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Author presentation 
 
 

The lecture water management system analysis is based on foundation courses such as 

mathematics, physics and informatics. And the chapters, which play a role in water management 

task solutions, will be specially discussed in the lecture, such as vector analysis, solution of 

equation systems, matrix calculation, and solution of differential equations as well as numerical 

integration. 

 

The following chapters are revisions of basic knowledge and will only be shown with 

corresponding key points. Self study is strongly recommended during the revision. 

 

The further chapters go beyond basic knowledge and indicate mathematical methods, 

which are related to the water management practice. 

 

The teaching contents of subject water management system analysis require an 

advanced mathematical knowledge, including abstraction ability. In the exercise and computer 

courses, some problem will be discussed combined with practically relevant cases in order to 

develop a deeper understanding of this lecture. 
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 Symbol    Unit              Meaning 
area 
 
geohydraulic time constant 
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concentration 
 
differential equation 
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weighting function 
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The chapter mathematical fundamentals are directly based on the elementary learning of 

mathematics and actually show some solutions of selected problems, which are important in the 

water management subjects. After this review special, advanced topics will be discussed. 
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Chapter 1 
 
 
 

1 Algebra Fundamentals 
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1.1 Exponential- and logarithmic expressions 
mations of exponential expressions are: 

 
The most important transfor
 

 
 
In such cases, exponential expressions can be transformed by definition. 
 
 

 
 
 
For logarithmic expressions one can use the following rules to transform: 
 

 
 
 

specially 

specially 

specially 
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Task: 
 
Simplify the following expressions: 
 

 
 

Transform the following formulas according to t: 
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1.2 Matrices 
 

.2.1 Fundamentals 

tion rules for matrixes are to be specified. 

 General Matrix 
lements (e.g. numbers, functions), which is arranged in m rows and n 

1
 
In the following the most important calcula
 
•
A system of m times n e
columns, is called matrix of type (m; n): 

 
          j-th column 
 
• Square Matrix 
If the number of rows m and columns n of a matrix are same, i.e. m = n, the matrix is square. The 

2 ··· an-1 are secondary 

 resultant matrix AT will be obtained by interchanging the rows and columns of matrix A, which 

In general it can be written as: 

elements a11, a22, a33 ··· ann form the main diagonal and a1n, a2n-1, a3n-
diagonal. 
 
 Transpose of a matrix •

A
is called transpose of A. 

 
 
 

i-th row 

specially 
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The transpose of a square matrix is its reflection through the main diagonal. 
The transpose of a symmetrical matrix is the same like the original matrix. 

 
In a skew symmetrical or antimetrical matrix: 

 
Each square matrix (Aq) can be decomposed in form of the sum of a symmetrical (As) and an 
antimetrical (Aa) matrix. 

 
Examples of transpose matrix calculation: 
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• Unit matrix 
A square matrix, in which all elements of the main diagonal are equal to one and all other 
elements are zero, is called unit matrix and designated as E. 
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• Diagonal matrix: 
A matrix, in which all elements are zero except the elements of main diagonal, is called diagonal 
matrix. 
 

 
 
The elements of the main diagonal [aii] can be same and unequal to zero. And the diagonal 
matrixes belong to symmetrical matrixes. 
 
 
• Tridiagonal matrix 
It is named tridiagonal matrix if a square matrix possesses such a characteristic that the 
elements of the main diagonal and both of neighbouring diagonals are same and unequal to zero. 

 
Generally speaking, the tridiagonal matrices are also symmetrical. 

• Band matrix 
 
 
A band matrix contains a large number of zero elements. The diagonal and selected parallel 
diagonals contain elements, which are different from zero. The extension of neighbouring 
diagonal as many as desired (≤ n - 1) leads to band matrix. 

 
 

 
The elements of a band matrix are all arranged on a diagonal band. 

upied band. The "furthest distance" of an element from 
in diagonal is counted as well. 

 
 

The band width is characterized by the occ
the main diagonal is the width, and the ma
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Example of a band matrix: 

 
In this example the band width is k. 

• Matrix addition and subtraction 
If A = [a ] and B = [b ] have the same orders, i.e. the same rows and columns, then: 

 
 
1.2.2 Calculation rules 
 

jk jk

 
 
Example of matrix addition: 
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• Matrix multiplication and division  
 A = [ajk] is a m × p matrix and B = [bjk] is p× n matrix, we define the product of A · B as matrix 
 = [cjk], with order m × n. It means that matrix C has the same number of rows with matrix A 

atrix B. 
d, when the number of column of A (p of matrix m × p) matches 

jk jl lk

The multiplication B · A forms a matrix C with order of p × p: 
 · A). 

 case of square matrix, A, B and C are the same order m × m. 
the inverse matrix (see page 10) is built. 

 
Example of matrix multiplication: 

 Matrix multiplication and division  
 A = [ajk] is a m × p matrix and B = [bjk] is p× n matrix, we define the product of A · B as matrix 
 = [cjk], with order m × n. It means that matrix C has the same number of rows with matrix A 

atrix B. 
d, when the number of column of A (p of matrix m × p) matches 

jk jl lk

The multiplication B · A forms a matrix C with order of p × p: 
 · A). 

 case of square matrix, A, B and C are the same order m × m. 
the inverse matrix (see page 10) is built. 

 
Example of matrix multiplication: 

IfIf
CC
and the same number of columns with m

he product A · B is only define
and the same number of columns with m

he product A · B is only defineTT
the number of row of B (p of matrix p × n). 
We speak about multiplication as ”rows time columns”. The rows of A will be multiplied by the 
columns of B. According to FALK’s scheme: C = [c ] = ∑ [a ] · [b ] with j = 1···m and k = 1··· n. 

the number of row of B (p of matrix p × n). 
We speak about multiplication as ”rows time columns”. The rows of A will be multiplied by the 
columns of B. According to FALK’s scheme: C = [c ] = ∑ [a ] · [b ] with j = 1···m and k = 1··· n. 

What should be noticed is that the commutative law is not applicable (A · B ≠ BWhat should be noticed is that the commutative law is not applicable (A · B ≠ B
InIn
The division is reverse procedure of multiplication, as The division is reverse procedure of multiplication, as 

 

Find: 

Given: and 

and 
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Attention: 
In contrast to the algebra of real numbers the commutative law is not applicable in the matrix 
multiplication. A · B ≠ B · A 
The associative law A· (B· C) = (A · B) ·C and the distributive law A· (B + C) = A · B + A · C 
on the other hand are available in the matrices. 
A square matrix can be multiplied by itself. A2 = A · A. Then we get the exponentiation of 
matrices. 
 
The inverse Matrix 
 
The inverse of a square matrix A is a matrix A-1 such that: 

 
-1The inverse matrix A  can be exactly built if the determinant D = det A (Chapter 1.2.3 matrix 

determinant, page13) of matrix A is unequal to zero (D ≠ 0). The inverse matrix A-1 is formed by 
the subdeterminant Uij for the element aij. With the determinant Uji pertaining to element aji: 
 

 
The change between row and column must be considered. The matrix of subdeterminat is 
transposed. Furthermore a change of sign takes place as a function of the distance to main 
diagonals aii of the matrix, i.e., when the sum i and j is odd number, the subdeterminant should be 
multiplied by -1. 
 
The construction of the inverse matrix is demonstrated on the basis of a two- and a three-row 
matrix. 

and Given: 

Find: 
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For a two-row matrix: 

 
For a three-row matrix: 

 
 
 
Example of inverse matrix calculation: 
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2. Find the inverse matrix of 
 
 
 
 
 
 
 
 
The determinant A can be developed for example according to the second row: 

 
The subdeterminants are: 

 
 

hen  

 

 

T
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1.2.3 Matrix determinant 
 
A number can be assigned to a square matrix A, whose value is determinant D = det A. The n-th 

rder determinant development can be defined recursively with the help of LAPLACE expansion o
theorem.  

 
The development can take place according to the elements of rows or columns. 
 
1. Development according to the elements of i-th row 

 
2. Development according to the elements of k-th column 

 
 
Here Aik means the adjunct belonging to the element aik, i.e. the subdeterminant Uik of the 

Uik of the element aik from n-
y deleting the i-th row and k-th column; it has order n-1. 

Thus the rank of the subdeterminant is always one order lower than the associated determinant. 
he rank of a matrix is determined by the highest order. 

For a three-row matrix A: 

element aik multiplied by factor (-1)i+k. We get the subdeterminant 
th order determinant b

T
 

 
 
then for example the subdeterminant for element a11: 
 

 
 

fixed

fixed
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For three-row determinant the SARRUS’s rule can be also applied. The first two columns are 
ritten fictitiously right beside the determinant and afterwards the sum of the diagonal products 

of the "minor diagonal" are drawn off from that of the "main diagonals". 
w

 
 
T
 

ips: 

For the development of the determinants it is always favourable to select the row or column with 
most zero elements. 
 
If the matrix consists of only one element A= [a], then: det A = a. 
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1.2.4 Task for calculation of matrices 

 

Given 

Find 

Find matrix 

Find inverse matrix 
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1.3 Linear Equation Systems (LGS) 
 
L
th

inear equation systems play an important role in the mathematical treatment of one-, two-, or 
 in hydrology and hydrogeology. Such equation 

n quantities and equations, whose magnitudes of order 
zation methods. The continuous field problems are 

ecomposed in generally potential fields and discontinuous partial processes. And these can be 
described by linear, non-linear or linearized equations. The equation systems have the following 
figure: 

ree dimensional field problem as well as
systems with a large number of unknow
may reach million, originate from quanti
d

 
 
In this equation system there are xj, with j = 1.....n, n unknown quantities and ri, with i = 
1.....m, m known quantities at the right side. And aij with i = 1.....m and j = 1.....n are 
characterized as coefficients. So we have n unknown quantities and m equations. 
 
If n = m, the equation system is definitely solvable, and it is determined. For n < m it is so called 
overdetermined equation system, and mostly there are approximate solutions which fulfil all 
equations. In the case n > m several solutions exist, i.e. the equation system is not clearly 
solvable, and it is undetermined. By the introduction of the matrix notation we can write them 
for short and the rules of the matrix calculus can also be used at the same time. 
 
Thus the above equation systems can be noted in the following form: 
 

 
 
A means coefficient matrix, X the solution vector and R on the right side as column vector: 
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Different methods are used for the solution of such matrix equations or equation systems.  
 
The relatively simple direct solution methods are mostly not treatable, since the construction of 
the inverse coefficient matrix proves itself complicated with higher rank. We differentiate the 
solution methods between the direct total step methods and iterative equation solutions. The 
methods are just as their names imply. By the total step methods the equation system is separated 

ly one unknown quantity rem ining. 
 methods are indicated. 

based on algebraic transformations until the equation with on
In the following some representative examples of both

a

 
 
1.3.1 Total step method 
 
1.3.1.1 GAUSS Elimination 

In the GAUSS elimination we try to get an equation with one unknown by successive 
substitution. 
 
The result of the elimination is the equation system: 
 

 
 
 
In an equation system with an upper triangle matrix A’ and R’ 
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The toppest row, or the toppest equation remains unchanged. The (j - 1)-equations are multiplied 
by factor fakj and subtracted from the j-equation. For the second row or the second equation: 
 

 
 
or in general 

 
 
The lowest row or equation can be solved. This solution is inserted backwards into all other 
equations. This back substitution generally yields value xi: 
 

 

Thus the computation of vector x can be achieved. 
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Example to application of GAUSS elimination: 
o solve this system: T

 
 

he following scheme: The coefficients and absolute terms are shown in t

 
 
The row serving for the elimination (in this example - first row) is marked by the letter E. A 
variable should be eliminated under the help of E i.e. how many multiples of E should be added 
on other rows. The added multiple of E can be marked beside the corresponding rows: 
 

 
 
In such way the 2nd and 3rd row are similarly changed: 
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The E-row and the last row contain the coefficients and absolute terms of the new system: 

 

 
 
The results of successive insertion 
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1.3.1.2 CRAMER's Rule 

According to the CRAMER's rule the solution of matrix equation is achieved by the determinant 
computations. The elements of the solution vector X: 

 
Di is for CRAMER's determinant. It is developed from the determinant D = det A of matrix A in 
consequence of replacing the i-th column by the right side, the vector R. This method only has 
practical meaning for small matrices or for the matrices which contain many zeros. 
 
Example to application of CRAMER' rule: 
 
Find solutions of linear equation systems (LGS) with CRAMER's rule: 

 
 
 
LGS is written in matrix form as follows: 
 

 

or 

with 
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The determinant D = det A of matrix A can be developed according to second row: 

 
 
 

The coefficient determinants are: 

Thus the solution is: 

 1



1.3.1.3 Construction of inverse matrix

 2

1.3.1.3 Construction of inverse matrix 

The solution vector X of LGS is noted: 
 

 
 
Example to application of inverse coefficient matrix A-1: 
 
Find solution of the same LGS (see former example - LGS, page 21) with help of inverse matrix. 
 
The inverse matrix of A is (see example - construction of inverse matrix, page 11): 
 

with 

 

then 
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1.3.1.4 LU-Decomposition 

The so called LU-decomposition method as a symmetrical matrix A of equation 
system can be dismantled 

A · B = R 

  L · U = A                         (1.32) 
 

And L (lower) is lower triangle matrix and U (upper) is upper one. 
 

sumes that 

as product of two matrices L and U: 
 

 
Thus the matrix equation forms the following figure: 
 

 
 
So the resultant equation can be decomposed into two equations, which contain the simple
olvable triangle matrices. First the equation about Y will be solved. This solution vector Y then 

e right side for the confirmation of the original solution vector X. 

 
s
serves on th

 
For the first solution the forward substitution is used: 

 
We can get the second as well as vector X by backward substitution: 

 

 1



Assume a definition equation for confirmation the elements of L- und U-matrix: 
 

 

or 

 
If these two matrices are multiplied and an element comparison is made, a complicated equation 
system with m · n unknown quantities appears. The difficulty can be avoided if the main diagonal 
elements l  of L-matrix are set to one. ii

 
 
 
 
Then we get the following simple calculation scheme for the elements: 
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Example of solving an equation system with LU-decomposition method: 

 2

Example of solving an equation system with LU-decomposition method: 

 
 
We know from the element comparison: 

 
 
 
 

with 
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By the same way we find: 

 
Then the triangle matrices with following figures: 

 
The solution vector X can be computed: 
In general: 

 

 3
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1.3.1.5 CHOLESKY method 

  

With the CHOLESKY method the solution of the matrix equation for the special case of the 
symmetrical coefficient matrix can be traced back by the solution of two subsystems, as the 
coefficient matrix is decomposed into an upper and a lower triangle matrix. This dismantling is 
also called decomposition. 
 

The CHOLESKY method is not generally applicable, and it presupposes that the coefficient 
matrix A of equation system must be symmetrical i.e. A = AT, and positive definite.  

A · X = R 
Positive definite means that all elements of the main diagonals must be greater than zero aii > 0, 
for example simulation of groundwater flow in the quantization methods (FDM, FEM or FVM).
 
In the CHOLESKY method the symmetrical matrix A of equation system is written as product of 
two matrices, a lower triangle matrix B and an upper BT, which is equal to the transpose of the 
lower,  

 

B is an upper triangle matrix, whose elements bik = 0 if i > k. The equation system: 

 

We set 

 

and determine the elements of B by element comparison: 

 
so Y can be computed: 

 
 
 
The solution of X results from the back calculation according to equation 1.43. 
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Generally the following algorithm can be indicated for the computation of the elements of B: 

 

CHOLESKY method possesses some advantages compared with the Gauss procedure. Thus e.g. 
the method is characterised by the fact that it works numerically very stably, since the dominance 
of the main diagonals is strengthened by extraction of the square root from very small elements
If the coefficient matrix A possesses a band structure, this is also transferred to the triangle 
matrix. Th

. 

e algorithm is independent of the values on the right side. Thus the solution equation 

For an equation system with three equations and three unknown quantities: 

system can be repeated with small expenditure for different values on the right side (boundary 
and initial values), which makes variant calculations very effective. 

 

We must check whether the conditions, the symmetrical coefficient matrix (A = AT) and positive 
definite (aii > 0), are given, before CHOLESKY method may be used. 

 1



 1

he equation system can be written also in the following form. T

 
According to regulation for the CHOLESKY method the triangle matrix B is introduced and the 
pertinent transpose is formed: 

 
 

According to equation 1.42: 

 1



The determination of the elements of the matrix B takes place according to multiplication of B · 
BT via an element comparison with the matrix A: 

 
We recognize that some equations are redundant in the developed equation system due to the 
symmetry characteristics of the coefficient matrix. Thus only six of these equations are needed 
for the determination of the matrix B. 

 

 2



After the matrix B and its transpose BT were determined, the auxiliary matrix Y from the 
equation 1.44 can be computed: 

B · Y = R 

 
 
With known matrix B and the auxiliary matrix Y the solution of equation system X can be 
computed now by means of equation 1.43: 

 
 
Attention: 

The equations 1.48 to 1.50 can be accordingly applied for the determination of the elements of
the matrix B, the auxiliary matrix Y, and the solution vector X in al

 
l equation systems with three 

rows and three unknown quantities, if they fulfil the conditions for the CHOLESKY method. For 
each case the elements of the coefficient matrix and those on the right side must be accordingly 
used. These algorithms can be extended easily to any size of equation system. 
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Examples of CHOLESKY method application: 
 
1. The method is to be demonstrated exemplary in the equation system, which can be used in 
other cases: 

 
Here however th sitive d finite 

ii > 0) and the symmetry (A = A ), are not given, thus this method is not applicable (a33 = -2) 
und A ≠ AT. 

2. As the second example the following equation system is given:  

e prerequisites for the application of the CHOLESKY method, po
T

e
(a

 
 
 

9x1 + 2x2 + 3x3 = 6 
 
2x1 + 8x2 + 4x3 = -10 
 
3x3 + 4x2 + 10x3 = 22 

According to equation 1.42: 

With A · X = R 

 1



The determination of the elements of t
B

he matrix B takes place according to multiplication of B · 
nly six unknown elements must be determined, only six of T via an element comparison. Since o

these equations are needed: 
 

 

After the matrix B and its Transpose BT were determined, the auxiliary matrix Y can be 
omputed according to equation 1.44: c

 

 2



With the known matrix B and the auxiliary matrix Y the solution of the equation system X ca
computed now by means of equation 1.43: 

n be 
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1.3.1.6 Task of solving equation systems 

Determine the solution vector X in five ways with the following equation system (A · X = R)  

- GAUSS elimination, 
- CRAMER's rule 
- A-1 · R 
- LU-decomposition 
- CHOLESKY method  

 1



1.3.2 Iterative method 

 the iterative method firstly an approximate solution is assumed for equation system. This 
 the system, and by means of optimisation method the components of 

solution vector are best adapted. After n iteration steps the approximation will approach to the 
accurate solution with a residue. The iterative methods play a dominating role for large equation 
systems, since they are usually substantially faster than the directly solving equation.  
 
Further common applications are the CG method (Conjugate gradient Method) and the multi-
grid method. These methods are particularly subject to further development in connection with 
applications of simulation in field problems. In the CG method the use of additional 
preconditioning became generally accepted in recent years, with which the search strategy of the 

ated as 

 
 

So we can insert a known approximation solution X + δX into this equation. This yields an 

 
In
solution will be inserted into

iterative optimisation steps is specified. Generally the kind of the preconditioning substantially 
determines the optimisation speed or the number of optimisation steps.  
 
