evaluation and laboratory method

Charaktereigenschaft Labormethode Pumpversuchsauswertung
Ortliche Ausdehnung || punktuell integral

Reprisentanz klzin eroli

Korngeriist Zerstirt tngestort
Speicherkapazitat Gesamtwasservolumen | entwisserbares Volumen
Aunfwand relativ gering sehr hoch

On the other hand the pumping tests are substantially more complex and expensive than
laboratory test. Therefore the experimental design, execution and special worthy analysis must be
attached. Also usually only one time test execution is possible.

For the evaluation of such pumping tests in practice particularly two methods are used:
« the graphic method; in water management practice designated as straight line method
and typical curve method and

* the search method or optimisation method.
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The well incident flow is used as model in the pumping tests. As in the section 8.1 THEIS well
equation, page 196 deduced, the partial differential equation solution according to THEIS is
suitable for the computation of drawdown processes due to water extraction from well. This
model of course can be only assumed approximately for practical flow conditions. The
application of model is prohibited to better reflect the original due to too large number of free
parameters to adapt. The most substantial restriction of analytical models is the consideration of
only one aquifer. The constant of parameter transmissibility 7 and storage coefficient S as well as
the horizontal bed situation can be presupposed in the little spatial expansion of pumping tests as
given. Of course it must be also noted that the transmissibility change during drawdown
procedure remains negligibly small (linearization around operating point).

The quality function GF in the pumping test evaluation is defined as sum of the square deviation
of the measured values at the original process and model results on different local- and time
points (see figure 14.1):

VL) Grundwasserstomung [ S(L1,)

k4

Pammeter 5, T, B, |

Gitefunktion GF
GF = LT W(5, -8, )

Brunnenfunktion
f;.cs::lhzlr.lc Paramcicr
5. T.B.1 Sy (t.r,)

A

Suchstrategie
Spimlverdfahren JONES

figure 14.1: iterative model adjustment in a pumping test

m

n
GF = Z Z Wi (5 "‘.'.I.'._.l,'lj (4.1}

i=1 g=1
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W;;  weighting factor

s original drawdown value

SMm model drawdown value

m maximal number of time steps

n maximal number of local observation points

14.1.2 Practical realisation

The method of least squares (MKQ) is used for parameter adjustment to the measured values.
The goal is to minimize the quality function GF. General correspond effective methods were
shown in section 4.3 least square method, page 96. It shows that the search strategy on that basis
of the nonlinear regression with the utilization of gradients is best suitable for pumping test
evaluation. In contrast to ROSENBROCK search algorithm the number of search steps will be
drastically (factor 10) reduced by JONES (DAMMERT) spiral method in pumping test
evaluation. This procedure presupposes that the quality function is constant and differentiable.
Both are given in the analytical solution of well function according to THEIS.

The program system PSU (Pumping test evaluation) was developed by BEIMS/GRABER for
practical realization. This program system (see figure 14.2) has a modular structure, which allow
arbitrary model creations of quality function and search algorithm coupled with appropriate main
programs.
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Dateneingabe Giitefunktion Hilfsprogramm
Steuerung
PSU 2 GF 2 THEI
PSU 5 Suchalgonthmus GF 5 HAN
JONES h i !
BESS
PSU & GF 8 BEID

figure 14.2: programme system for pumping test evaluation according to BEIMS/GRABER

All the most substantial practical pumping tests can be evaluated with the following specified
versions PSU2, PSU5 and PSUS (see table 14.2).