We assume the general matrix notation of a linear equation system as below; X is design
unknown solution vector, 

A · X = R       (1.51)

unknown δR on the right side, which deviates from the given value. 

 
 

If we subtract equation 1.51 from equation 1.52, then: 

 
 
Or with above equation 1.52: 

 
 

δX is the approximation solution. The goal 
now is to make the right side equal to zero while a new δX will be found. This can be done via 

(see section 1.3.1, page 17) or by means of purposeful optimisation, 
e.g. with the CG method. 

enerally the CG method can be well used for linear, square, symmetrical matrices (m = n). The 
asic idea is to minimize a function. 

The right side of this equation is known, since X + 

solving the matrices equation 

 

G
b
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The function possesses a minimum if the gradient (see section 2.2) is equal to zero: 

 

This minimum can be found, if we formulate a function f (xk +αkpk) by means of a search 
direction pk. The index k means the number of continuous search loop. 

 
1.3.3 Overdetermined equation system (m > n) 

In contrary to the methods described so far solutions for overdetermined equation system are to 
be demonstrated here. In this case there are more equations than unknown quantity, i.e., m is 

rger than n (m > n). This occurs when mathematical models are to be adapted to measured data. 
 typical case is thereby the application of the quantized (discrete) faltung integral (see section 

12.3 faltung integral, page 355). 

A usual method is to regard this task as optimisation, and we try to make that, the free 
pting to the measured values. Thereby most methods 
tion problem and in the choice of the optimisation 

strategy. 

la
A

parameters, i.e. the solution vector X ada
iffer in the conditioning of the optimisad

The SVD method (Singular Value Decomposition) proceeds in the following way. The matrix 
equation is given: 

 
 

In this case the coefficient matrix A can be decomposed into 

 

Whereby the matrix U has the same figure as A, 
is a transpose with rank n. This deco

wii a square diagonal matrix with rank n and VT 
mposition employed on the equation above and solve 

ccording to solution vector, shows that: a

 
 
This equation can be solved with the HOUSEHOLDER routine. 
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Chapter 2 
 
 
 

2 Vector algebra and analysis 
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On the basis of simple, well-known representations of vector calculus the basic rules of the vector 
algebra are specified. Subsequently, the rules of vector differentiation with descriptive examples 

.1 Unit vector 
Different unit vectors of vector representations are dependent on the use of coordinate system. 
Then the vector 

are discussed. 
 

2

 can be expressed the sum of multiples of unit vector. The unit vectors possess 
the length (modulus) one | e| = 1, and are always parallel to the coordinate system axles. 

or the practical work in water management three coordinate systems, the Cartesian, the 
nit vector

F
cylindrical and the spherical, are generally used. The same u   can be described in table 
2.

Table 2.1: coordinate system of vector representation 

1 (also see figure 2.2 and 2.1). 

 

 
Figure 2.1: vector representation in Cartesian coordinate system 

 two-dimensional space polar coordinate system will be used (see Figure 2.3). 
 
In

Since the vector  is independent of the used coordinate system, the following conversion is 
applicable between the Cartesian and the polar coordinate system: 
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Figure 2.2: vector representation in spherical coordinate system 

 

 
Figure 2.3: vector representation in two-dimensional space 
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2.2 Calculation rules 
In the following some important basic arithmetic rules for vectors are to be demonstrated by 
examples in the Cartesian coordinate system. 

• Addition 
The arguments of the Cartesian unit vectors are respectively added in the vector addition: 

 
Notice: 
This relationship applies only to the Cartesian coordinate system and can not be transferred to 

 

 
 

commutative law 
 
 

distributive law 
 
 

distributive law 
 
 

distributive law 
 
 

associative law 
 
 

• Modulus 

 

 

In particular it applies that the modulus of the unit vectors is equal to one: 

other coordinate systems. 

In the vector algebra the following laws apply: 

The modulus of a vector is equal to its length and thus a scalar, which is direction-independent: 
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• Product 
e differentiate two kinds of products with respW ect to the vector algebra, the scalar product 

oduct). 
ined: 

(point product) and the vector product (cross pr
The scalar product between two vectors is def

 
Hence the scalar product between two vectors is equal to zero, if they stand perpendicularly to 
each other. In particular it applies that the scalar product of a vector with itself, i.e. the square, is 
equal to the square of the modulus: 
 

 

Particularly for the unit vectors: 

 

 

The formation of the scalar product in Cartesian coordinate in following way according to above 
rules: 

 

From this and the equation stated above the angle between two vectors: 

 
he vector product between two vectors yields a vector: T

 
its modulus is equal to stretching parallelogram by  and : 
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and its direction stands perpendicularly to  and : 

 
in general: 

 
 
For the Cartesian coordinate system applies: 
 

 
Especially for unit vector: 

 
(2.18) 

Attention: 
 
 
For the vector product commutative law is not applicable, but: 

 
In contrast however the distributive law applies. 

 
 
 
• Differentiation 

 9



In the vector analysis we speak of three different kinds of the differentiation, gradient (grad), 
divergence (div) and rotation (rot). For the all three methods a uniform differential vector, 
NABLA-Operator applies (see table 2.2). Table 2.3 shows the ways of writing of the different 
kinds of differentiation in the overview as a func n of the used coordinate system. For further 
simplification the LAPLACE differential operato ∆ can also be used as the way of writing. This 
is double application of the NABLA-Operator  

tio
r 

 

 

Table 2.2: Description of NABLA-Operator in different coordinate systems 

 
 
 
In the gradient formation 

 
the NABLA-operator is applied to a scalar potential field φ. The result of the gradient formation 
is a vector. The gradient formation can be regarded as the formal multiplication of the NABLA-
operator with a scalar quantity. In the field of the hydrogeology this quantity can be groundwater 
level h, temperature fields T, concentration distributions C, evaporation or groundwater 
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regeneration rates vN  and others. These scalar quantities (potentials) are nondirectional and have 
thereby no vector character. However they are location dependent. The most important 
application of the gradient formation is the DARCY law for the computation of the groundwater 
flow velocity (see section 7.1, page 184). 

 
 
Example of gradient formation application: 
 
The groundwater level of an aquifer is indicated by function: 

 
We compute the groundwater flow speed, if the permeability coefficient of the aquifer is k = 2 · 
10-3 m · s-1

 
It applies: 
 

 
 

It is be recognized that  

) there is no vertical stream 

b) the speed is dependent on the coordinates. The current in the aquifer is thus not constant. 

 
 
We understand the application of NABLA-Operator on a vector by divergence: 

a

 
The result of divergence formation is a scalar quantity. The divergence can be regarded as the 
formal application of the scalar product formation between the NABLA-Operator and a vector. 
According to the rule of scalar product formation the divergence of a vector is a scalar quantity. 
The divergence, also as productivity of an area G noted, indicates, that whether source or sink in 
this area. If the divergence of a vector field is equal to zero , the area is neither 
source nor sink.  
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According to GAUSS law the entire source and sink activity of an area G can be computed by 
the volume integral of the divergence. At the same time it is known from the balance laws that 
the difference between the source and sink activities, i.e. the flow rates of the surface must: 
 
 

 
For the two-dimensional area similarly: 
 

 
 is a normal (perpendicularly standing) unit vector to the surface or to the circumference. With 

Gauss' theorem volume integral can be converted into integral over the surface and area integral 
can be converted into integral over the bound. Also the divergence plays a fundamental role in 
the hydrogeology, since all processes must be balance in the mathematical description. In 
particular a large number of further derivatives is based on the following relation: 

 
 
Example of divergence calculation: 

We compute the divergence of the velocity vector  in the previous example: 

 

 
This area is neither source nor sink. 
 
 
 
 
In the rotation formation the NABLA-operator is linked by means of cross product with a 
vector: 
 

 
The result represents again a vector. 
If , we speak of irrotational field. We can also deduce from it, that rot grad φ = 0 is 
always applicable for irrotational potential field j. 
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Further arithmetic rules in connection with the vectorial differentiation yield as a result of 
application of other vector rules and the extended rules for the differentiation of products: 
 

 

If we examine the source and sink activity of an aquifer, we can write the DARCY law as 
llows: fo

 
Only for the homogeneous 
isotropic aquifer may be set grad 
(-k) = 0, and then the aquifer 
equation: 

 
 
 
 
 
 
 
 
 
 

Table 2.3: coordinate 
system 
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2.3 Examples of Vector calculus 

 
1. The filter velocity

 
consists of components vx = 3 · 10-3 · s-1, vz = -5 · 10-4 · s-1 and vy = 0. 

Outline and compute the filter speed and indicate the modulus and the angle. 
The modulus of a vector: 
 

 
With the given values we get the modulus: 

 
 
The angle is calculated by the slope, which is equal to the tangent of the angle: 

 
 
Thus the vector of tasks in Cartesian and polar coordinates: 

 
 
 

. A pollutant particle moves by convection ( ) and by the hydrodynamic dispersion (2 ). 
lot and compute the back way and the end point, if the particle is transported from the origin of 
e coordinates with the following part 

P
th

 

In the task two different coordinate representations are used. Since the natural processes are 
dependent of the type of representation, the task can be solved with the use of the Cartesian 

oordinate representation or by means of polar coordinates. In both cases a conversion between 
e two systems is necessary.  

or the existing two-dimensional case the following relations are available: 

in
c
th

F
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It is to be noted that aα is usually indicated in radian measure and the following relation applies 
 
 

 

With the given numerical values we find: 

 
According to the above definition: 

 
3. Design and compute the end point of a pollutant particle after one day, if it moves from the 
point x = 0m; y = 0m by a convection due to a potential gradient of ∆h = 1m between the points x 
= 0m; y = 0m and x =30m; y = 40m with a k-value . 
As basis of convection the filter speed is set . The field velocity must be used in accurate way, 

however not in this task. The mean transit v ity eloc is equated thereby the pore velocity. 
 
 
 

With:  filter velocity    n’ seep through porosity 
(Darcy law) 
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Distance:  

osition:  

 

 
 
 

 
 
P
 
 
 
From the equation of straight line: y = mx + n or the two points equation of straight line results:
 

 
With x  = y  = 0, x  = 30m and y  = 40m: 0 0 1 1

 
We can insert y immediately into the equation of the length s: 

 
With s = 0.864m we get the value: 
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2.4 Task of vector calculus 
 

1. The vectors  are given in the coordinates: 

 
Determine the length of vector  
 
 
2. Given vectors and  Compute w such that the 

stand perpendicularly to each other. 

 
3. Calculate for 

two vectors 
 

 and  

 
 
4. A particle moves along a space curve in the coordinates  x = t3 + 2t,  y = -3e-2t, z = 2 sin 5t. 
Compute the velocity and the acceleration of the particle at any time t. Indicate the distances for t 
= 0 and t = 1. 

5.  end point of a pollutant particle after one day, if it moves from the 
n due to a potential gradient of ∆h = 1m between the points x 

ith a k-value k = 5 · 10-4 m · s-1. 
 

) Is this irrotational flow in the filter?  

 
7. A pollutant plume spreads underground. The distribution of the pollutant varies in the range of 
values x::= 0 to 10 and y::= 0 to 10 with the following figure: 

n range of C (x, y) = 0mg to 50mg 
with an increment ∆C (x, y) = 10. 
b. termine the modulus and the direction angle. 

 
esign and compute the D

point x = 0m; y = 0m by a convectio
= 0m; y = 0m and x =30m; y = 40m w

6. The scalar potential field is given in a filter h = xy + yz + xz. 
 
a) Determine the filter velocity (vector and modulus). 
b) The activity is source or sink in the filter? 
c
Given k = 10-4 ms-1 and grad (-k) = 0. 

 
C (x, y) = 50 – ((x – 5)2 + (y – 5) 2) 
 
a.) Outline the equipotential lines for the concentration values i

) Compute the gradient at the point P (3, 4) and de
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8. A pollutant plume spreads underground. Die The distribution of the pollutant varies in the 
range of values x::= 0 to 10 and y::= 0 to 10 with the following figure: 
 
 

 
 
a.) Outline the equipotential lines for the concentration values in range of C (x, y) = 0mg to 
125mg with an increment ∆C (x, y) = 25. 

.) Compute the gradient at the point P (5, 10) and determine the modulus and the direction 

9. The groundwater level of an aquifer which one si ited by a barrier and a well are to be 
described by the following geometrical figure: 

b
angle. 
 
 

de is lim

 

 
a.) Outline the hydro isohypses in range of z  = 1m to R zR = 5m with an increment ∆zR = 1m for 

 ≤ x ≤ 10. 
ilter velocity with k= 0.001ms -1 at the point P (5, 5); determine the modulus 

coordinate 0
b.) Compute the f
and the direction angle. 
c.) Is this field source or sink? 
 

 19



 
 
 

r 3 
 

 method 

Chapte

 
 

3 Interpolation
 

 20



Problem: 

Some measured values (dependent variable) are dependent on independent variables in one -, two 
-, three or four dimensional space measurement, and generally they are represented by the three 
space coordinates (depending upon coordinate system e.g. xn, yn, zn or rn, αn, zn or rn, αn, θn (see 
chapter 2 vector analysis, page 41)) and the time tn. We have a discontinuous value tables in this 
case. For one dimensional case e.g.: 

 

independent dependent 
    
    value    value 

The places x0, x1...., xn are so called supporting places, and the y0, y1....,yn are basic values. 

e range (x0, xn), we name it interpolation. In 
ontrast the searched function values for independent variable outside of the range (x0, xn) will be 

substitute function w = p(x) is found by the interpolation or 
extrapolation, which reflects the original function as exactly as possible yn = f (xn) (see figure 

 

quantization error increases proportionally to the rise of the function. 

 

No interpolation algorithm can be used as replacement for an enlargement of the measured value 
s. 

If function values, whose arguments lie within th
c
called extrapolation. A continuous 

3,1). It is always assumed that the substitute function only matches the original function on the 
supporting places. The accuracy of intervals, i.e. the agreement of the both functions, depends on
the number and the distribution of the supporting places. According to the sample theorem the 

Attention:  

density. By means of the interpolation algorithms one receives in each case approximate value
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Figure 3.1: representation of the discontinuous measured data acquisition 

Original function  sample function  interpolation function  

Sample value 
Original function 

Linear interpolation 
Spline interpolation 
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Example for the application of interpolations: 

The pollutant concentration C(x), which runs out from a refuse dump, is measured at the points 
x0, x1, x2 (see figure 3.2). The pollutant concentration at the point xFl, which flows into the river to 
c e danger, is to be estimated by interpolation. A conclusion is to be given whether this value 
e eds the limiting value. 

 
 

 

F
f

 

aus
xce
             Refuse dump   Well     Flow   Waterworks 

 
 
 
 
 
 
 
 
 
 

Figure 3.2: representation of an interpolation problem 

aquifer 

  limiting value 

 

or the solution of this problem an interpolation function w = (p) is to seek for as "replacement" 
or the function Cn = f (xn). This function should fulfil the following condition: 
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i.e.

Then it is supposed that the intermediate values of the function w = (p) are good approximation 
of the intermediate values of the function Cn = f (xn). 

For the determination of the function w = (p) different interpolation methods can be used. We 
differentiate thereby one- and multi-dimensional procedures. The multidimensional methods play 
an important role in connection with the geographical information systems (GIS) and are also 
often applied in connection with geostatistics. 

In the following some methods will be introduced in connection with water economical 
questions. 

· Polynomial interpolation 

· Polynomial interpolation (spline) 

· Kriging method 
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3.1 Polynomial interpolation 
In this method p (x) has the form of an algebraic polynomial of n order: 

 

This possesses such an advantage that intermediate values can be computed as easily as possible. 

hen maximally an n-th order 
polynomial can be exactly determined: 
It is assumed a measured value table with n+1 pairs, and t

 
with the character: 

 
 
This polynomial is the interpolation polynomial to the given system of interpolation supporting 
places. 
 

In the rules for low order polynomials (n ≤ 3), the value pairs are sought at least piecewise to 
match: 

linear interpolation 
  quadratic interpolation 

a1x + a2x2 + a3x3    cubic interpolation 

The application of polynomials with higher orders makes the arithmetic work more difficult and 
leads to very large fluctuations. 

t display formats for polynomials also yield the different interpolation procedures for 
a n

· analytical power function 
LAGRANGE 

 

p (x) = a0 + a1x     
p (x) = a0 + a1x + a2x2  
p ) = a(x 0 + 

The differen
the determination of the coefficients i of -th polynomial. These different procedures all lead to 
the same polynomial. Thus interpolation formulas are differentiated according to: 

 

· 
· AIKEN 
· NEWTON 
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3.1.1 Analytical power function 

This method assumes that each supporting place of the polynomial w = p (x) fulfils the condition 
+ 1 supporting places n + 1 equations with the n + 1 

unknown quantities a0 to an. 
y(xi) = p(xi). In this case we get for the  n 

 
This equation system can be written in accustomed way as matrix equation: 
 

X · A = Y 
With 

It is to be noted that the matrix X and Y on the right side represent well-known the coefficients, 
hereby the matrix A represents the searched solution vector. The LGS can be solved with all 

ection 1.3 solution of equation system, page 16). 

nt of this linear equation system (LGS) is: 

w
well-known methods (see s
 

The determina

 
and it is named as VANDERMOND determinant.  

(x1 - x0) (x2 – x0) (x3 – x0) … (xn – x0) 
  (x2 – x1) (x3 - x1) ... (xn – x1) 

…… 
…… 

    (xn-1 – xn-2) (xn – xn-2) 
         (xn – xn-1) 
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Since all supporting places are different with each other (must be), D ≠ 0 and the LGS is 
definitely solvable. 

There is of an n-th order polynomial, which receives the values yi = f (xi) and their coefficients:  
p. section 1.2.3 determinants, page 13 and the following): (c

 

From these coefficients we know the interpolation polynomial in demand: 

 

Thereby the interpolation P value in the place x  results from: 

 

Although the beginning of this procedure is very simple, the final determination of the 
interpolation polynomial requires a relative large computation, particularly if a great number of 

asic values are to be taken into account. b
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Example for the application of the polynomial interpolation: 

lease find a quadratic polynomial by using the values of the following table and calculate the P
value y = f (1/2) at the place x = 1/2 

 

Since only three supporting places are available, the polynomial can be only in a second order. A 
quadratic polynomial has the form: 

 
It must be: 
 

 
From the three equations: 

 
Thus the interpolation polynomial: 

 
With this function the looked for function value in the place x =1/2 can be computed: 
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3.1.2 LAGRANGE interpolation formula 
 
 LAGRANGE wrote the interpolation function in the following form: 

 

With the Lagrange interpolation no analytical functions are computed, but only individual values 
p (xP) for each interpolation place (xP). (Li (x) (i = 0, 1, …, n)) are the coefficients of the basic 
values yi in the n-th order polynomial. These are computed from the supporting places xi. The 
Lagrange polynomial with n-th order has the following shape: 

T
 

hus the LAGRANGE interpolation polynomial: 

 
 

s equal 
cept the i-th item. The i-th item is one 

as the numerator is equal to the denominator. It proves:  

If we insert the value of xP choosing from x0, x1 … xn-1, xn, there is always a factor which i
to zero. Thus all Lagrange polynomials will become zero ex

 

A disadvantage of the Lagrange method is that the computation of the Lagrange interpolation 
polynomials must be accomplished again when an increase of the supporting place number 
should be taken into account, which is identical with the increase of the order of the interpolation. 
This is to be clearly seen in the following example. 
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Attention: 

· The weights (factors) Li (xi) of LANGRANGE interpolation formula must be always again 
computed if the number of the supporting places changes itself. 

· The sum of the weights always is equal to one (as a check of the results). 
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Example for the application of LAGRANGE interpolation function: 

For the function yn = f (xn) the values in the equidistant places xn = x0 + 2nh, with n = -1, 0, 1, 2 
ee table) are given: (s

 
Find an approximate value w = f (x0 + h) for x =1/2  
 

According to the rules of the polynomial interpolation maximally a polynomial with 3rd order can 

o the interpolation point. 

 
1. Linear interpolation 

The interpolation function in the place x=1/2 is written as follows with the help of the Lagrange 
interpolation formula (see equation 3.9): 

be developed in this case with four supporting places. It is also possible to accomplish a 
piecewise interpolation. This has the advantage that we can reduce computation work. The 
accuracy is however declined. In this case we try to find an optimum between the required 
accuracy and the cost of computation. The supporting places are used in the piecewise 
interpolation, which are next t

 

The supporting places values x = 0 and x = 1 are used, between which the value x=1/2 lies. The 
factors L0 and L1 are (see equation 3.10): 

 
Then the searched value: 

 

The result of the linear interpolation is thereby equal to the arithmetic means. 
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2. Quadratic interpolation                                                                                                                                           
in this case (see equation 3.9): 

 

The corresponding factors are (see equation 3.10): 

 
and the result is: 

 
3. Cubic interpolation 
In the same way (see equation 3.9): 

 
We get the following LAGRANGE factors (see equation 3.10): 

 
Thus the result:  
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3.1.3 NEWTON interpolation formula 
 
3.1.3.1 Arbitrary supporting places 

The disadvantage of the Lagrange method is that the Lagrange polynomials must be computed 
again and again, which can be avoided in the Newton's method. With the Newton's method only 
one auxiliary item should be added when further supporting places are taken into account. 

The method begins with following formula: 

 

If we want to find a certain interpolation value p (xP), x will be replaced by xP in the polynomial 
expression. 

The coefficients are determined again in such a way that the polynomial accurately reflects the 
supporting places (xn, yn). If we respectively replace xP with x0, x1… xn in the Newton's formula, 
gradually we get an equation system with n equations for n unknown quantities. Since in each 
case the corresponding factors ((xP - xi) = 0) are equal to zero, the polynomial items will be 
omitted. Then we know the basic value yi from the polynomial value p(xi). 

 

The equation system can be solved gradually with b0, b1… bn. By inserting the first equation into 
second we get b1. Once again inserting into the third equation it yields b2. In (n + 1)-th equation 
the b0, b1… bn-1 which are determined before are used to yield bn. 
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Generally the following notation is introduced for short, which are called divided differences of 
first and higher order: 

 
Thus the results of the coefficients: 
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Particularly the coefficients can be determined conveniently according to the following 
computation scheme (example for 5 supporting places): 

According to equation 3.12 the value y at the place x can be interpolated: 

This equation also can be used, in order to compute the interpolation function w = p(x)  
distribution and possibly to plot the function. 

3.1.3.2 Equidistant supporting place distribution 

The equidistant supporting place distribution x0, x1 = x0 + h, …, xn = x0 + nh (h is the step 
length) are given, then the interpolation function by NEWTON: 

 
The elements ∆y , ∆2y , ..., ∆ny , are called finite differences. The exponent does not represent 0 0 0
exponentiation, but gradual differences formation. We compare equation 3.19 with the equation 
3.12 on page 70: 
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These differences are computed according to the following scheme: 
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For example the scheme for n = 4: 

 
 

By rear substitution we know that each finite difference is a combination of the y-values of the 
first column. e.g.: 
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3.1.3.3 Example for the application of Newton's method: 

1. For the function yn = f (xn) the values in the equidistant places are given xn = x0 + 2nh, n = -1, 
0, 1, 2 (see table): 

 
 
please find an approximate value  x = ½ for y1/2= f (x0 + h). 
Solve this example with Newton's method and compare the results with those from 
LANGRANGE interpolation formula. 
 
a) Linear interpolation: 

 
b) Quadratic interpolation: 

 
It applies: 

  

Remarks:  

e Newton's method is that the polynomial Li (x) does not change itself if the 
laces is changed, i.e. each time we only need calculate the additional part 

of the interpolation function. 

 
 

The advantage of th
number of supporting p
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2. The following measured values are given: 

 

Determine the value y = f omial with sui(2.5). Please select a polyn table order. How large is the 
eviation if the order of the polynomial is changed? Since the given supporting places are 
quidistant (h = 1), Newton's method is applicable to calculate the polynomials with different 

puted: 

d
e
orders. 

First the finite differences are com

 

It is evident that the maximal interpolation polynomial order is third. 

a) Linear interpolation 
 
The searched value x = 2.5 lies between x2 = 2 and x3 = 3. Therefore the linear interpolation is 
accomplished only between this tow values 
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b) Quadratic interpolation 
 
Since the searched value is x = 2.5 the quadratic parabola interpolation can be stretched among 
x , x , und x . 1 2 3

 
c) Cub

The cu pporting places. In this case both of the triple x1, 
x2, and . For the first case: 

ic interpolation 

bic interpolation formula requires three su
 x3 or the triple x2, x3, and x4 can be used

 
 
For the second triple: 
 

 
The deviation between the linear and the quadratic result is: 

 
While the deviation between the square and the cubic result is only: 

 
In order to estimate the results, the given points can be plotted (see figure 3.3). The diagram 
shows that: 
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Linear 
Quadratic 
Cubic 

y - value 
 

x - value 

nterpolated values 

. In a practical work it is important to have enough points in order to get a good 
approximation of the function. This can be ascertained that, the form of the function substantially 
does not change when additional points are taken into account.  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Representation of the measured i

 
 
Actually the value should lie between 5 and 6. Obviously the linear interpolation can not yield 
good results in this case. For this reason it is meaningful to plot given points and estimate the 
searched value
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3.2 Polynomial Interpolation (Spline) 
To describe a given function in a certain interval we can link sections that consist of several 
lower degree polynomials together with only one polynomial with high degree. The classical 
examples are line segments in subintervals (seeing figure 3.4). It is assumed that the function 
between two supporting places is nearly linear. This can be applied, if the supporting places are 
narrow enough with each other. 

 

Figure 3.4: Representation of linear spline curves 

Such approximations are continuous, however the first derivative is discontinuous, and i.e. vertex 
appears at the transition part from one interval to another. In the following spline interpolation 
method will be described, in which cubic parabola arches are built up such that the vertexes are 
rounded, then first and second derivatives of the approximation are constant. Polynomials with 
higher degree are in principle not used since they oscillate strongly. 

A given interval of I = (a, b) is divided into n subintervals according to x-value x0 = a, x1, x2 … 
xn = b. The cubic parabola arches will adapt in each subinterval such that the given y-values yi are 
fit at place xi. The first and second derivatives must be agreement between left- and right side at 
the transition part of subintervals (see figure 3.5). The supporting places (xi, yi) are called the 
knots of the spline (the word "spline" originally designated a flexible curve template). 
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A cubic polynomial with third degree has four coefficients. Generally it can be written: 

 

 

Figure 3.5 Representation of spline-curve for a cubic system 

 

The sp

 

line function is defined as follows: 

1. S(x) is twice continuously differentiable in the range [a, b]. 

 

2. In each interval [xi … xi+1] S(x) is given by a cubic polynomial pi (x): 

 

 

3. S (x) fulfils the Interpolation constraints S (xi) = yi for all i from [1 … n] in range [a, b]. 

 

4. Depending upon the form of connecting constraints we get different kinds from spline 
functions. The following is special cubic spline functions 

Cubic parabola arches
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.

 

Connecting conditions      Description  Comments  

In the case of n segments it yields 4n coefficients and 4n constraints for the 4n coeffi
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cient are 
at each Knot (xi, yi) for i = 1, 2 … n – 1 (y-value and agreement 

of the derivatives). This yields 4n-4 constraints. At the terminator points the y-value must be 
accepte  two 
degrees

Interpolation constraints 

 

i i-1 

expected. There are 4 constraints 

d, and thus sind4n ¡2 conditions found, i.e. the spline-curve is defined not completely;
 of freedom remain. 

 

 
     (3.24) 

Connecting constraints of  
polynomial P  at P
 
 
 
 
 

 



We can set the second derivative at the terminator points zero and get a natural spline curve. 

 

 
 
Alternatively the first derivative at the terminator points can be given, in order to approximate a 
function.                   
Thus it yields an equation system with 4n equations for 4n+2 unknown quantities. The two 
missing equations are covered by default of the boundary conditions. 
 

 

 

This equation system can be solved according to familiar methods. Usually the solution of this 
equation system is complex, so not only combination steps- but also iterative procedures (see 
section 1.3 solution methods of equation system, page 16) must be used. As is shown below, 
however a tridiagonal equation system can be generated by a certain scheme, then it can be solve 
with little operating expense. 

Boundary conditions 
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Calculation scheme 
N supporting places xi with i = 0, 1 … n with the step length hi = xi+1-xi and the n basic values yi 
with i = 0, 1 … n are given (e.g. as list of measurement readings), so the following calculation 
scheme (see equations 3.24 to 3.26) for interpolation by means of cubic spline functions can be 
applied with n-1 subfunctions for range xi ≤ x ≤ xi+1

 

The equation in the third step of the table represents a linear equation system of n-1 equations for 
the unknown quantities c1, c2 …cn-1. It can be written in the form of matrix: 
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A is tridiagonally, symmetrically, diagonally dominant, positively definite matrix and possesses 
only positive elements. Thus this matrix is always invertable and definitely solvable. As solution 
method Gauss algorithm can be used for tridiagonal matrices (see section 1.3.1 solutions of 
equation system, Gauss algorithm, page 17). 
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Example for application of spline function: 

The following measured values are given as supporting places and values. 

 

Fo
sp

r these 5 pairs a natural cubic spline function will be found. According to the definition of the 
line functions, 4 subfunctions i = 1, 2, 3, 4 with respective ranges xi ≤ x ≤ xi+1 will be 

searched. 

 

Correspondently the computation schemes are implemented in five steps. 
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Thus it yields the following sub-spline-functions according to equation 3.23: 

 

The diagram of the splines is shown in figure 3.6:  

 
Figure 3.6: Spline interpolation function 

 
We recognize that the spline simulates the original analytic function very well. 

The maximum deviation of analytic solution amounts to 0.010244, which corresponds to 1.68%. 
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3.3 Kriging method 
A family of special interpolation methods is marked with Kriging, which aims at the following 
problem: 

The sampling at a place supplies information for certain space oriented points. However it is 
unknown which values are available for the measuring variables among these points. Krigi
method, which makes possible, to compute the value of intermediate point or the average over an 
entire block. Different special methods are based on the creation of weighted average va
the space oriented variables. Block estimations are predominantly necessary in the 

ng is a 

lues of 
mining 

industry, while estimated points are inserted for map, which is described in the following one. 

estimated 

 in the 
les. In hydrogeological 

practice for instance correlated dissolved matter or temporal repetition measurements of 

      

•

 of Kriging error for each estimated point. 

In the Kriging method it must be also paid attention that no information gain can be achieved by 
the mathematical procedures. Only the information content of the measured values (basic values) 
is processed. Interpolation results might contradict physical laws (e.g. ground water contour line 
in receiving streams). 

If we want to get physically correct interpolations, a fine quantized simulation by means of 
physical models (e.g. ground-water flow models) is necessary and meaningful. Therefore such 
simulation programs offer internal diagram routines for creation of isoline. 
 

The individual Kriging methods differ either in the kind of the goal sizes which can be 
or in their methodical extension for the inclusion of additional information. 

Additional information about the spatial behaviour of a location dependent variable exists
cognition of other measurements, which relates to the observed variab

groundwater pressure head are common. 

In a word Kriging methods are of following advantages compared to other interpolation 
procedures: 

 

• Kriging yields the "best" estimated value 

• Kriging involves the information of the spatial structure of the variable and the variogram into  
the estimation. 

 The individual spatial arrangement of the measuring point net is considered with reference to 
the interpolation grid. 

• The reliability of the results is indicated in form

 
Attention: 

 51



In order to understand the Kriging procedures, the following terms from the geostatistics must be 
nown: k

 

Mean value 
 
 
Expected value 
 
 
Variance 
 
 
 
Covarianc
random variables  
Zi, Zj
 
 
 
Correlations 
coefficient 
variogram 

e of two 

Z is a place dependent random variable with n measured values Za. The density function p(z) is 
probability that Z takes the value zi. By computation of the inequality of two values, the 
variogram shows the variability of a random function, which correspond to points with distance 
to the vector . 

Then the Kriging problem can be represented according to illustration 3.7:            
We have a number of measured values Z ( a), whereby Z is a random variable and a is a 
measuring point of range D.                   
We assume then that Z ( a) is a subset of the random function Z ( ), which has the following 
characteristics:            
It is a second order stationary function, i.e.: 

1. The expected value is constant over the range D  

2. The covariance between two points depends only on the vector  : 

 

Due to these assumptions we want to compute a weighted mean, in order to get an estimated 
value for the place 0.
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Figure 3.7: illustration of Kriging problem 

he Kriging estimator Z*(T 0) represents a linear combination of weighted sample values Zi and n 
of neighbouring points: 

The weights λi are determined in such a way that the estimated value Z*( 0) of the unknown true 
value fulfils the following conditions: 
 
1. Z*( 0) is unbiased, i.e.: 
2. The mean square error is minimal.   
 
 
Under the assumption the stationarity is the expected value and Z ( 0) = m. th
condition 1 (unbiasedn

e 
ess) yields 

 
From this the sum of the weights must be one. 

With the help of the variogram the expected value of the square error can be expressed: 
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In order to minimize the error variance of the side condition 1 , Lagrange multiplier µ 
will be introduced. Then the following function is minimized: 

We get the minimum by setting of the partial derivative zero  and  
 
These yield linear Kring equation system (KGS) with n+1 equations: 

 
In matrix form the KGS is written as follows: 

 

In the case of point estimation  i.e. the diagonal is occupied with zero. 

Since in the steady case the relationship of , can be replaced by 

 the covariance in the KGS. 

hus the diagonal of the matrix emerges large elements. In numeric aspect it is preferable 
erefore implemented in most programs. 

 estimate variance σ2
k for point estimation results from above equations: 

T
th

The Kriging
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In a special case, in which no spatial dependence of the data exists, we get the weights . 
The Kriging estimator now the simple arithmetic means of the neighbouring samples. The 
following characteristics distinguish the Kriging estimator: 

• The KGS is solvable only if the determinant of the matrix (γ ) = 0. Practically this ij
means that a sample can not appear twice (i.e. with identical coordinates). 

• Kriging yields an accurate interpolator. 

• The KGS depends only on  or , however not on the values of the variable Z 
in the points of sample xi. With identical data configuration the KGS only need to be 
solved once. 

• Confidential limits of the estimation can be indicated under the help of the estimation 
error σK.

 practice a series of Kriging procedures were developed and applied, which regard more 
omplex situations, e.g. intermittent variable, space time dependence etc. 

In
c
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3.3.1 Task for application of interpolation method 

· NEWTON 
 
· Spline function 
 

The following are measured value tables 

1. For normal distribution function is tabulated   
 
 

 
Interpolate by means of  
 
· Analytical power function 
 
· LAGRANGE 
 

 
and find out the value of y(1.50) 

2. Please interpolate  

 
 

 and  on the basis of the table. 

 
 

3. A rational function with degree as low as possible is supported by three points: (1, -2); (2, 3); 
(3, 1)? How does this interpolation function change, if another supporting point (4, 4) is taken 
into account? 
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4 Optimisation problem 

Chapter 4 
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4.1 Analytical solution of extreme value problems 
 
4.2 Iterative optimum search 

4.3 Least squares methods (MKQ) 
In water management practice the experimental process analysis (see section 11.1 model 

arameters. The mathematical model structure is specified by a theoretical process analysis. we 
y to transfer this model structure into easily solvable representations. The parameters can be 
etermined by the solving conditional equations or by a parameter approximation problem. So 
e task is, on the basis of structure knowledge or assuming such a model or such parameter sets, 
 develop 

• the characteristics of the system which reflect reality as exact as necessary and  
 
• eliminate the superposed influence of noise and errors to a large extent 

 fulfilment of these demands the comparison of the output value serves as function of the 
or an independent variable (time or place). In the result a change of the parameters is to be 

ried 

 model output signal) is possible. 

This task is also called parameter estimation. Particularly the procedure which is introduced here 
is classified as iterative estimation.  

By the algorithmic model adjustment (see figure 4.1) we try to let the input vector and the 
ma  first parameter set, the 
star ctor of the model x M can be computed by first approximation. 
The  process (xi - xMi) is named as quality 
of t agement applications the square evaluation will be 
carried out. The aim of transformation of parameter is minimizing the value Q = ∑ (xi - xMi)2 => 

in. 

 

classification, page 284 and the following page) is used for the parameter determination of 
underground systems, e.g. k -, S- and T-values of soils, degradation rates, transportation 
p
tr
d
th
to

 

For the
inputs 
made or the model change itself until the deviation reaches minimum. The changes can be car
out according to a certain strategy (search algorithms, optimisation programs), statistically 
(random number generator) or empirically. Also the visual comparison between the two diagrams 
(original and

nipulated vector y work in the process as well as in the model. With a
1ting parameter, the output ve

 deviation of this vector from the output vector x of the
he adjustment of the model. In water man

M
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Figure 4.1: Iterative Model adjustment 

 
 
4.4 Retrieval Strategy 
In these optimisation tasks it is very crucial that at what processing time the minimum is found. 
The processing time Tv depends on the basic computing time Tn for the numeric analysis of the 
model and the number of iteration steps n. The number of solution procedure is mainly 
determined by four influences: 

der Zahl der zu suchenden Parameter; sie entspricht der Anzahl der Suchrichtungen 
und geht damit exponentiell ein, 

• the number of the parameters which are looked for; it corresponds to the number of 
search directions and shrinks exponentially 

•the formation of the quality mountains, i.e. the slope and the number of subminimum, 

• the search strategy, whereby accuracy for the correct direction, the search step length 
and cognition of subminimum 

• the starting parameters, which crucially prevent unnecessary search steps. 

The formation of the quality mountains and the search strategy can not be regarded 
independently. Generally it must be noted that there is not a "best" search program, but for 
certain classes of quality mountains appropriate procedures are particularly suitable. 
There is a series of procedures to solve of optimisation problems. We divide these search 
methods according to their search strategy into non-gradient-, gradient- and coincidence- search 
method. 
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In table 4.1 the most important procedures for iterative processes of estimation (WERNSTEDT) 
re compiled. 

Table 4.1: iterative estimation method (WERNSTEDT) 
 

a
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4.4.1 JONES Spiral method 

The methods of the nonlinear regression, which is best suitable for
aimed at adapting model functions x

 pumping test evaluations, is 
rs ŝ to given values (measured 

values) x(s). The deviations between xM (ŝ) and x(s) are shown with weight factors the W. In the 
case we assume that, n samples (measured values) are available from the process and the model is 
determined by k independent parameters. 

Starting from initial value ŝ0 the goal function is to be minimized concerning parameters ŝi (I = 
1,k) 

M (ŝ) by choosing the paramete

  

This complies with the requirement of the least square error method. 

Essentially iteration exists in the solution of the linear equation system: 

 
 
with  

 
 
and 

 
 
Tj represents the change of j-th parameter. We can get the equation system by developing 
TAYLOR expansion of the objective function at the place S0. If we set the partial derivatives of 
this function equal to zero, we get an equation system as above.  
To check whether the linear approximation is adequate, the inequality must be fulfilled. 
 