Table 14.2: Realised programme versions with geohydraulic scheme

[ Programm | Geohydraulisches Schema | Ergebnisse |
PSU? Unendlich c1L|.~;gc-.Ich|1nc|.' .I;i|'L|n..m;m_ucrlcil-:l' T
ohne Speisung
PSUS Unendlich ;1L|.~cgc-..lul?ntl..-|: Grundwasserleiter T S B
mit Speisung
PSUS Einseitig hcgrcnxtl:-r ILIJ|I'L||1..Iumca;-:rluiwl' T S \*
ohne Speisung
In table 14.2:
m? o o
T[—] Transmissibility, profile permeability
=
5[] Storage coefficient
B [m] Supply factor

A" [m] Effective boundary condition distance

The programs PSUX are written in the form of main program and realise data in- and output as
well as the search algorithm control. The fitted values of each search step or only the parameters
could serve as output by inserting appropriate control variables, which yield the adjustment
according to given error bound. Furthermore a graphic comparison between the measured values
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of pumping test and the adapted drawdown curve is possible. The search program was realized
according to JONES spiral method. It acquires the minimum of the quality function on the basis
of nonlinear regression with employment of differential (see figure 14.3 and 14.4). The quality
function is to be selected according to the geohydraulic conditions. It is defined as the sum of
square deviations between the measured value and the theoretical drawdown curve. In the
module the auxiliary programmes are combined with important subprograms to solve well flow
equation, e.g. the well functions W(o) according to THEIS and (o, B) according to
HANTUSCH as well as BESSEL function Ky(x) and 7y(x).

A special problem exists in the search of parameters B (supply factor) and 1~ (effective boundary
condition distance), since they are not independent of 7"and S. The search algorithm is however
then applied for more parameters if they are independent of each other. In these cases it is a trick
to exclude the region in drawdown curve, which depend on different parameters dominantly. So
physically it can be justified that, the drawdown strongly depends on the transmissibility 7" and
the storage coefficient S of well vicinity area in the initial phase of a pumping test. In the quasi
steady phase the supply factor B and/or the boundary condition (effective boundary condition
distance ") work as further influence variables. A so called stage search is accomplished based
on this drawdown curve classification in different phases. The parameters 7 and S will be
searched in phase 1. The measured values of the phase 2 serve to the estimation of supply factor
and/or the effective boundary condition distance. The parameters 7 and S will be applied as
known quantity (determined from phase 1) during this phase and thus are not included in search
process. The measured values from arising process are combined in a phase 3. With them an
improvement of adapted values can be obtained. In this phase the parameters of phase 2 will be
as known, i.e. as not adjustable, regarded and again only one search for the two values 7" and S is
carried out.

The pumping test evaluation with the programs PSUX can be of course only as good as measured
values; the drawdown values from pumping test are as good as the well incident flow equation
model reflects natural processes. For complex geohydraulic conditions we must resort to others,
e.g. the pumping test simulator.

The expressiveness of pumping tests or experimental process analysis method generally also
depends on the used test signal. In classical pumping test this is a step function with the step
height V, the conveyed water quantity. The best results can be achieved by using a DIRAC
impulse (theoretical impulse with a infinite height and a length of time, which approaches to
zero). This is technically not realizable. As compromise the impulse function, the step function
carry periodic signals and stochastic signal sequences. The step function is favourable for the
determination of final steady state, the so called static behaviour.

A combination of different test signals in the Variants

* step function - impulse function,
* step function - periodic signals or
* step function - stochastic signal sequences

leads to effective determinations of dynamic transition- and static final state.

335



0o0

0,15

0,10

0,05

A

£ = bl £
o 0] o rd

T [m3f=z] 102

figure 14.3: quality mountain in a pumping test evaluation with
search procedure of different start points

336



10!
EXTR
100 *k
& Startpumkt |
*»  Startpunkt X
o Staripunkt 3
— % Startpunkt 4
12 ﬁ;m\-&—;\
10 \\\ \\
Iﬂ.d
10 20 30 A0 30 al
GF
SIMP
o
107 ® Startpunkt |
% Startpunkt 2
@ Startpurnkt 3
1ol # Startpunict 4
h \
NN
104
10 20 30 Al S0 i)
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14.2 Pumping test simulator

The program packet PSUX for the evaluation of pumping tests with corresponding analytical
solutions on the basis of THEIS well function or HAUTUSCH demonstrated above shows
considerable restrictions. So not all characteristics of the aquifer such as anisotropy, stratification,
heterogeneity or capillary space and not all kinds of characteristics of well design such as
imperfectness, well diameter, well bottom inflow, filter losses can be considered with this system.
Either with application of natural signals for parameter identification, or with artificially
produced test signals like in the pumping tests, it has to be assumed that normally it is a matter of
one time procedure, which is not reproducible or changeable due to cost and other reasons.
Therefore it is necessary to consider such field tests intensively with the experimental design.