 

It is not always like this case in practical. According to JONES we find a better goal function 
value by a vector manipulation between the TAYLOR direction T and the negative gradient 
direction G (see figure 4.2).  
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The minimum function value within the iteration is expected in the place ŝ0 + T. On the other 
hand the goal function decreases in the direction of negative gradients. Thus it is sure that there is 
a better goal function value within the triangle ŝ0 – (ŝ0 + T) – (ŝ0 + G*).  G* has the direction of G 
and the modulus of T. we act on the assumption of TAYLOR step in this search. 

 
Figure 4.2: JONES spiral algorithm 

points will be calculated at the 1st spiral, which are shown: 

 
Iteration is terminated, if a better goal function value were found. If the TAYLOR step is not 
successful, 
 

 

The different s-values are attained by change of the µ-value. µ begins with 0, 1 and is compute
by the following relationship (Z ≥ 2). 

d 

 

If µ >0.9 the search will stop on the current spiral. If Q (ŝ0 + S) ≥ Q (ŝ0) the vector T is halved 

The larger Z is, the fewer points on a spiral are computed. If possible we interpolate either on the 
spiral or in TAYLOR direction.  If no better value is found even along the last spiral, search will 
be carried out in negative gradient direction with smaller steepening increment. 

and the next spiral will be searched. 
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Chapter 5 
 

 
5 Ordinary differential equation 

 
 

 

 63



Ordinary differential equations are characterized by the fact that the searched function is 
dependent on a variable, while in the partial differential equations (PDE) more arguments and 

ial Equation (ODE) 
 

tion (PDE) 
 

Table 5.1: illustration of the differential equations 

their appropriate derivatives appear as the following examples: 
 
Ordinary Different

Partial differential equa

 

Their illustrations are evident in table 5.1. 

 

In the following derivations and examples with the ordinary differential equations it is assumed 
that "x" stands for the function value and "t" serves as argument. Of course all propositions can 

e also assigned to other arguments, and for dependent functions arbitrary variable names can be 
d. The particular use of the letter x as a symbol of variable name appears in many mathematic 

aching materials and in the signal theory (See GRÄBER: Lehrmaterial zur 
u omatisierungstechnik bzw. Grundwassermesstechnik). In the partial differential equations x, y 

and z are used as independent local coordinates. 

 
 
The general form of an ODE is: 

b
use
te
A t
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These differential equations are identified according to table 5.2, if correspondent conditions 

 
Table 5.2: identification of differential equations 

fulfilled. 
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5.1 Setting up equations 
In the further sections solving differential equations is based on the mathematical description of 

ording to the physical or 
chemical basic laws and their effects. This way of the theoretical process analysis, also 

s generally preferred by natural scientists. 

In the theoretical process analysis the reciprocal effects of the process variables, state variables 
are formulated as mathematical model equations with their neighbourhoods. The most 
substantially reciprocal effects between the system and its neighbourhood are divided into causes 
and effects. The causes and the effects are called input and output variables. The description by 
means of the physical or chemical basic law is usually in formation of balance equation, 

ss balance equations.  

s lead to force equilibrium law and flux laws. Generally we can 
 potential to kinetic energy. Such energy transformations take 

lace on so called flow resistances. A kinetic energy in form of material or mass flow results 
from different potential energies at the in- or outflow resistance (e.g. conduit, aquifer, electrical 
resistance), which act as driving force. We also say that flow resistances corresponding potential 

ation assumes that mass is neither created nor destroyed within a regarded 
system (e.g. container, representative unit volume). The mass balance of a system can only be 
changed by outside sources or sinks. If dynamic systems are considered, the storage effect must 

athematically this circumstance can be also described by the divergence of a flow vector, which 
must be zero in this case 

Examples of setting up differential equations: 

 a pipe with free gradient, 
if this is attached at a container (see figure). 

natural processes. The derivative of mathematical equations as transformation of natural 
processes is noted as modelling and as the transformation of mathematical model. The 
development of such mathematical models is the subject of section 11.2.1 theoretical process 
analysis, page 291 as well as 11.2.2 experimental process analysis, page 292. The method 
described here is only how the mathematical models to be completed acc

designated as mathematical modelling, i

particularly the formation of the energy and ma

Most energy balance equation
peak of the transformation froms

p

energy, also called as potential, is abolished, "drops" (e.g. pressure difference, voltage drop). 

The mass balance equ

be included likewise the mass balance. This means that all mass flows, which affect a system, 
must be zero in sum (junction law). 

M

Please find out the relationship of the flow rate V, which flows out from
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Task of setting up differential equation: 
 
1. The padding to the remainder holes of the former brown coal open pit caused by the rise of 

roundwater under natural conditions will last too long time. Therefore external supply is 

quifer and contingent ground water regeneration rate. 
Initial condition (ht=0(1,2) = 0) is given  for all cases. 
) Constant flow rate (see figure 5.1) 

) Coupled storage cascade (see figure 5.3) 

g
introduced to the filling procedure for acceleration. 

et up the differential equation for the padding procedure h(1,2)(t), without consideration of the S
a

a
b) Variable flow rate (see figure 5.2) 
c

 

Figure 5.1: filling procedure of a remainder hole with constant flow rate 

 

Figure 5.2: filling procedure of a remainder hole with variable flow rate 
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Figure 5.3: coupled storage cascade 

2. Set up differential equation for the following hydraulic scheme (see figure 5.4) with associated 
block model. 

Assume a linearized relationship and a homogeneous, isotropic aquifer with the following 
parameters k = 5 · 10-4 m/s; n0 = 0.2; zRmittel =20m; l = 50m: 

 

Figure 5.4: schematic illustration of the groundwater level with block diagram 

3. A float control is used for the water level regulation of an irrigation ditch (see figure 5.5). Set 
up differential equations to calculate water level H. The surface of the container is A. The flow 
rate V is dependent on the water level H. 
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Figure 5.5: Water level control of an irrigation ditch 
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5.2 Analytical solution methods 
.2.1 First order Ordinary differential equations  

One solution for the following inhomogenous first order ODE should be found 

5

 

The following writing ways are often used for short: 

 
Firstly it will be transferred into a homogeneous ODE in order to solve the inhomogenous one. 

 

There are several methods to solve homogeneous ODE, and the separation of variables and th
substitution method are described here. 

e 

 

5.2.1.1 Solution of homogeneous differential equation 

 
First order ODE: 

 
 
For simplification the functions a0 and a1 are regarded as constants. 
 

 
ing the ODE algebraically such that, there 

 
 
 
 
 

• Separation of variables 

The method of variable separation is aimed at rearrang
is a total differential on each side of the equation which is conveniently integrable. 
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Both solutions are applicable and transferable with each other based on logarithm laws (see 
ection 1.1, page 2). 

By equating both equations we get: 
 

s
 

 
Since the integration constants C1 and C2 are still indefinite as well as the logarithm and the 
exponential function, both two solutions are equivalent. The constants can be determined from at 
the initial or final conditions, e.g. C1 and C2 can be determined at the point t = 0 with the known 
initial condition xh0: 
 

 
 
The solution of the homogeneous ODE: 
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Application of Separation of variables: 
 
Solve the ODE: 

 

According to the algorithm we try to separate the total differentials (dx and dt) respectively   on 

a h side of the equation. e c
 

. We insert xt=0 = 3 in the general solution, it yields C2 = 3, so the answer is
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• Substitution method 
 
Basic idea of the substitution method is to find a possible solution by means of insertion, which 

ces. The most well known substitutions are combinations of 
xponential functions or sine functions as well as general power series. The advantage is no 

e differentiated, which is 

 

have been proved with experien
e
implementation of difficult integral operations, only the insertion to b
often more simply to realize: 

 

 

      
       substitution: 

                derived from: 

    Differential equation: 
         

 
inserting in homogenous differential equation: 

     
 

The reciprocal value of this constant λ, which is in unit of time in the case, is also often called 
time constant T or ґ. 

 

 

As in the method of separation of variables, the constants are determined from initial or final 
conditions. I.e. K can be determined at the point t = 0 with xh0:  

 

 
It yields: 

 

the same solution for ODE is obtained like other methods. 
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5.2.1.2 Solution of the inhomogenous differential equation 

A general inhomogenous differential equation can be written in the form: 

 
its general solution results from adding the homogeneous solution xh (t) to a particular solution xp 
(t), i.e. 
 

 
We can get the particular solution of differential equation for example by variation of constants 
method, which assumes the homogeneous solution and  takes the existing constant, here the time, 
as function of the arguments. 
• Variation of constants method 

he solution will be carried out in four steps: T

 

    Differential equation: 

    
nd separation: 

 solution of homogenous differential equation: 
             

    3rd step variation of constant: 
 

     
      1st step: dismember: 

   2  step: variation 
        

According to the rule of product differentiation:  
 

 

 4th step insertion in differential equation: 
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This differential equation can be treated according to the above methods for solution of 
homogeneous differential equation, e.g. by means of separation of variables: 

 
Thus the general solution of the differential equation: 

 

The constants are determined by initial or final conditions, as in the method of variables 
separation, e.g. C can be determined at the point t = 0 with xh0: 

 

 
Then it yields: 

 

The solution possibility thereby depends on the integrability of the perturbation function g(t). 
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Tips: 

The integration of two functions product is only possible in some functions. Particularly, if a 
itive function or the derivative of the others, the following substitution can be function is the prim

introduced: 

 

That what we should keep in mind is not final formula, but the way of: 

1. Transfer into a homogeneous differential equation (mutilating)  
riables  

s or substitution method  
4. Insertion in the differential equation 

d of the variation of the constants:  

1. It can be only used for linear differential equations.  
2. The general solution is linearly dependent on the constants.  
3. The general solution has a member of free constants which are received from the 

particular solution of the inhomogenous differential equations.  
4. It frequently occurs that a nonlinear differential equation is transferred into a linear one by 

a simple substitution. 

2. Separation of va
3. Variation of the constant

 

Remarks on the metho
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Ex ifferential equation: 
 
1. 

So

By
un

 
 

amples of solution of inhomogeneous d

Find out the solution of  

Solution: 
 
 

Differential equation: 
     1. Dismembering: 

 
         2. variables separation: 

 
  
       3. variation of constants: 

 
 

   4. Insertion: 
 
 
 
 
 
 

 

      General solution: 
 
 
 
 
 
2. Find out the solution of 

lution: 

 the substitution z = x2 and z = 2 x·x the equation becomes a linear differential equation of 
known function z. It ca  as follows: n be solved according to the substitution method
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Differential equation: 

  Substitution:     

 

       Back substitution: 
            General solution for x: 

 
Substituted equation: 
     1. Dismembering: 

 
         2. variables separation: 

 
  
       3. variation of constants: 

 
 

   4. Insertion: 
 
 
 

 
 

General solution for z: 
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5.2.1.3 Task of solving first order differential equation 

 
1. Give the general solution of the following differential equation: 

 

2. Differential equation Txa + xa = Kxe for a system with simple memory effect (xa output value, 
xe input value, T time constant, K proportional transfer function).                
How the output value xa changes dependent on time t if xe = ct (C = const.)? 

3. Determine in each case the general and the special solution by specified initial conditions:  

 

4. Differential equation applies to the hydraulic scheme (see figure 5.6) with associated block 
diagram: 

 

It is assumed a linearized relationship and a homogeneous, isotropic aquifer with the following 

parameters . Compute the change of the 
ollows: water level, if the river surface changes as a first approximation as f
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Figure 5.6: Schematic representation of the groundwater level 

5. The following differential equation applies to the concentration C in sorption of pollutants at 

T1C + C = K 

T1 is time constant and K is a constant. T1 = 1d-1, K = 100. The concentration should C(0) = 0 at 
me t = 0. 

l equation by means of the analytic methods and compute the 
       

hange. 

 Therefore external supply is 
introduced to the filling procedure (ht=0 = 0) for acceleration. (see figure 5.7)  

a) Erratic (hFl =  hFl  · l(t)) and  
b) sinusoidal (hFl = hFlm sin(ω· t) + hFl0, with ω = 2πΓ and Γ = 7 days)  

the soil matrix: 

ti

a) Solve the differentia
concentration change for the time t = 1d  
b) Outline the time process of concentration c

6. The padding to the remainder holes of the former brown coal open pit caused by the rise of 
groundwater under natural conditions will last too long time.

 

Solve the differential equation by means of the analytic methods. 

7. Solve the following differential equation by means of the analytic methods: 
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figure 5.7: filling procedure of a remainder hole 
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5.2.2 Ordinary differential equations of higher order 

sents 
geometrically a n-parametric curve family. For determination of a single solution from this crowd 
we need n initial- or boundary conditions. 

Example of a 2. order differential equation: 
 
y2y´ + y2 - 1 = 0 is given for the movement of a particle. The general solution of these differential 
equation is (x - C)2 + y2 = 1. This equation stands for all circles of the radius r = 1 with the centre 
on the x axis. According to initial condition y (0) = 1 yields C = 0; then the single solution is x2 + 
y2 = 1. The particle moves around  the circle with radius r = 1 whose centre is on the origin of the 
coordinate system.  

Different types of higher order differential equation can be solved with different methods: 

5.2.2.1 Differential equation of type a 

A general solution of a differential equation with n-th order has n constants and repre

 

 
 

n: 
 

The degrees of higher order differential equation can be reduced by means of the following 
substitutio

 
Then the derivative: 

 

These two ferential equation: equations are inserted into the dif

 

According to the rules for homogeneous 1. Order differential equation(see section 5.2.1.1, page 
111): 

 
 
or 
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Due to the substitution condition we get: 

 

This differential equation can be solved again with the method of the separation of the variables: 

 

Since here two constants exist, two condition equations must be found. t = 0 and t = 1 are 
supplied to e-t functions, then the exponential function simple values (1 and 0) yields: 

 

 
And the solution: 

 
 

Remarks:  

This solution method can be applied also for the differential equation 
 

 

The substitution z = dy/dt leads to a linear differential equation, which can be solved by method 
variation of the constants. 
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5.2.2.2 Differential equation of type b 

 

This differential equation is to be solved according to substitution method. Sense and purpose of 
the substitution method are to avoid complicated operations of the integration of the differential 
equation and only carry out substantially simple operations of the deviation implement. A 
popular substitution is used here, which looks promising from the experience. At the beginning 
all derivatives are developed, which appear in the differential equation.  

Following substitution and derivatives: 

 
These are inserted to the differential equation: 

 
λtFor t ≠ -∞ we can divide e : 

 

 

If we introduce this to the standard format of quadratic equation, then it yields new constants d = 
b/a and f = c/a: 

 

This equation is also designated as characteristic equation of differential equation. And the 
general solution of this characteristic equation is: 

 

 

Depending upon the coefficients d and f there are three different cases: 

 
1. 1st case, when d2/4 – f > 0 => d2/4 > f, or b2 > 2 · c · a, then λ1 ≠ λ2 and real number 
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The solution: 

 
This case results in an asymptotic curve, which approaches a final steady state. This lies in the 
real number range if λ1 and λ2 take negative values. 
 
 
2. 2nd case, when d2/4 – f < 0 => d2/4 < f, or b2 < 2 · c · a, then λ1,2 will be displayed  by 
complex number, as the radian is negative and the square root from (-1) yields complex num
 
 

ber j. 

 
 
Inserting this solution of the characteristic equation into the substitution function: 
 
 

 

According to the law of exponential calculation the sum of the exponents could be decomposed 
into product of two exponential functions. At the same time we can consider that the exponential 
functions with imaginary exponent can be transformed into trigonometric functions. 

Thus the solution: 
 

 
 

This function represents the general form of the oscillation equation. For special cases we get 
sinusoidal oscillations. This is the case, if c1 or C2 are identically equal to zero. With d = 0 we 
get an undamped oscillation, i.e. the amplitude is constant, if d < 0 a damped, with which the 
amplitude goes to zero, and if d > 0 a swing oscillation. 
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3. radian is equal to zero, and we get two identical solutions: 

 

T wo different functions, which satisfy the 
d

 

8

hus the solution is no longer unique! We have t
ifferential equation as solution: 
 

 6
3rd case, in the case the 
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Example of 2nd order differential equation: 
 

 
 
 
 

 
    Differential equation: 

              substitution: 
 

        
 
                 insertion: 
            characteristic equation: 

            solution of characteristic equation: 
            general solution: 

    Differential equation: 
              substitution: 

 

                 insertion: 
            characteristic equation: 

            solution of characteristic equation: 
            
 

 general solution: 
 

        
 

    Differential equation: 
              substitution: 

 
        
 
                 insertion: 
            characteristic equation: 

            solution of characteristic equation: 
            

 general solution: 
 
 

1. find out the solution:

2. find out the solution:

3. find out the solution:
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Remarks: 

This solution method can be likewise used for differential equation of higher order (n≥3) with the 
appropriate substitution of higher order algebraic equations. 

 
Example of 3rd order: 
 

 

    Differential equation: 
              substitution: 

        
 
 
 
      

            insertion: 
            characteristic equation: 
        solution of characteristic equation: 

             general solution: 

 

    

find out the solution:



5.2.2.3 Differential equation of type c  

 

 

This differential equation is again to be solved according to the substitution m
with the pertinent derivatives: 

ethod. The solution 

 

If these equations are inserted into the differential equation and if the equation is arranged 
according to powers of t: 

 

A solution of this equation, which applies to all t-values, is that the factors of the power series 
members are equal to zero.            
In this case: 

 

 

If we set these coefficients into the solution, then we receive the solution of differential equation, 
hich are called zero order Bessel function: w
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5.2.2.4 Tasks for the solution of higher order differential equation   

The following differential equations are to be solved: 
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5.3 Integral transform 
 
5.3.1 Time- and Frequency domain 

Integral transform is a method over a detour to solve differential equation. We distinguish two 

· the original or time domain and 

ain. 

The integration according to the arguments within the original range is transformed into a 
ultiplication in complex variable domain. The difficult integration procedures can be bypassed. 

 between the ranges and their special characteristics are represented in the following 
scheme (see figure 5.8). 

 
 

ranges in the transformations: 

· complex variable or frequency dom

m
The relations

 

Figure 5.8: Connection between original and complex variable domain 

 

The most well-known transformations are the LAPLACE -, the LAPLACE CARSON -, the 
FOURIER, LAURENT and the Z-transform. The theories of most these transformations can be 
gleaned in the multifaceted literature. Therefore here we only deal with the substantial criteria 
and disadvantages, which are against general application. 
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The following transformations are represented on the basis of time as argument, since these are 
most frequent applications of engineers, albeit the transformations are applicable to all 
arguments, i.e. also to space variables. 
 

 transforms ca
transformations. The continuous integral transforms can be generally written: 
The group of the integral n be divided into the continuous and discrete 

 

 
 
Whereby k(t, f(t)) is designated as core of the transformation. To simplify matters only an 
argument (e.g. t) is regarded. 

ions specified
 

es the relat  in table 5.3. As special cas
 

Table 5.3: Special cases in continuous integral transforms 
 

 

 

The connection between the three numerated integral transforms can be represented in the 
following form descriptive. According to definition it will be characterized as complex frequency  

 

If the real part of the complex frequency p approaches to zero, the LAPLACE transformation 
changes into the FOURIER transformation. It means that arbitrary (theoretical) time procedure 
can be treated by means of the LAPLACE transformation, and only sinusoidal one by means of 
the FOURIER transformation. The LAPLACE transformation is particularly suitable for 
application to deadbeat procedures, like e.g. bar signals. Nevertheless the FOURIER 
transformation has a large advantage as it is simpler in practice. Each periodic or periodization 
function can be decomposed into a sum of sinusoidal oscillations by the Fourier series analysis. 
This decomposition of the excitation functions and overlay of the response functions are certainly 
only permitted in linear systems. The well-known complex computing methods of electro-
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technology for sinusoidal alternating current results from the Fourier transformation. In the 
Fourier transformation the density of such oscillations, the so called spectrum will be analysed 
and treated by the rule of alternating current theory with only one sinusoidal oscillation, i.e. only 
one frequency. The discrete transformations are in contrast represented by a sum formula: 

 

 
 

We can get certain k(tn, f(tn)) for some special cases (see table 5.4). 

 

Table 5.4: Special cases for discrete transformations 

 

We can also explain the connection between LAPLACE and Z-transform in the following way. 
Replace in the LAPLACE integral for continuous functions the function f(t) by the function value 
series f(nT), 

 
he integral correspondingly by an infinite sum and e-pt by e-pnt: T

 
with ept = z 
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5.3.2 LAPLACE Transformation 
 
Forward transformation 

The following symbols are used in LAPLACE transformation: 

 
The transformation of time or original level into the LAPLACE level tak eans of
integral relationship stated above. 
 

es place by m  

 

Examples for the application of transformation to functions: 

Example1: 

 
 
Example 2: 
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Example 3: 
 

 

There are tabular compositions of LAPLACE transforming for further basic functions (see table 
5.5, page 139). 

5.3.2.1 Important calculation rules 
 
• Addition Theorem 

 

This addition theorem can exemplarily prove another arithmetic rules, that according to 
transformation rule LAPLACE transformation is calculable as integral of product of exponential 
functions: 

 

According to the definition of LAPLACE transformation: 

 
General form of the addition theorem 

 
• Similarity theorem 
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• Theorem for damping 

 
• Shift theorem 

  
• Differentiation 
 

The deviation rules form the basic application of LAPLACE transformation to differential 
equations and their solution. 

 
• Integration 

 
• Faltung theorem 

e
The faltung operation plays a role in transmission system analysis (see section 12.3,  page 355 
and the following pag ) 
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Inverse transformation 
 

For the inverse transformation we use the so called L-1-Transformation. 

 

In principle the following are possible to be applied: 

• Integral formula 
 

 
 
• Residue formula (expansion into partial fractions) 
 

 
 
pn is the singular places on the left, complex half planes, and (p - pn) yields the corresponding  
ole places. 

 
• Series development 
 

p

 

Because of this possibility the residue formula is always applicable and easy to handle for the 
chnical problems. te
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5.3.2.2 Correspondence table 

ince these integrals are relatively complicated and different functions are very often repeated, 
rithmetic rules and correspondence tables are set up, from which the forward transformation 

S
a
and their inverse transformations are easy for reading (see table 5.5). 

Table 5.5: Correspondence table 
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Table 5.6: Correspondence table - continuation 
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5.3.3 Solution of differential equations by means of LAPLACE transformation 
 
5.3.3.1 solution method 

d consists of three sub steps: 

• Application of the LAPLACE transformation to differential equation (or differential equation 

• Inverse transformation of F (p) and determination of the searched function, i.e. solution 
function of the differential equation. 

This solution metho

system) with consideration of initial conditions 

• Solution of the resulting algebraic equation (or equation system) with F (p) as unknown 
quantity 

5.3.3.2 Examples 

 
1. Find out solution of with the initial conditions  y (0) =1 and ŷ (0) = 0
 

: 

• application of LAPLACE transformation: 
 

 
 
• Solution of the resulting algebraic equation with F (p): 
 

 
 
 
• Inverse transformation und determination of y(t) by means of correspondence table (see table 
5.5, Page 139, row 2): 

    Differential equation: 
       LAPLACE transformation: 
                    

         Addition Theorem:    
     Transforming: 
 
           Initial conditions: 

 100



 
2. Solving by means of LAPLACE-transformation 

 
The initial conditions are y (0) = 2 and ŷ (0) = -1 
 
• application of LAPLACE transformation: 

  Differential equation: 
     LAPLACE transformation: 
                    

      Initial conditions: 

                 Addition Theorem:  
             Transforming: 
 
 
 

 
 
• olving algebraic equation according to F(p) : S

 
 

• Inverse transform and determination of y(t):                 

The inverse transform is achieved in this case via expansion into partial fractions. The zero 
positions of the denominator polynomial are searched and expressed as sum product. In the case 
under consideration the denominator is equal to zero, if: 

 
 
The equation for F(p) can be written: 
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The expansion into partial fractions: 
 

 

A common denominator (p + 1) (p - 1) (p - 2) should be used to determine the factors A, B and C: 

 

This equation is fulfilled only when apart from the denominators the numerators are also same, 
i.e.: 

 
It must be an identity and valid for all p values. That means the coefficients power series of p are 
identical in each case. And we get follows: 
 

 
This LGS can be solved by the known methods, so the solution is: 
 

 
 
Then F(p)  can be written in the following way: 
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The inverse transform is to be read from the correspondence table (see table 5.5, page 139, line 4) 
It is: 

  
 

Remark:                     
The same procedure can also be used for t inear DGL systems with constant 
coefficients. 

he solution of l

5.3.3.3 Example of DGL system  
Find out the solution of system: 

 
 
with initial condition  

• application of LAPLACE transformation:  

lds (under consideration of the initial conditions) 
With F (p) = L { x (t)} and G(p) = L { y (t)} the application of LAPLACE transformation to the 
system yie

 

• Solving linear equation according to F(p), G(p): 
According to the known rules or simple transformation, e.g. from the 2nd. equation: 
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• Inverse transform and determination of x (t), y (t) by means of correspondence table (see table 
5.5, page 139, line 3 and 7) 
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5.3.3.4 Tasks for the application of LAPLACE transformation 

 1. Solve the following differential equation by m ans of LAPLACE transformation e

 

2. Solve the following equation system by means of LAPLACE transformation 

 

3. Differential equation applies to the hydraulic scheme (see figure 5.9) with associated block 
diagram: 

 

It is assumed a linearized relationship and a homogeneous, isotropic aquifer with the following 

parameters .      
Compute the change of the water level by means of LAPLACE transformation, if the river 
surface changes as a first approximation as follows: 

c) Erratic (hFl =  hFl  · l(t)) and  
d) sinusoidal (hFl = hFlm sin(ω· t) + hFl0, with ω = 2πΓ and Γ = 7 days)  

4. The following differential equation applies to the concentration C in sorption of pollutants at 
the soil matrix:  

T1C + C = K 
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Figure 5.9: Schem oundwater level 

T1 is time constant and K is a consta concentration should C(0) = 0 at 
time t = 0. 

a) Solve the differential equation by means of LAPLACE transformation and compute the 
concentration change for the time t = 1d         
b) Outline the time process of concentration change. 

5. The padding to the remainder holes of the former brown coal open pit caused by the rise of 
groundwater under natural conditions will last too long time. Therefore external supply is 
introduced to the filling procedure (ht=0 = 0) for acceleration. (see figure 5.10) The corresponding 
differential equation: 

atic representation of the gr

nt. T1 = 1d-1, K = 100. The 

 

Transfer this differential equation by means of LAPLACE transformation in the image plane and 
solve this equation. 

 
 

figure 5.10: filling procedure of a remainder hole 
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6. Solve the following differential equation by means of LAPLACE transformation 

 

 107



5.4 Methods fo

per and a 
wer limit. In a variable is inserted at the upper limit of the integral, the certain integral changes 
to a function, which is determined by the lower limit and the variable at upper border. The 

integral of a wer limit 
nd the abscissa, can be approximated by a simplified area computation. The numerical 

ith the 
ame quantization increment. The advantage of the trivial procedures exists in the simple, fast 

r Numerical Integration 
 
5.4.1 Integration 

The numerical integration always yields the result of a certain integral between an up
lo
in

 function, which can be also displayed as the area between the upper and lo
a
integration procedures differ with each other in the method of area computation. In most 
procedures it is assumed that total area between the upper and lower limit is divided into 
individual subarea and the summation of these subareas yields the integral. The accuracy strongly 
depends on the method of subarea creation and the quantization width of the abscissa. The 
approximation by summation of subareas will be worst with rectangle method and will be best 
with Predictor Corrector procedure or with higher order RUNGE KUTTA procedure w
s
and stable computation of the subareas also in complicated, e.g. discontinuous function. 
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5.4.1.1 Rectangle rule 

T
fi

he rectangle rule as the simplest method assumes the creation of rectangles as subarea (see 
gure 5.11). The area of the rectangles results from the multiplication of the function value (yn) 

on the left supporting place (xn) with the quantization increment ∆x = | xn - xn+1|. These 
rectangles yield too small values with convex function, too large values with concave function. A 
substantial advantage of the rectangle method is no equidistant quantization necessary for the 
abscissa: 

 

We can use function value on the right side instead of on the left.  
 

 

Figure 5.11: creation from rectangles to the numerical integration 

In this case the rectangles yield too large values with convex function, and too small with 
concave function. The computation of the areas: 

 

The correct value of the integral must lie between Flinks and Frechts. 

 

 109



Examples for application of rectangle rule: 

1. We calculate the following integral according to the table by using rectangle rule (left and 
right), then compare the results with the analytical value 

 

The increment is regarded as constant, h = ∆x = 0.2. 

 
 
 (x) = 1/x is a concave function, then Flinks > Fanal > Frechtsf . The average value of the two results 

is:  

 

This value approaches to the actual analytical value. 

Remark:  

The increment plays an important role for exact determination of the integral. The smaller it is, 
the more approaches the numerical value to the analytical, i.e. the numerical value converges. 
This is not only valid for rectangle rule, but for all numerical methods. 
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2. We calculate the integral with an increment h = 0.1 in table and compare the results w
example 1. 

ith 

 

It is clear to notice that all the three values, which are calculated with increment 0.1, lie nearer to 
the analytical value Fanal = 0.693, than in example 1 with an increment of 0.2. 
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5.4.1.2 Trapezoidal rule 

The approximation by polynomials plays a role in a multitude of procedures. The basic idea is 
that, if p (x) is an approximation for y (x), ∫ab p(x) dx ≈ ∫ab y(x) dx. 

Different situations are dependent on the selected approximation. 

With the trapezoidal rule the function between the supporting places xn and xn+1 is linear 
zoid areas, which are 

a culated geometrically: 
interpolated (see figure 5.12). Thus the wanted area is divided into trape
c l

 

 
By summation of the subareas: 

 

figure 5.12: Numerical integration by means of trapezoidal rule 
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In the case of equidistant division the computation of ∆x can be simplified: 

  
In the trapezoidal rule we have another simple possibility irregular increment, i.e. not equidistant 
qu ntization. a

 
5.4.1.3 Simpson’s Rule 

 
The Simpson’s rule is: 

It is likewise a compound formula as parabolic arcs are used instead of y (x). 

Pay attention:                      
· the suppor                
· the number o lac

 

ting places must be equidistant (constant increment h).    
f supporting p es xn must be odd (n = 0….2k): 

5.4.1.4 Newton’s Formula 

In this method the Newton's interpolation function (also see section 3.1.3, page 70) will be 
integrated with following results 
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5.4.1.5 examples for application of numerical integration 

We use trapezoidal rule and Simpson’s rule in order to determine the integral ∫0π/2 sin x ⋅ dx from 
the following table. And compare the results with the analytical value I  = 1. anal

 

 
 
Trapezoidal rule 

 
Simpson’s rule 

 

Obviously the adjustment of quadratic polynomials yields one up to three decimal places exact 
result. 

Newton’s interpolation function 
 
a) linear 
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b) quadratic 

 
c) cubic 

 
 

Apparently the adjustment of quadratic polynomials yields one up to three decimal places exact 
result. 

 

Remark:  

The accuracy of numerical methods must be always relating to the significant number of 
computed and represented places. If we solve e.g. the same problem with seven digitals of 
significant number, then the Simpson’s rule yields I = 1.000003, which does not match the 
analytical value of Ianal = 1. 
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5.4.1.6 Tasks of application to numerical integration 

1. Compute the integral  by using trapezoidal rule with increment h = 0.1 

2. Calculate the following integrals. U l methods and two different 
increments then compare the results: 

se at least two numerica

 

3. Calculate the in pare the 
results. 
 

4. Calculate the integral

tegral ∫11.3 √x ⋅ dx by means of three Newton’s formulae and com

 by approximation.  
Choose h=1.  
Apply Simpson’s rule for the interval [1, 9] and trapezoidal rule for the interval [9, 10]. 
 

5. A measurement series of Al2O3 specific heat C are listed  in the table as a function of the 
temperature T. 

Determine the amount of heat , which must be supplied to a gram Al2O3, in 
order to warm it up from -200°C to 1000°C . 

The integration is to be accomplished numerically according to 

a) trapezoidal rule  
b) Simpson’s rule with an increment h = 200°C. 
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6. In a pumping test the groundwater level were measured (see figure 5.13). Calculate the water 
deficit (volume) of the sinking funnel, if the aquifer is of following characteristic values.    
h

 

pply methods of numerical integration.  

 
 

n = 16m, M = 10m, k = 0.001m· s-1, S0 = 0.0001, n0 = 0.20 

A
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Figure 5.13: groundwater level as a function of the radius 
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5.4.2 Solution of Differential equations 

r’s 

ordinary differential equations. In contrast to analytical methods numerical method always 
s umes boundary conditions, i.e. the initial- and boundary conditions. Particularly in 1st. order 

 

While the solutions of definite integrals are in the foreground in the former sections, the Eule
method, RUNGE KUTTA method and Predictor Corrector method are showing how to solve 

a s
differential equation the initial values are supposed, which leads to the concept of initial value
task.  

In the 1st. order differential equation 

 

with the initial condition beginning point x = a and the function value y(x=a) = ya yield the 
tegration in range x = a to x = b: in

 

 

Thus we obtain the wanted function value yb in the place x = b from the function value at the 
beginning point plus the definite integral of function y (see figure 5.14). The problem now is the 
function y is unknown. For this reason approximation solutions must be again used for the 
integral as described in the former section. The following methods differ from the application of 
pproximation methods. 

 

 

 
 
 

a
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Figure 5.14: Computation of the function value y(b) from the initial value y(a) 

 

These methods can be improved if this approximation is only applied in sections and then 
eratively expanded to the whole integration interval (see figure 5.15). it

 

Figure 5.15: iterative solution of the differential equation 
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We recognize that the writing ways of integration limits could be synonymous:      
wer limit: x = a or x = xn                  

         
he subscript is usually used for the intermediate intervals and the advantage is that it can be 

lo
upper limit: x = b or x = xn+1         
T
easily converted into programming language. 

 
5.4.2.1 EULER method  

The Euler method is the simplest method and actually the integral is approximately deter
by means of the rectangle formula. The greater the distance between a and b, i.e. the increment h 
or ∆x, the worse the  approximation is. 

mined 

 
Thus the solution with following shape: 

 

In this method it is possible to work with different increments, i.e. with a not equidistant division. 
It is also suitable for an automatic increment control, because the error, which results from t
approximation, is dependent 

he 
on the slope of the function y and on the increment (b - a) = ∆x. 

serting it into equation above, we get: In

 121



 

Examp

An approximation solution for the differential equation y’ = xy1/3 with y (1) = 1 is looked for. 

T  EU

le for application of the Euler’s method (also see figure 5.16):  

he LER formula can be also written in the form: 

 

The stop error O(h2), which is produced in the interval xn to xn+1, is rather large in Euler method 
.e. proportional to h2), so that for a high accuracy very small increments h are necessary. E.g. 

for h = 0.01: 
(i

 

The stop error in each interval is about 0.00007. The fourth decimal place should be con
with caution. If we want a higher accuracy, a smaller increment h is necessary. The analytical 
values are 

sidered 

 
E.g. the fourth decimal place was actually inaccurate.  
 
 
 
 
 
 
 
 
 
 

 122



 
 
 
 
 
 

 

 

Figure 5.16: result development with the Euler method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 123



5.4.2.2 RUNGE KUTTA method 

The RUNGE KUTTA method assumes the same approach, the approximation of the integral by 
area calculation, as Euler method. The difference lies in the degree of approximation function for 
rea calculation, which is linear in Euler method. Here with the RUNGE KUTTA method a 

cording to TAYLOR series expansion. 
a
higher order polynomial is used ac

 
with: 

Depending upon degrees of the considered derivative in the TAYLOR series we distingui
RUNGE KUTTA method in different n-th orders.  

In the following subscript way of writing is used, as the entire integration interval (a to b) is 
mostly decomposed into subintervals and additionally this way will be converted in programm
technique in practice. 

sh 

ing 

 
The RUNGE KUTTA methods differ in the way of kn determination. In this classification Euler 
method can be arranged: 

  

The simplest procedure, which differs from Euler method in respect of accuracy, is 2nd order 
RUNGE KUTTA method: 

 

with: 

The error thi ) and  bette wer than 
2

 

s method grows proportionally with h power 3 (0(h3) is r one po
Euler method (0(h )).                    
The 4th order RUNGE KUTTA method is frequently used, which is a good compromise between
accuracy and numerical expenditure. For the general form: 
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e write: W

 

The error of this procedure is 5th.order (0(h5)). Here also for improvement of the accuracy we 
can divide the total interval of a to b into subintervals xn with yn and iteratively solve yb. Since we
cannot change the increment within the subintervals, it is possible to control increment as a 
function of gradients: 

 

 
When n = 1, it yields: 

 
 
 

with: 
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Example for application of the RUNGE-KUTTA ethod:  

An approximation solution for the differential equation y’ = xy1/3 with y (1) = 1 is looked for. 

With x0 = 1 und h = 0.1 we get 4th order according to above RUNGE-KUTTA formula (see 
equation 5.94): 

 m

 
We calculate: 

 

The analytical value is y = 1.10326. The correspondent value with EULER method is y = 
1.10000, i.e. the RUNGE KUTTA method yields better result. However the increment must be 
likewise smaller selected if a higher accuracy is demanded. 

5.4.2.3 Predictor-Corrector method 

The Predictor Corrector method is a two-step procedure. In the first step an auxiliary value y*
b is 

computed and then yb. Thus an increased numerical expenditure develops, but the accuracy rises 
substantially compared to one-step method. Besides RUNGE KUTTA method Predictor 
Corrector method represents the most substantial integration procedure. Predictor step in the 
simplest form, like in Euler method, a rectangle formula for the computation of the integral is 
used: 

 
We can also write: 

 

The difference is that in Predictor step wanted value yb will not be computed, but as the first 
approximation of this value y*

b is regarded. As the second step, Corrector step, the integral will 
be calculated by the trapezoid formula, while the value y*

b is used as upper value in the trapezoid 
formula: 
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Similar to the Predictor step here the basis of output differential equation can be formulated here: 

 

Also this procedure can be expanded to n subintervals of the range a to b and computed 
iteratively. Then the Predictor- and the Corrector- step for the n+1 th interval: 

 

A series of procedures were developed. The above procedure possesses the disadvantage that 
ere is a relative large residue, i.e. a residual value error, which grows proportionally with ∆x2 
(∆x2)). The advantage lies in a relatively simple increment control, only the value f (xn+1; y*n+1 

o be computed. A very widespread Predictor Corrector method is the 
dam BASHFORTH MOULTON scheme. This method is very stable. In contrast to the simple 

For Predictor step: 

th
(O
) or the derivative of yn+1 is t
A
Predictor Corrector method several supporting places of integration steps are needed here. Thus 
the approximation area will not be made a rectangle any longer, but polyline is used for 
boundary. The frequently used 3rd. order ADAM BASHFORTH: 

 

 
 
Then for Corrector step: 

 

This method yields a residue, grows proportionally with 4th power of ∆x (~∆x4), i.e. O(∆x4). The 
disadvantage is that the intervals n-1 and n-2 must be calculated again if changing incr
interval n. So it is necessary to calculate the intervals n, n-1 and n-2 with the same increm
This can lead to an increased numerical expenditure when strong gradient oscillation. 

ement for 
ent ∆x. 