A numerical model was described by MUCHA/PAULIKOVA, with which and pumping test can
be simulated and interactively evaluated. This model is based on a vertical plane rotation
symmetrically quantized flow model, which does not consider simplified assumption. This was
converted into a program system WELL, the so called pumping test simulator by
BEIMS/GRABER. With it the effect of a pumping test can be demonstrated and optimised on the
basis of hypothetical assumption of regarding area. With this model besides the inhomogeneity
the existence of multiple aquifers and also key elements well vicinity area can be considered. The
transmissibility can be considered in horizontal and vertical inhomogeneity. Furthermore the
specific elastic as well as the gravimetric storage coefficient can be processed. The model takes
free groundwater flow conditions as a compressible system and the free surface as a mobile
border. The transmissibility is computed according to the concrete position of free surface. On
the last radius point r,, the system is regarded as impermeable, i.e. the discretisation must be
chosen in such a way that practically no drawdown appears there (see figure 14.5, page 392).

On the basis a graphic display the effect of different input signals can be demonstrated and at the
same time the optimal measuring time points dependent on the distance and the drawdown
gradients for real pumping test can be determined. The local situation of the level observation
tubes is usually default due to technological conditions.

The pumping test simulator WELL will be applied for following fields:

« simplification and assumption analysis, which underlie different analytical solutions.
* determination of flow- and speed relationship in the proximity of well.
» calculation of typical curves for special well- and aquifer conditions.

* interactive pumping test evaluation.
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The employment of pumping test simulator WELL represents a substantial complement of
pumping test evaluation and -interpretation. The exertion as model in the indirect parameter
identification can be only realised by means of specially large expenditure.

The pumping test simulator is a vertical finite difference model, whose quantization can be
obtained in vertical direction according to geological stratification and well geometry. In
horizontal direction quantization will be carried out logarithmically (r; = ri; - 100'25). The
junctions lie in the centre of gravity of the reticule, i.e. they are in contrast to the geometrical
centre around Ar; outwards shifted:

_ (e -".','l2

Ary = —Gl:.f;, o+ )

(14.2)

The permeability values are defined as hydraulic conductance between the knots. The
conductance in horizontal direction, for example between the knots 5/4 and 6/4, under the
DUPUIT THIEM equation assumption for groundwater flow to a well is:

O‘I o |I'
THy), = b (14.3)

i (32)

With

Kna horizontal permeability coefficient of 4™ discrete layer
bs thickness of 4™ layer

Is, I's radii of knots 5 and 6

The conductance in vertical direction, for example between the knots 6/2 and 6/3

2hya’ Qi
TFsa = m(re — re) (( lrl'_]) + ( hl";)) i14.4)
i 1

: 2m(res — raz ) Lhy ol + Ryals) _
Thyy 1= . — T62) o2 a 7 P 2, (14.5)
) Ir.l-zlril;;
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With

kv, Ky vertical permeability coefficient of 2™ or 31 layer
by, bs thickness of 2™ or 3™ layer
Is, 17 radii of element border 6 and 7

The conductance then yields flowing water quantity, for example between the knots5/4 and 6/4:
Viaga, = THy — (g — Hip i14.6)
whereby Hs/s and He/4 are the piezometer head in knots 5/4 and 6/4. The storage coefficient S

designates the relationship of the volume in unit water, which becomes 1m empty during gauge
level change, to the total volume of this unit. So the storage factor in the knot 6/5 is e. g.:

SFys = Sesbem(r? — 13) (14.7)
S5 specific elastic storage coefficient of 5™ layer
bs thickness of 5" layer
Te, 17 radii of corresponding elements

The storage coefficient for the free waster surface e.g. at knot 5/1 is:

2

SFey = Symirs — 1) (14.8)

Sy gravitation storage coefficient

The released water volume for knot 5/1:

Vir=SF (11— Hygima) (14.9)

Hs 1+ and Hs j 1.a¢ are potentials at knot 5/1 to time point t and t - At, whereby At is time interval.
The storage factor for well is expressed by knot 1/1:

. a
.qf'|.| =T 4

I effective well radius of j-th layer
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The linear well loss is contained in coefficient ¢:

1:.
Well loss = T

The flow from 4" layer in the well is expressed by the factor:
?mt'.f-'.-" |- i/ |{:I."I|f.l

In (—-) +5

Ty =

Whereby c/a is the relative position of junction 1/4 between water level in well and water level
in the knot 2/1. The flow in the well can take place through filter or well bottom.

The time discretisation begins with a small increment At and will automatically increase
according to rules.

Aty = Aty - 10% (14.10)

If the discharge flow is not constant, the input of time steps and flow rate are achieved on the
basis of each calculation period.

The resulting band matrix with the five diagonal elements will be solve according to a direct
method (GAUSS method).
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figure 14.5: structure scheme of pumping test simulator (BEIMS/MUCHA/GRABER)
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Chapter 15

15 Suction power distribution
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Another application field of the parameter identification methods in soil system exists in
laboratory scale determination of suction power saturation distribution (SSV) within the
unsaturated region. The measuring method for this soil behaviour is specified in GRABER "
Grundwassermesstechnik" and the mathematical model is deducted in the section 6 differential
equations, page 175 groundwater process.

Typical suction power saturation behaviour is connection similar to hysteresis between the
suction power py and the saturation 7,. As mathematical model these SSV curves were indicated
by an equation from LUCKNER/SCHESTAKOV, whereby A, B, C, and D are four constants,
which must be separately determined from the experimentally technically gained upper
(drainage) and lower (irrigation) limiting curves of hysteresis branches:

(1=1,00
o924 _ 1, (15.1)
n—A— B 1+ 0

e

Determination of these parameters comes into the indirect parameter identification task range,
whereby in this case it is a matter of static characteristic curve approximation. On this account no
conclusions about the test signal type have to be made. The dynamic behaviour corresponding to
the partial differential equation of this process is not yet evaluated at present.

The estimation of the four parameters thereby can be achieved according to the empirical graphic
method (method of typical curves) or the mathematical search algorithm. The first approach is
used in order to obtain the initial value for the search strategy in the experimental design phase
and the other is to reach optimal test conditions (measuring point selection). The mathematical
search algorithm is then used to approximate the mathematical model at founded measured values
pairs (px, np) as accurately as possible. Also the adjustment is made here by the square quality
factor, which represents the deviations between ny and ny, in all adjusted operating points
(pressure ranges). FIBONACCI method is applied for the minimum search. This has the
advantage that it is relatively " robust ", but stagnates with a very rough approximation. This
behaviour also depends on the relative flatness of the quality mountain. It is therefore suggested
applying POWELL method. It shows good convergence behaviour. Since the quality mountain,
due to its abstract formulation, is constructed in such a way that, minima exist in the range, which
do not allow physically meaningful interpretation (e.g. negative saturation), and special
weighting function will be introduced. As soon as physically conditional limits for the saturation
are reached (air or water restsaturation), the quality function acquires appropriate maximal value.
The gradient method of the nonlinear regression, as favourably used in pumping test evaluation,
conks out here, since the quality mountain runs very flatly and shows kinks at physically
conditional edges, which contradicts the required differentiability.
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