 
 

with: 

 127



Example for application of the Predictor-Corrector method:  

An approximation solu 1/3

-5
tion for the differential equation y’ = xy  with y (1) = 1 is looked for. The 

ccuracy ε ≤ 10
 

or each forward step the simple Euler formula is used as a Predictor. It presupposes a first 
estimat 5 

a

F
ion of yn+1. Here x0 = 1 and h=0.0

 
The differential equation: 

 

The Euler formula will be modified for Corrector (according to trapezoidal rule): 

 
It yields: 

 

With this new value of the differential equation y’ (1.05) will be corrected to 1.0678; afterwards 
the Corrector is used again and yields the result: 

 

Further calculations confirm these four decimal places, so that the desired accuracy is reached. It 
is noticed that the same accuracy can be achieved with increment h = 0.01 in simple Euler 
formula.  

ts. Afterwards we can continue with the next 
terval in order to start again with a simple Predictor formula. 

Generally we iterate until it converges if it exis
in
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5.4.2.4 Tasks for the numeric solution of differential equation 

ly the simple Euler’s method to the diffe l equation, until x = 1 with intervals, e.g. 0.5 
.2 and 0.1 

1. App
0

Do the results converge the accurate solution v

3. The following differential equation
pollutants at the soil

T1C 

T1 is time constant and K is a constant. T1 = 1d
time t = 0.      
a) Solve the differential equation by means of E
compute the concentration change for the time
b) Outline the time process of concentration ch

4. The padding to the remainder holes of the fo
groundwater under natural conditions will last 
introduced to the filling procedure (ht=0 = 0) for

Set up the differential equation for the filling u
aquifer and contingent groundwater formation 
methods. 

 
2. Apply the RUNGE-KUTTA method 4th orde
problem specified above and compare the resu
 

 applies t
 matrix:  

Figure 5.17: filling pro

 

rentia
alue y (1) = 1? 

+ C = K 

-1, K = 100. The concentration should C(0) = 0 at 
       

uler’s method (Rectangle rule with h = 0, 1d) and 
 t = 1d       
ange. 

rmer brown coal open pit caused by the rise of 
too long time. Therefore external supply is 
 acceleration. (see figure 5.17)  

p procedure h(t), without consideration of the 
rate. Describe the solution by means of numerical 

r and a Predictor Corrector method on the 
lts. 

o the concentration C [mg] in sorption of 

 
 

cedure of a remainder hole 

with: 
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5. Solve the following differential equation by means of numerical methods 

 

with
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Part II 
 

Partial differential equations of 
underground processes 
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Chapter 6 
 
 

6 Overview 

 133



There are no generally valid solutions for partial differential equations (PDE), which are 
haracterised by consideration of functional dependency on more arguments.  

he 
l 

 The dynamic basic equation of flow processes: 

c
Because of this reason the following selected PDE, which plays an important role in 
hydrogeology, will be discussed. The groundwater flow equation and convection dispersion 
equation predominantly stand in the foreground. 
Different mathematical methods, such as analytical or numerical solution will be introduced 
according to the complexity of the equation, the number of independent parameters and the 
consideration of inhomogeneity, anisotropy, as well as nonlinearity. 
 
The physical processes are divided into so called quantity flow- and material transportation. T
application of energy- and mass conservation law lead to following coupled partial differentia
equation, for material process only transportation is displayed: 
 
•
 

 
 
• The balance equation of flow processes: 
 

 
• The boundary condition of flow processes: 
 

initial- and boundary condition 1. 2. and 3. type 
 
 
 
This equation system must be set up in the modelling of material and energy transportation for 
each substance contained in water or in immiscible material processes for each group of materials 
and for each phase in the multi-phase system (liquid (water, oils), solid (stone matrix), gaseous 
(air, gases)).  Balance equations must be defined for each subsystem, which consist of the 
following parts: 
 
• The dynamic basic equation for transportation processes: 
 

 
 
• The balance equation for transportation processes: 
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• The boundary condition for transportation processes: 
 
 

initial- and boundary condition 1. 2. and 3. type 
 
 
The connection of the equations within each subsystem is given by the exchange terms. In the 
subsystems it is made via internal reaction terms. The following balance equation applies to a 
balance area, which is also designated as representative elementary volume (REV): 
 
 

Transport = internal reaction + storage + exchange + external sources 
 
The chemical reaction equations (material change processes) and biological growth processes can 
be added to these basic equations. The mathematical model thereby consists of a system of 
ordinary or partial differential equations and algebraic equations, whose coefficients are usually a 

nction of place, time and potential. Thus the system is nonlinear and local- and time variant. 
h
o

he basic equations can be summarized in each case for the flow and the material process, and 
l differential equations with second order: 

 for the flow process (parabolic PDE): 

fu
T e processes in the soil and groundwater range are characterized by a high complexity, a bad 

ndition, a large range of time constants and a very uncertainty of initial parameters. c
 
T
yield two nonlinear partia
 
• The conduction equation
 

 
 
• The convection diffusion equation for the transportation process (hyperbolic PDE): 
 

 

Depending upon the relationship of dispersion portion to convection in total 
transportation process the property of these PDE varies among predominantly parabolic, 

hyperbolic or first order PDE. If convection approaches to zero , the PDE is parabolic 

r PDE with . 

 
 

type, and we get first orde
 
The connection of the quantity and of the material flow is characterised by the critical values of
the water property (temperature T, material concentration C, kinematical viscosity v and density

ρ) and by the critical values of the underground flow processes (filter velocity , change of 
memory contents C·δp/δt as well as internal flow source and -sink w). 
 
This complex form of the system description is often approximated by simplified forms, in which 
one or more processes are neglected or the dependence on one or other arguments is ignored. A 
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fundamental simplification results from the decoupled approach of flow and transportation 
processes and chemical kinetics. Substantial simplification can be also achieved by reducti
the multidimensional area to a local coordinate or time variable.  
 

on of 

his procedure will be demonstrated exemplary by often used and significant engineering 
xamples in the following chapters. 

T
e
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6.1 One dimensional flow equation 
 
 
Under the prerequisite of simplified flow conditions, the view in the cylindrical coordinate space 
as well as the integration over the height of z by a transformation, e.g. the so called GIRINSKIJ 
potential ф, we get the following equations for the rotational symmetric flow field: 
 
 
 

     steady flow:    
  

 "leakier" flow (leaky aquifer): 
 

          non steady flow: 
 
 
These equations and other analytic solutions (see to section 8.1 THEIS well equation, page 196) 
were found by THEIS. The importance of these equations is that they supply useful results with a 
local character (approx. 200 m expansion, e.g. foundation pit) for many engineering 
investigations, which f they form the basic 
procedures for the indirect parameter investigation, e.g. for the so called pumping test evaluations 

ee section 14.1 pumping test evaluation, page 380).  

ilar ng form: 

parallel ditch incident flow: 

procedures in stream tube connected with pollution. 

ulfils the hydraulic geological conditions. In addition 

(s
 
Sim  conditions occur at parallel ditch flow, and the PDE has the followi

 

 
 
The one dimensional processes are also meaningful for the investigation of transportation 
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6.2 Horizontal plane groundwater flow equation 
 

smissibility T: 

 
The horizontal plane groundwater flow equation represents a fundamental principle for the flow
processes apart from the well equation (see equations 6.8 to 6.10). A simplified aquifer 
characterized by means of the DUPUIT assumption (see to section 7.1 DUPUIT assumption and 
balance equation, page 184), and an integral transform for the description of the profile 
permeability, the tran
 

 
 
This equation can be built separately for each groundwater story and the coupling between the 
aquifer can be achieved by hydraulic windows. This equation forms the basics of most hydraulic 

odels, also for the mining districts of the Central Germany and the Lusatia 
rea.  

geological region m
a
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6.3 One dimensional material transfer 
 
For the material transfer the modeling of the one dimensional processes also plays important role 
since on the one hand it is partly analytically solvable and on the other hand it is basics for the 
model measuring (e.g. the so called column test). Also it is backwards indirect Parameter
estimation (e.g. tracer test). As example equations can be derived: 

 

 Heat transport due to precipitation in the unsaturated soil zone: 
 
•
 

 
 
 One dimensional Transport: •

 

 
 
The three cases are differentiated, with whether λ or ω are equal or unequal to zero. 
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6.4 Multiphase flow 
 
Simultaneous effects of several phases in the porous medium, soil or aquifer are considered in the 
modeling of the multiphase flow. In the literature the relations of three-phase system are 
illustrated. According to the equation 6.7 on page 177 with neglecting the dispersion portion: 
 

 
 
In this case α represents a general fluid phase. Within the three-phase system water (α = ω), 
NAPL (n) and air (a) will be considered. NAPL is the abbreviation for petroleum products (Non 
Aqueous phase liquid - NAPL).  
 
DARCY law can be extended to the multiphase system by neglecting of the theorem of 
momentum between the fluid phases: 
 

 
The reciprocal effects between the individual phases will be described by additional equations, 
secondary conditions: 
 

sw + s ases) 
   pn · pw = PCnw (Sw,Sa) (Capillary pressure saturation relationship) 
    p  · p  = P (S ,S ) 

In many practical applications the nonlinear equation system is limited by the assumption that air 
 infinitely mobile in each case a movement phase for the water phase and for the NAPL phase.  

UCKLEY and LEVERETT will be used for one dimensional 
displacement procedure of oil through water, which describes the transient procedures.  
To describe the relative permeability saturation curve the COREY function can be set: 
 

n + sa = 1 (the pore area is filled out by the sum of the three ph

a n Can w a
          kra = kra(Sw,Sa) ( relative permeability saturation relationship) 

 

is
 
Analytical solution from B

 
For two-dimensional case and the investigation of three-phase system air/NAPL/water the 
following beginnings are examined:  
For the capillary pressure saturation relationship PARKER formula: 
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For the relative permeability saturation relationship for the Non Aqueous phase liquid(NAPL) 
a model by STONE will be used : 
 

 
Here krnw and kran stand for the relative permeability saturation relationship in NAPL phase 
two-phase system (water/NAPL) and (air/NAPL). The parameters S

of a 

he 
nr and krncw were occupied 

with the values "0" and "1" in the original form of the STONE model. For the water phase t
relationship PARKER formula is used: 
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7 Horizontal plane  
Groundwater flow equation 

Chapter 7 
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7.1 DUPUIT assumption and balance equation  
 
The description of the rotationally symmetric groundwater flow field is based on horizontal 
planes flow processes, in which the vertical flow vector is neglected. The transfer of the three-
dimensional flow regime into a two-dimensional mathematical description takes place with 
consideration of  
 
 

UPUIT assumption: D
 
 
• The potential lines h = const run parallelly to z-axis. This means that the vertical component of 
groundwater flow (vz → 0) is equal to zero. This can be realized by an infinitely large vertical 
flow resistance (specific permeability coefficient in z-direction (kz → ∞)) or by a no gradient 
gauge level: 
 

 

• The horizontal speed is constant during the entire through flow height of aquifer. It means the 
vertical gradients of the horizontal flow components are equal to zero. 

 

• The horizontal speed is proportional to the decline gradient of free surface according to the 
DARCY law: 

 
 

he force equilibrium law is set up under the condition that only pressure force, gravity force, 
tion 

 

T
capillary force and internal friction are effective. Inertia forces, adhesive force, turbulent fric
forces and others are small enough to be negligible. Since the groundwater movement is regarded
as saturated filter flow, we know following law from DARCY: 
 

 
 
The DARCY law is only valid when the precondition its derivative existing fulfils. Thus it loses 

s validity when the above neglected forces increase. In practical groundwater flow procedures 
the validity of DARCY law can be however accepted with sufficient accuracy. Only directly in 
it
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the proximity of well a breach of this law can occur with large filter velocity. With the DUP
assumption the balance equation for horizontal plane groundwater flow is built up. The specifi
flow rat

UIT 
c 

e, refer to flow field width of 1m, can be calculated: 
 

 
   
    D  through flow thickness 

 
 
And the balance equation: 

 
w sources/sinks 

n0  storage coefficient at the free groundwater surface due to gravimetric effects 

elastic storage coefficient, which works within the aquifer 

pability is designated with S as general storage 
oefficient: 

 S0 

  
The summary expression for the storage ca
c
 

 

Aquifer thickness in confined 
 
Position of free groundwater surface in unconfined

confined 
 
unconfined 

aquifer 

aquifer 

 
 
If the gravimetric storage coefficient is substantially larger than the sum of all elastic effects in 
vertical direction: 
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It results in that the storage coefficient is only dependent on gravimetric coefficient in the case of 
a free groundwater surface and a small through flow thickness aquifer (D <<100m). The storage 
oefficient S can take the following value:  c

 

confined 
 
unconfined 

aquifer 

 
For the effect water height h: 

 
 
Thus the balance equation, also as continuity equation, is written in the form: 
 

confined 
 
unconfined 

 
W
fo

ith the equations 7.5 and 7.6 we get the horizontal plane groundwater flow equation in the 
llowing form: 

 
 

on z thus it can be pulled out of integral. For 
eability coefficient, the term transmissibility T 

According to definition h, grad h is independent 
urther writing simplification the integral of permf

is introduced: 

 
 
This integral of transmissibility will be analysed numerically poorly as the permeability 
coefficient is only expressed as step function and not continuous function.  
 
 
Thus the horizontal plane groundwater flow equation in the representation of water height: 
 

 

confined 
 
unconfined 

aquifer

aquifer
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7.2 Potential illustration 
 
An integral transform was used for solving partial differential equation of underground flow 
processes in the former chapter, which yields the value of transmissibility. Now in this section 
another integral transform is applied, the so called GIRINSKIJ potential Ф also a relatively 
simple solution, thus the horizontal plane groundwater flow equation is illustrated in potentia
expression. 
 

he GIRINSKIJ potential Ф is defined as: 

l 

T

 
 
In this equation the function g(z) characterizes the dependence of permeability coefficient k on 
height z.  

 
 

For the following considered unstratified aquifer: 

 

Here with the validity of DUPUIT assumption  and the assumption of lower 
bound of aquifer a equal to zero (a = 0), the integral yields two solutions:  

 

confined 
 
unconfined

aquifer 

 
With consideration of DARCY law the specific volume flow: 

 
And with  
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Since k and h are not functions of z, we can write k before the integral and exchange the 
consequence of the deviation (gradient) and the integration.  
 
We get: 

 
 
The horizontal plane groundwater flow equation in potential form: 

 

confined 
 
unconfined

This PDE can be transferred into a uniform potential writing way, if the definition for the 
IRINSKIJ potential is separately introduced according to confined and unconfined conditions: G

 

 

confined 
 
unconfined

aquifer 

aquifer 

And: 

 
 
Or: 

 
 
Assuming a homogeneous, isotropic aquifer, i.e. k = const., then k can be calculated from the 

ivergence and the division of the right side. With introduction of the transmissibility and the 
eohydraulic time constant we get: 

d
g
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With: 
 

 
 
Now we have found a universally valid PDE, which is linear and analytically solvable. 
 
However it must be noted that the linearity is not exact under free groundwater surface 
conditions, i.e. with unconfined aquifer, since the geohydraulic time constant a is a function of zR. 
In this case a temporal average value will be taken for T and also for a. The following 
approximation has been well proved for a: 

 
For extreme drawdown ratios over 10% of groundwater level this equation is only valid 
approximately. The water level of standpipe often changes, i.e. drawdown, of note in GIRINSKIJ 
potential. Therefore the potential difference between the output potential Ф0 and the current 
potential Ф is used. In unstratified aquifer, i.e. with k(z) = const. and thus g(z) = 0: 
 

 

confined 
 
unconfined

aquifer

confined 
 
unconfined

aquifer

 
 
 
The subscript 0 stands for conditions to time point t = 0, i.e. Ф0 = Фt=0, h0 = ht=0, zR0 = zRt=0. In 
some citation the subscript n (Фn, hn, zRn) is also used for it.  
 
Inserting this into the PDE: 

 
 
By definition w’ is the supply quantity caused by the change of potential Z, is by definition, while 
w represents the supply quantity, which affects from the outside of aquifer, e.g. the natural 
groundwater replenishment: 
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Practically the following two cases are interested: 
 
•  w’ =0, 
i.e. supply conditions won’t change when the regarded groundwater level varies, and  
 

 
i.e. the difference of potential Z causes an additional proportional supply (see section 8.1.3
supply from neighbouring layers, page 221) 

 

 
If we a supply factor B add in all cases, which approaches to infinite for the first case( B ⇒ ∞ ), 
we get the general form, the standard form of horizontal planes groundwater flow equation: 
 

 
 

 
 
 
To solve this PDE it is necessary to transfer the general vectorial differential way of writing into 
a coordinate related way of writing (see section 2.2 arithmetic rules of the vector algebra, page 
47).  
 
During introduction of the cartesian coordinates we get a PDE, and we can inspect the 
groundwater flow processes in connection with the ditch flow (see to section 6.1 one dimensional 
flow equation, page 178).  The cylindrical coordinates lead to a demonstration, which is very 

s (see to section 8.1 THEIS well equation, page 196). useful for rotationally symmetrical problem

 150



7.3 Marginal conditions 
 
Each flow process takes place in a locally and temporally defined area, i.e. it represents a closed 
system, which is connected with its environment under certain conditions. Information, energy 
and matter can be exchanged through such couple conditions. They are called marginal 
conditions. While the system is described by the PDE and generally valid for all conditions, a 
unique solution will be achieved by marginal conditions. The effect of the marginal conditions is 
identical to determination of the integration constant by solving differential equation. Marginal 
conditions are impressed to the regarded system from the outside and influence independently of 
state variables.  
 
It is differentiated between boundary conditions (marginal conditions at certain local points) 
and initial conditions (marginal conditions of reference time point). Besides force equilibrium 
and mass conser tical 
description of the original proc

7.3.1 Initial conditions 
 
In dynamic systems rela t, from which the 
ystem behaviour is changing from static into movement, is regarded as starting point with 

relative time t = 0. The initial conditions serve to definition of the dynamic system state at this 
oint. Since the state variable of horizontal planes groundwater flow is the piezometric head h or 

the situation of free surface, the initial condition is a matter of potentials within the systems, i.e. 
 

aintenance of 
steady state at the border. These are from the same type like the boundary conditions. The 

vation, the initial- and boundary condition serve explicit mathema
ess, the flow process. They are regarded as a part of the 

mathematical model. 
 
 

tive time will be discussed. The absolute time poin
s

p

the groundwater height or the pertinent transform potential. In the model this will be a function of
h, zR or Ф dependent on location. Other conditions are also necessary for the m

difference is they are valid for t < 0. 
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7.3.2 Boundary conditions 
 
Three different kinds of boundary conditions differ in physical action modes in the groundwater 
flow (see figure 7.1): 
 
1st type (DIRICHLET condition) 
 
2nd type (NEUMANN condition) 
 
3rd type (CAUCHY condition) 
 
 
Boundary conditions are general functions of place and time. We differentiate boundary 
conditions between influence inside of flow field (e.g. well, lakes, rivers, precipitation, 
evaporation), and outside effect at the edge (e.g. delimitation of flow field by rivers or barriers). 
It is characteristic for boundary conditions that its effect is independent on the flow conditions 
(e.g. Groundwater level) of the investigation area. Generally it is nearly impossible to find a 
complete analytical expression for geohydraulic boundary conditions.  
 
 
• 1st type boundary co

potential (e.g. h, zR,, Z, Ф) on the boundary is known as a function of the time t 
nd  independent on the potential, i.e. the system variables of the investigation area. This appears 
.g. in rivers, lakes or drainage: 

ndition (DIRICHLET condition) works,  
if the hydraulic 
a
e

 
 

nd• 2  type boundary condition (Neumann condition) works,  
if the source intensity distribution and thus the hydraulic potential gradient on the bound are 
known as a function of time t. This may be aroused for example by wells with constant flow rate, 
supply due to groundwater regeneration, sealing 
 

of sheet pile wall or underground structures: 

 
 

 
φ + A grad φ = B (A and B are definite constants)   (7.39) 

 
In the figure 7.1 the effect of boundary conditions on an aquifer is demonstrated. We recognize 

st and 3rd boundary conditions dependent on the difference between effect 
pot al (w quifer and the boundary conditions. Therefore the flow rate can 
vary in am

• 3rd type boundary condition (CAUCHY condition) works,  
if in general a temporally constant flow resistance exists between a surface with known potential 
distribution and the boundary of flow field. Such boundary conditions work in rivers with 
colmation bottom layer as well as flow resistance of lift wells: 

that the flow rates of 1
enti ater level h) in the a

ount and direction 
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In 2nd boundary condition ly regarded as negative 
r positive pressure) can vary accordingly with the potential of aquifer.  

 

With the numerical models (see to section 9.1.1 numerical methods, e.g. finite differences 

, the numerical models are spatially limited due to the finite computing capacity 
(memory space, computing speed). Thus a considerable error arises, which must be reduced or 
eliminated by suitable measures (see section 9.1.1 finite differences method, page 237). 

 
Another problem related to boundary conditions arises in the interaction investigation of surface 

iltration amount is substantially smaller than the entire storage volume of surface water, the 

 aquifer 
model according to suitable mathematical relations. 
 
 

 

 
 
 

 
 
 
 

 

 the potential of the boundary condition (possib
o

methods, page 237) additional boundary conditions arise in the course of the definition of the 
model borders. In contrast to the original procedure, which possesses an infinite spatial 
expansion

and aquifer systems. A volume flow appears between the surface and the aquifer or the 
unsaturated soil zone.  
Depending upon potential conditions an ex- or infiltration of surface water can come out or into 
the aquifer. If this filtration stream is substantially smaller than the volume flow within water, or 
the f
surface water has an effect of boundary condition on the groundwater. In the other case, if the 
potential of surface water varies due to the filtration phenomenon, the surface water may be not 
considered as boundary condition, but components of the system and are coupled to the
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figure 7.1: Effect of boundary conditions on an aquifer
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Chapter 8 
 
 

8 Analytical Solution 
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8.1 THEIS well equation (Rotationally symmetrical flow) 
 
The computation of rotationally symmetric flow field, i.e. the solution of partial differential 
equation, represents primary task of geohydraulics. 
 
Such procedures can be described by means of horizontal planes groundwater flow equation 
tandard form, which is deduced in the section 7.2 potential illustration, page 187: s

 

 
 

Changes of groundwater flow conditions with employment of vertical filter wells were firs
calculated by THEIS in the year 1935 and replenished by several other authors (e.g. THIEM, 
JACOB, COOPER, NEUMANN, HANTUSH and others). Due to importance of this task 

t 

umerous publications and text books refer to this topic (for instance 

n the basis of partial differential equation we are looking for a solution for the standard form of 
orizontal planes groundwater flow equation, i.e. the drawdown of the groundwater level as a 

functio oint t = 
0. 
  

n
BUSCH/LUCKNER/TIEMER, Geohydraulik, and others). 
 
 
8.1.1 General solution 
 
O
h

n of place and time, if a change of boundary condition takes place at relative time p

 
 

igure 8.1 Coordinate system for rotationally symmetrical well 

 
w 

 and no dependent on the local coordinate z 
(Z(z) = 0): 
 

F
 
According to vectorial transfer in coordinate binding differential operators, here in cylindrical
coordinates (see figure 8.1, see section 2.2 arithmetic rules of vector algebra, page 47), we kno
that the flow field is rotationally symmetric (Z(α) = 0)
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Thus the solution of this partial differential equation, the drawdown potential Z depends, only on 
the time t and the radius r (distance between well and calculation point). Under above 
prerequisite the parameters of the aquifer, the permeability coefficient k and the storage 
coefficient S change neither with the height of z nor with the angle α in the regarded area.  
 
The simplest solution can be achieved if following initial- and boundary conditions are 
considered and the aquifer is regarded as infinitely expanded, homogeneous and isotropic flow 
field (see figure 8.2).  
 

Initial condition: 
     External boundary condition:  

      Internal boundary condition: 

he internal boundary condition can be technically realized, if a vertical filter well is arranged at 
e origin of the cylindrical coordinates (r = 0) , which conveys a constant flow rate V starting 
om time point t = 0 (see figure 8.2). 

 

 
 
T
th
fr

 
 

Figure 8.2 infinitively expanded aquifer 
 
The solution of corresponding simplified partial differential equation was found by THEIS under 
forementioned conditions:  a
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Neither groundwater generation rates nor supply from neighbouring layers are taken into account 
here. Remarks in addition are in the section 8.1.3 supply from neighbouring layers, page 221. 
 
The so called well function W(σ) is specified as the integral of an exponential function, which is 
known as exponential integral Ei(x) in the analysis and defined as follows: 
 

 
 
γ stands for Euler’s constant and is equal to: 
 

 
 
with x = - σ : 
 

 
This integral is not elementarily solvable, but expressed as an infinite series. 
 

 
 
with  
 
 
 

 
o solve equation 8.6 series development and substitution method can be applied and similar 
ethodology such as Bessel function (see section 5.2.2.3 differential equation of type C, page 

30).  
Table 8.1 contains the values of well function W (σ) for range: 1 · 10-12 ≤ σ ≤ 9  

 
 

T
m
1
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Table 8.1: well function W (σ) for range: 1 · 10-12 ≤ σ ≤ 9 
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From the definition of drawdown or GIRINSKIJ potential the inverse transform for physical 
imension water level h or zR and the drawdown s can be accomplished:  d

 

 
 
and  

 
 
For confined flow condition: 

 
or 

 
For unconfined flow condition: 
 

 
or 

 
 
This sharp separation between confined and unconfined groundwater conditions and modelling 
by means of the THEIS solution are not consistently implemented in all literature. This can also 
be applied to graphic methods for pumping test evaluation. In the case of very thick aquifer, for 
instance in North Germany the drawdown only amounts to a few percentage of thickness, it can 
be possibly calculated with the formula for confined aquifer. 
 

confined 
 
unconfined

aquifer 

confined 
 
unconfined

aquifer
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From above derived formulas of the drawdown for different aquifers we know that under 
unconfined groundwater conditions the position change of free surface represents a strongly 
nonlinear process.  
 
Please note that the well formula is not valid in the proximity of well with r→ r0. The reason is 
that it does not fulfil the prerequisites, which were the derivation of rotationally symmetrical flow 
equation.  So the vertical flow component which should be vz = 0 can not be applied in the 
proximity of well.  Also the effective well radius r0

* is mostly not exactly confirmed. The storage 
effects and the flow resistances in the well area are hardly predictable (see section 14.2 pumping 
test simulator, page 388). In spite of some restrictions the well formula is a fundamental 
calculation formula in geohydraulics for computation of groundwater level height drawdown 
according to a volume stream. 
 
The potential series W (σ) (see equation 8.12, page 198) already strongly converge from the value 
σ< 0.03, so that terms with higher order of σ are small enough to be negligible. Thus W (σ) can 
be computed in the case of an error < 1% only with logarithmic function. This approximation was 
advanced by COOPER & JACOB in 1946:  
 

 
 
This simplified formula has great importance for many practical applications. In particular all 
graphic procedures of pumping test evaluation (see section 14.1 pumping test evaluation, page 
380) are based on this formula (also see table 8.2).  
 
The relative error, which results from the approximation, can be computed as follows: 
 
 

 
 
 
 
Since the series for σ < 1 converge very fast, it is only necessary to include the first term of the 
series to error estimation. All further terms will be substantially smaller than the linear term and 
thereby can be neglected. The second term only ntributes a portion, which is squarely smaller 
than the first one. 

co
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In table 8.2 the error for approximation by COOPER & JACOB is dependent on σ.  
 

Table 8.2 Error of COOPER and JACOB formula as a function of σ 

 
Simultaneously we get an estimation for the relation of computation place (r), computation tim
(t) and approximation errors (ε). It is also recognized that the geohydraulic time constant (a = 
S/T) representatively determines the stop accuracy. Thus the more computation time point 

e 

pproaches to steady state, the more exact the computation is.  For the unsteady transition region 
e approximation of COOPER &JACOB is not well applicable and large approximation errors 

yield. 
 
The computational evaluation of well function W (σ) can be substantially simplified by a 
recursive expression of sum formula.  
 

a
th

 

With 
And 
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Thus it yields:  
 
• Only certain terms must be calculated for a given accuracy (e.g. between two sum 

terms).  
• The computation of each sum term requires only a multiplication. 
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8.1.2 Consideration of special effects 
 
The general solution of well equation according to THEIS only applies to a very ideal aquifer. So 
it is assumed e.g. as homogeneous and isotropic. Further more an infinite expansion is supposed. 
Only one well is considered in the solution, which conveys from time t0 with constant stream and 
is arranged as singularity with a radius of rBr = 0m at the coordinate origin. These idealizations 
can not be found in practice with real aquifers. For some practice-relevant conditions however 
results can be obtained based on THEIS solution, if appropriate auxiliary computations and 
substitutions are accomplished.  
Such are for example the consideration of technical well radii, imperfection of the wells and 
boundary conditions, as well as the laminated aquifers and supply from neighbouring layers. 
These special effects are regarded as additional potential in well equation, which are established 
and dismantled.  
 
 
8.1.2.1 imperfect well 

 
Imperfect boundary conditions, particular wells appear, if the boundary conditions or wells do not 
act on the entire thickness of the aquifer. In the case of wells it happens if the working filter pipe 
length is smaller than the thickness of the aquifer through flow. With the imperfect wells it is 
assumed a potential loss results from through flow thickness near the imperfect well smaller than 
the actual aquifer. Besides we can suppose that the average flow path via redirecting is longer   
than the geometrical distance r. Figure 8.3 shows conditions with different filter installation.  
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Figure 8.3: Imperfect wells with filter in the a) upper, b) lower, c) middle part of the aquifer 

 Length of the full pipe 

 through flow thickness 

 Length of the filter pipe within through flow thickness 

 thickness of the aquifer 

ZR Position of the groundwater free surface 

φV Filter losses 

We can describe the potential loss as follows: 

 
 

C

D

L

M

 
We recognize that a stronger sink occurs due to the imperfection, comparing with the case of a 
perfect well. 
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8.1.2.2 Multi-well plants 

 
In practical multi-well plants are meaningful. In seldom cases e.g. foundation pit drainage or a 
ground water works only one well is operated. The computation for such multi-well plants is 
possible based on principle of superposition. The solutions, i.e. the partial drawdown potentials, 
which apply to the individual wells, will be superposed, i.e. overlaid together (see figures 8.4 and 
8.5). The principle of superposition can be only applied in linear systems. Relating to THEIS 
solution this means that the superposition can be only used in the potential expression. When the 
superposed potential is formed, the inverse transform of physical dimension drawdown or water 
level can be accomplished. Since the connection between potential and drawdown for the 
confined aquifer is linear, the superposition in this case could be also exceptionally applied to the 
drawdown.  
 
 
 

 

Figure 8.4 Multi-well plant 

 
 
 

 166



In
 

 principle: 

 

 

figure 8.5 Superposition of the drawdown potentials 

 
 
ri distances between the individual well and the computation point Px,y
a geohydraulic time constant for the entire area a = const.  
 
First we calculate the individual drawdown portions of Z(ri, t) due to the well effects Vi and then 
sum them up. Afterwards the conversion in the total drawdown takes place according to 
groundwater conditions (confined or unconfined) and equations 8.16 and 8.18 (see page 201). 
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8.1.2.3 Variable conveying curve of wells 

 
The THEIS solution assumes the internal boundary condition that,  the flow rate affects on the 
aquifer from time point t = 0. In practice it often happens that,  this condition is not fulfilled. 
Because of technical/technological criteria a variation of pump capacity is often required. This 
problem play an important role, if the groundwater level after switching off the pump is in the so 
called rising phase.  
 
Also here a solution based on THEIS formula can be obtained by means of superposition 
principle. The basic idea consists of the fact that time-dependent conveyor capacity is set as 
summation of temporally transfer step functions. Figuratively we can imagine n fictitious pumps, 
which are put on the same well successively according to the conveying stages and switched on 
(see figure 8.6 and 8.7).  

 
 

 

figure 8.6 Virtual conveying flows with time-dependent conveying curve 

 
Subsequently we check the individual fictitious partial conveying capacities in the total 
drawdown potential and add these accordingly (see figure 8.8):  
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figure 8.7 composite conveying curve 

 
 
If we introduce the real time t and the starting times ґi of conveying capacity, we get:  
 

 
 
 
We can also calculate the partial conveying capacities Vi from the real conveying capacity at 

me t of Vreal,i,t, by subtracting those time stages from this:  ti

 
Observing this formula it is recognized that the rising phase can be computed. In this case the last 

artial conveying amount is negative (see figure 8.9). The sign reversal means that this 
component current is not exfiltration but as treated as infiltration and thus not leads to a 

own, but an increase of the groundwater level compared with the foregoing time.  
 
 
 
 
 
 
 
 

 

p

drawd
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figure 8.8 drawdown potential 
 
 
 
 
 

 
 

 

 
 

figure 8.9 groundwater rising 
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The described method for computation of drawdown potentials with temporally conve
can be also used, if the conveying curves are not step functions, but as continuous, concave
convex functions. In this case the function will be approximated by a step function (see figure 
8.10), whereby step height and

ying curves 
 or 

 width may be not constant. We do not have to assume an 
quidistant quantization (see section 11.3.5 approximation of signals, page 304). The decision 

between necessary accuracy and expenditure here is of importance for editors.  
 
 

e

 
 

figure 8.10: Approximation of a continuous conveying curve 
 
 
The methods for computation of multi-well plants and variable conveying curves can be also 
summarized, so we get a solution for the superposition of both effects: 
 

 
 
The drawdown potentials are to be superposed first over all conveying stages of one well and 
afterwards over all wells. 
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8.1.2.4 Limitation 

 
 • 1st and 2nd type boundary 
 
The solution of well equation accord
For special limitations of aquifer the
modified into a geometrically simple

ut a solution.  

his method of arranging virtual sou

ifferent volume flow directions (ex
 

With a limitation in 
at zero by means of a virtual infiltrat
boundary condition (ZRand = 0) (see f

With 2nd boundary conditions the flo
constant, here at value zero (dZRand/d
which is axially symmetric an
nd 8.14). 

o
Basic idea is to arrange a virtual wel
the same hydraulic effect as real wel
i.e. a constant change of potential or
cases, which occur very often in prac
T
boundary conditions is designated as
applies to many different potential fi
fields). The realization of different k
d

1st type bounda

d is pr
a
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conditions  
ing to THEIS is derived for the infinitely expanded aquife
 boundary conditions of THEIS well equation can be 
 form by means of superposition principle in order to find 

r. 

 

cial 

rces or sinks in a potential field for model building of special 

ary conditions is under consideration of 
- or infiltration). 

n potential value 
ion well wit e vertical distance l between real well and 
igures 8.11 and 8.12). 

w rate at the boundary will be by definition remained 
r = 0). We can model this with a virtual conveying well, 

 e sam ity (see fig es 8.13 

l with drawdown potential in the overlay in such a way that
l can be exactly obtained like 1st or 2nd boundary condition, 
 a constant influx at the flow limitation. These are spe
tice.  

 reflection method in general potential theory, which 
elds (e.g. thermal conduction, electrostatic and magnetic 
inds of bound

ry conditions, we try to keep the drawdow
h sam

essurized with th e conveying capac ur



virtual a

 

Figure 8.11: 1st 
 

 
Figure 8.12: con

 

1st type boundary 
condition 

h = constant 
i.e. river; h = hFL
 
quifer     real aquifer 

 
g by a virtual well type boundary condition modellin

 

sideration of  one-sided 1st type boundary condition 
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virtual aquifer     real aquifer 

 
ndition modelling by a virtual well 

 

Figure 8.13: 2nd type boundary co
 
 
 
 

 
 

Figure 8.14: consideration of  one-sided 2nd type boundary condition 
 
 
 

2nd type boundary condition
v = dh/dn; Vn = const. 

i.e. sheet pile wall 
v = Vn = 0 
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One-sided, linear aquifer limitation and a conveying well at the point Br(x,y) yield the drawdown 
potential Z at the computation point P(x,y): 

 
 
and the distance from well to computation point: 

 
 
or the distance from virtual well to computation point: 

 
 
The superposition must be carried on accordingly in multi-well arrangements or variable th
conveying curves. The transformation of drawdown potentials into real drawdown is 
accomplished according to the arithmetic rules for confined or unc

e 

onfined aquifer and equations 
8.16 and 8.18 (page 201) (see section 7.2 potential illustration, page 187).  
 
Under 1st type boundary conditions a method for computation of the final steady state can be 
derived from above equation with consideration of COOPER & JACOB approximation:  
 
 

 
 
We recognize that the final steady state of drawdown potential of the aquifer with one side 
limited by 1st. type boundary condition proportionally depends on the ratio of conveying capacity 
to permeability and proportionally on the logarithm of distance.  
 
Taking the same considerations on the steady case of a aquifer with one side limited by 2nd type 
boundary condition, then we get that the drawdown potential approaches infinitely. This is 
technically impossible. In the practical operation this means, it takes an infinite time to drain the 
aquifer circumscribed by sheet pile wall completely.  
 
 

1st type boundary condition 
 
2nd type boundary condition 
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• 3rd type boundary conditions  

 and 

ditional flow resistances between 1  type boundary condition and 
e aquifer. Such flow resistances are e.g. colmation layers of water surface. Both effects cause 

 
 
 
Real boundary conditions are characterized by the fact that due to their effects the definitions
conditions for derivation of mathematical model are not fulfilled. These are imperfection of 1st 
type boundary condition and ad st

th
an additional potential decrease between the boundary condition and the drawdown potential 
point P. These effects correspond to 3rd type boundary condition (see section 7.3.2 boundary 
conditions, page 192). The additional potential decrease depends on the flow quantity, which 
flows between 1st type boundary condition and the aquifer.   
 
 

 

virtual aquifer   real aquifer 

 
Figure 8.15: consideration of  one-sided 3rd type boundary condition 

 
 
 
 

causes th odel we shift the 
l boundary condition a virtual auxiliary length ∆L away from the well (see figure 8.15). Thus 

 

In connection with analytical solution of well equation 3rd type boundary conditions can be 
solved in such a way, that we find out the equivalent flow resistance of a piece of aquifer, which 

e same potential decrease in ideal 1st type boundary conditions. In the m
rea
the influence of the boundary condition on the drawdown potential is reduced. 
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We differentiate two kinds of extra lengths by imperfection or by colmation bottom layer. 
 
In the first case of imperfection, i.e. the boundary condition does not extend over the entire 
through flow thickness, the extra length is determined by the following diagramm (see figure 
8.16).  
 

 

figure 8.16: Dependence of the auxiliary length on the standardized river width 

nts 
 
In lakes with 3rd type boundary conditions it can be always assumed that the extra length amou
to:  

 
 
In the colmation bottom layers the length of equivalent aquifer, the same decrease potential 
caused like the colmation layer can be computed in such way that hydraulic resistances are 
equated:  

 
 
According to equation of these two hydraulic resistances the extra length is:  
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with: 
 
 
D Through flow thickness of aquifer 

  permeability coefficient of aquifer 
 
M'  Thickness of colmation layer  
 

 
 
k'  permeability coefficient of colmation layer  
 
k

 
 
8.1.2.5 Multilateral boundary 

 
Besides the linear one-sided boundaries through investigated area until infinite described in the 

on processes, e.g. the 
confluence of several receiving streams, will be approximated piecewise by linear boundary 
conditions. To be noticed that the linear boundary conditions are to be considered with an infinite 
length.  
 
On the basis of superposition the effect of boundary condition can be computed as additive 
overlays of the different linear processes. The reflecting method can be here again applied (see 
figure 8.17). However it must be considered that the virtual wells (reflecting well) at each linear 
boundary are  also to be reflected and lead to further virtual wells. And the combination of 
different boundary conditions (1st and 2nd type) is possible. 
 
In principle arbitrary angle arrangements between the multilateral boundaries can be considered 
mathematically based on analytical geometry. Practically however borders are set and only with 
comfortable computer programs realized (e.g. CAE Groundwater/THEIS). The restriction of 
perpendicular or parallel standing bounds is for simpler applications. With the perpendicular or 
parallel bounds the number of repeated reflection will be estimated, i.e. how large the influence 
of n-th reflection well is. Since the drawdown potential is proportional to the W(σ) function and 
W(σ) decreases strongly with large σ nascence, the distance between the n-th reflection well and 
the computation point plays a dominative role. It is pointed out that σ grows quadratically with 
the distance r. 
 
 
 
 

preceding sections, which fulfil the correspondent conditions of THEIS well equation solution, 
many practical cases are characterized by the fact that the boundary conditions do not have linear 
process or multilateral boundary conditions rise at the same time. In these cases it is a matter of 
multilateral limited aquifer systems. These nonlinear boundary conditi
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figure 8.17: Repeated boundary conditions with corresponding virtual wells 
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8.1.3 Supply from neighbouring layers 
 
In former sections a homogeneous aquifer was presupposed. This is however in the rarest cases 
justifiable. The question, whether a vertical soil profile is to be regarded as homogeneous,
laminated or as impervious layer, depends on the variation of the aquifer parameters, the 
permeability coefficient k and the storage coefficient S (n

 

ings 
we consider two abutting soil relationship with the permeability 

coefficients k1 and k2, then the following classification can be carried out according to real 
precision demand: 

0 or S0 · D). In practice the follow
are generally accepted. If 

 
 
 
The first case, the homogeneous aquifer, leads to THEIS well equation solution, the third, the 
vertically limited, to groundwater storey. In the second case, the laminated aquifer, a supply of 
the better permeable comes from more badly conducting layer due to larger capillary forces in the 
layer with larger permeability coefficient (blotting paper effect). This supply was considered by 
the supply factor B in general well equation. The laminated aquifer is also called Leakage 
Aquifer and the supply factor B is Leakage factor. All three cases are transferable into one 
another and represent only simplified computation possibilities. Furthermore the borders between 
the computation possibilities are not rigid, but cross over into each other. 
 
This supply factor describes the portion of groundwater regeneration, which results in a potential 
change in the aquifer and originates from semipermeable layer. These supply rates are thereby 
calculated under the quasi-stable potential conditions in the semipermeable layer. 
 
Thereby in three cases the spatial arrangements of good and semipermeable layers differ in: the 
supply above (from hanging), the supply below (from lying) and the combination of both. The 
aquifer lies between two semipermeable layers. The groundwater level is understood as 
piezometer head h for the semipermeable layer in all three cases. 
 
The supply factor are computed for the three forms as follows; the aquifer is expressed by 
thickness M and the permeability coefficient k, the semipermeable layer by thickness Mn and the 
permeability kn:  
 
 

Homogeneous 
 
Laminated 
 
Vertically limited 

aquifer  
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Supply from layer above 
 
Supply from layer below 

Supply from above and below 
 

With: 

 
The general well equation in polar coordinates:  

 
HANTUSH has found the solution of the drawdown potential:  

 
It is designated  also as well function of a semipermeable aquifer, Leaky aquifer. Also here the 
inverse transform from the potential plane for physical dimension water level or drawdow
must be carried out.  

n still 

The function W(σ, r/B) is again a notation short for the exponential integral Ei, here with an 
extended argument. The derivation of this solution is topic of section 8.1.1 general solution of 
well equations, page 196. 

 

 

This function exists as dia s for different ranges of 
parameters σ or r/B  , so that in practical tasks this complicated formula does not have to be 
applied: 

gram (see figure 8.18). There are simplification

 

Generally valid 
 
σ > 2r / B 
 
long time 
 
long time and r < 0.03 B 
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In the application of this solution for the Leaky aquifer it must be noted that the supply is set as 
constant value and thus steady groundwater flow conditions in less permeable aquifer, 

 

 
The error is not too large for the lying, since in such cases confined groundwater conditions are 
predominant there, which possess smaller storage effects. In hanging also only a small error 
occurs under confined conditions. Larger errors can come up if free groundwater surface exists in 

 
 

 
 
 
 
 
 
 
 
 
 
 

semipermeable aquifer are presupposed. The storage capacities of these layers are neglected. 
 

the lying. Particularly in the evaluation of pumping tests this simplified assumption emerges as 
not acceptable. In this case the supply factor must be increased empirically. 
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F ependeigure 8.18: function r/B d nt on σ 
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8.2 Tasks of analytical calculation 
1. Compute the drawdown s for the groundwater observation tubes (GWOT) with distance r and 
at time t, which results from water conveying in the well for consecutively infinitely expanded 
aquifer (see figure 8.19) and state the result graphically. 
 

 

Figure 8.19: infinitely expanded aquifer with well and GWOT 

2. Compute the drawdown in the GWOT (r = 10m
every 10 m ject to 

llowing stagger time. And plot the solution. 

 

) for the aquifer from task 1 (see figure 8.19) 
inutes until maximally 100 minutes, if that flow rate of conveying well is sub

fo

 

g 
V = 0.015m /s 

he width of the river is B = 20m and a colmation layer k’ = 3 · 10-6m/s; M’ = 1m. (see figure 
8.20) 
 
The properties of the aquifer: 

 
3. A foundation pit should be lowered in an aquifer near a river. The centre of the foundation pit 
is 100m far away from the river; the drainage well is 80m. Three wells are arranged parallel to 
the river, which are 25m distant from each other. The diameter of wells r0 = 0.3m and conveyin
capacity is 3

T
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Will a drawdown of 2.5m be achieved in 10 days in the centre of the foundation pit? 

 

 

figure 8.20: aquifer with imperfect river, well and foundation pit 

4. Please apply analytical method of well flow to check whether the centre of the foundation pit is
drained after 7 days with conveying capacity of V = 0.01m

 
3/s, r0 = 0.30m and a security of 0.5m 

(see figure 8.21). 

 
figure 8.21: aquifer with well and foundation pit 

 

 

5. In a pumping test in an infinitely expanded aquifer the following water levels are measured as 
a function of the distance to the well after pumping 120min (see figure 8.22). 
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Compute the water deficit (volume) of the drawdown funnel, if the aquifer are of following 
haracteristic values: c

 

figure 8.22: groundwater level dependent on radius 

 
 

6. A constant flow rate of 25 l/s is conveyed from a well, which connects an ideal river (x = 0; -∞ 
< y < + ∞) (Br(100m,500m)). The well has a radius of r0 = 0.35m. The aquifer is characterized by the 
following parameters:  

 

a) Calculate the final steady state (the portion of temporal functionality should be smalle
than 0.001) f              

b) the time poin           
Tips: Work as long as possible with general symbols. 

ary condition.         
pute the final steady state under these hydraulic conditions based on the analytical well 

r 
or the point (P(200m,600m)) and      
t, from when to calculate     

7. A simulation system is to be developed for a induced recharge water works (see figure 8.23) 
ith parallel flow regime. The river should be considered as idealized boundw

Com
equation solution. 

 
Establish the solution 
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a) with idealized river 
b) with consideration of real river (colmation and imperfection) 

 
figure 8.23: aquifer with river, well and influx 

 

 

. In geohydraulics pumping tests are used for the determination of the aquifer parameters. Under 
R 

8
certain conditions the drawdown can be determined according to the THEISS/JAKOB/COOPE
formula.  

 

By using this formula deduct an equation to determine k-value for a local point P, which is with a 
distance r away from well. The determination of the k-value is based on the use of drawdown 
value s1 at the time t1 and s2 at the time t2. The relation of measurement period t1: t2 amounts to 1: 
10. 

9. Compute the drawdown in the GWOT (see figure 8.24) for the time point = 10h, if a flow rate 
of 0.2m3/s is conveyed for 5h in the well and afterwards the pumps were switched off. 

 

10. Compute the drawdown at point P after one year based on induced recharge for a 
groundwater recovery plant. 

Conveying rate of each well: 25 l·s-1 
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figure 8.24: Infinitely expanded aquifer with a conveying well 

m two wells to a riv11. Fro -1

Compu e fin  stead state. 

Coordi tes:           
 Well 1: x = 750m y = 100m       
 Well 2: x = 700m y = 400m       
 Point P: x = 1000m y = 500m 
hn = 15m, n0 = 0.25, k = 10-3m·s-1

 

12. Calculate the change of groundwater level after 10 days for the following schematic 
groundwater plant by means of THEIS well equation (see figure 8.25). Given: 

er (without colmation and perfect) a constant flow 25 l·s  is conveyed. 
te the drawdown at the point P after one month and th al y 

na

 

 

13. Calculate the change of groundwater condition after 10 days for the following schematic 
roundwater plant by means of THEIS well equation (see figure 8.26). Given: g

 

 

14. Calculate the drawdown at the gauge for time point t = 15h, if a flow rate of 0.1m3/s is 
conveyed for 10h in the well and afterwards the pumps were switched off (see figure 8.27). 
Given: 
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figure 8.27: induced recharge plant with well and river 

Figure 8.25: real river with pumping well (artificial groundwater recharge plant) 

Figure 8.26: groundwater plant with well and sheet pile wall 
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Chapter 9 
 
 

9 Numerical method 
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The horizontal plane groundwater flow equation in general form of a nonlinear partial differential 
equation is not completely solvable. By local and the time coordinates quantization  a 
numerically solvable discontinuous model can be set up. In the literature the term discretisation 
is also often used instead of quantization, and the discontinuous model is called discrete model. 
This misuse of the words in the literature is caused by careless separation of independent and 
dependent variables. The quantization of an independent variable leads to the discontinuous, 
while the quantization of a dependent variable leads to the discrete model.  
 
The discontinuous models can be simply adapted to the structures of data models, which are also 
existent in the form of samples generally. 
 
The quantization of local variables should first be regarded independent of time variable. This is 
justifiable in any case of steady processes, but in unsteady procedures these classes of the 
variables can be also regarded as independent of each other. Only in special interpolation scheme 
some connections of these two quantization procedures come up and must be treated separately. 
 
We assume the continuous function of the piezometer head or the position of free groundwater 
surface in the original (zR(x,y,t)), then we get a discontinuous function (zR(xi,yi,ti)) by the 
discontinuous simulation. Subsequently, the problem editor will try again to approximate a 
continuous function from it. Following demands result from setting up tasks for the execution of 
quantization: 
 
 

● No information loss appears in the quantization of function, since otherwise the 
continuous cannot be retrieved one to one from the discontinuous function.  
 
● No redundant data processing is caused by quantization, i.e. the distance of the tactile 
point is not too small to select. 
 

 
 
Further demands concerning quantization result from the used simulator and the existing input 
data: 
 

● the quantized field is designed in such a way that the hydro geological and technical/ 
technological conditions of the original can be clearly, physically descriptively and with 
high accuracy taken into consideration. 
 
● quantization must allow a simple simulation.  
 

 
 
The demands are contradictory to some extent. Above all the demands of the theoretical 
information side contradict practical application. Thus a search of an optimal organization of 
tactile points will be also carried out in quantization. 
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9.1 Methods of local quantization 
 
The quantized values of the x- and y- axis yield tactile points in the x-y plane, which can be 
distributed arbitrarily. These points are connected with straight lines, and we get a reticular 
structure. The tactile point function is from node The function values at the tactile points or the 
nodes are supposed to be known as possible solution of the simulation so that the values can be 
interpolated along the net lines and w tion value (e.g. water level, 
temperature, concentration) is repres et a three-dimensional plane, 
which is supported by the given function values at the knots. With respect to practical simulation 
we differentiate various network configurations, which can be divided according to the following 
criteria (see table 9.1 and figure 9.1). 

 
 

 
 
 
 
 
 
 
 
The different network configurations possess advantages and disadvantage concerning the 
fulfilment of initial demands. The regular network configurations allow a relatively simple 
subsequent treatment by means of simulators. However they poorly fulfil the demand that hydro 
geological conditions should be considered under minimum simulation expenditure. In addition a 
redundant data processing cannot be avoided due to small increments. The irregular network 
configurations, particularly the coordinate-independent, can not be well simulated. The network 
configuration can be however well adapted to the hydro geological and technical/technological 
conditions by the arbitrary distribution of the nodes. The substantial advantage in the arbitrary 
node density distribution is that,  they can lie as at close quarters or as far away as required. Thus 
a minimized redundancy of data processing is realized with minimum number of nodes. The 
disadvantage of the irregular network configurations is a complicated execution of the simulation. 
We can make a compromise if we transfer the arbitrary network configurations into topologically 
regular, but geometrically irregular triangle nets. the topological organization of the net is crucial 
for the execution of the simulation. There are always six connections from a net point to 
neighbouring points in the topologically regular triangle net. Finally lots of connections exist to 
neighbouring knots in a arbitrary triangle net. 
 
 
 

s. 

ithin the mesh. If the func
ented as Z-a s, then we gxi

 
Table 9.1: introduction of network configurations 

 

Coordinate reference coordinate true coordinate independent 
Quantization   equidistant  arbitrary quantized 
Topology   regular   irregular 
Geometry   orthogonal  triangular 
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curvilinear straight-line 

 
 

figure 9.1: network configurations 
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Independent of the organization of network configuration a further effect appears in the 
modelling of hydraulic areas by means of numerical models. The generally infinite flow 
conditions in aquifer are artificially limited by the finite expansion of mathematical models. The 
edges of model belong to 2nd type boundary conditions (∂h/∂n = const.). Thus at the edge of the 
model a volume flow VRand = 0 is outwards forced. And the barriers of  model edges are set to be 
equal. This is often contrast to the hydraulic conditions of original process. This effect is 
recognizable from the fact that the equipotential lines, e.g. water level, the so called  isolines, 
which in principle stand perpendicularly at the model edge. We can minimize this error in order 
to apply natural 1st and 3rd boundary conditions to the model boundary such as rivers and lakes, 
as well as considering possible colmation effects. With know hanging influx or phreatic divide, in 
particular with groundwater basin borders, we can input these at the model border as 2nd 
boundary condition. 
 
There are different ways e mesh. The most 

method olumes (FVM) and 
ethod of finite elements (FEM). In  assumed that the exchange takes place along the 

in the fact that the 

 to describe  the geohydraulic behaviour within th
 of finite differences (FDM), method of  finite vknown ones are 

m
mesh borders and in the nodes. In con asic idea of FEM consists 
network mesh is regarded as continuu reciprocal effect with the neighbour elements is 
achieved by energy-, impulse- and ma ge perpendicularly through mesh bound. In the 
following FDM will be described in d
FVM are only roughly represented. 
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9.1.1 Finite Difference Method 
 
As previously mentioned, no time-dependent procedures are considered in local discretisation. 
Therefore the derivation of local quantizations is independent of whether an unsteady or steady 
flow field. On this account the following assertions are derived on the basis of steady flow 
equation. They can be also applied to the unsteady flow regime under  consideration of the 
mathematical conditions (see section 9.2 time quantization, page 258). 
 
 
9.1.1.1 Balance equation 

 
The differential equation of the horizontal planes groundwater flow in steady case:  
 

 
 
The steady flow is characterized by the fact that no storage procedures appear. This partial 
differential equation can be written in cartesian coordinates as follows:  

 
 
If the finite difference method is applied to this equation with reference to a coordinate, 
topologically regular grid, then this is equated with transfer of derivatives in difference quotients: 
 

 
 
The quantization error, which occurs during this transition, has a quadratic order (O(x, y) ~ ∆ x2, 
∆y2). We can also describe this error as deviation of secant, which is used in the difference 
quotient, and the tangent, which is defined by the derivative. This deviation is dependent on the 
gradients, i.e. the slope of the tangent. 
 
Apart from this mathematically justifiable error still the following error phenomenon can be 
enumerated. In the quantization the geometrical position at surface will be changed by arbitrarily 
arranged boundary conditions, since it can be only arranged at the net points, the crossings  
between row and column in discontinuous net (see figure 9.2).  

 
initial state – continuum   discontinuous model 

Confined 

 
Unconfined

Confined 

aquifer 

 
Unconfine
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: transition between continuum and resistancefigure 9.2  network 

dition. In 
ad to a 

 it 
doe ge of model should agree with the position of the 

 

t
nodes the balance equations, here the m
represented by flow resistances between the net knots. The mass balance equation at the point 
Pn,m results from the sum of water quantities, which flow along the net lines (see figure 9.3). The 
sum must be equal to zero according to definition (under steady condition steps no storage 
effect). Thus the balance equation:  
 
 
 

 
 
Also the geometrical size of the boundary conditions is changed. In the continuum each boundary 
condition has an arbitrary finite geometrical expansion. In the discontinuous field each boundary 
condition can accept only one expansion, which is an integral multiple of the quantization 
increment ∆x and ∆y. Generally this means that a substantially larger effect area is arranged in 
the discontinuous simulated network and the original of  this case is the boundary con
this relation the effect of the finite expanded net is again pointed out. The net edges le
limitation of flow field, since no flow rate flows at the borders (VRand = 0). In original however

s not have to be so. For this reason the ed
hydraulic boundary conditions if possible. 

Apart from the mathematical derivative the quantization procedure can be also physically 
jus ified. For this purpose the continuum is covered with an appropriate mesh. At the individual 

ass balance equations, are set up. The connections are 
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figure 9.3: balance for knot n, m 
 
 
The flow rates can also be represented as quotient of differences of the water level or pressure 
and hydraulic flow resistances or as product of differences of the water level or pressure and 
hydraulic conductivity (general DARCY law, also see theory of pipe- and channel hydraulics), 
and we get: 
 

 
 
or arranged according to water height: 
 

 
If we go through the grid net in columns, i.e. the knots of row1 to my are processed within the 
columns 1 to nx, then it yields an equation system with nx · my rows and with nx · my unknown 
quantities. This high dimensional equation system,  in practical until several hundred thousand or 
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millions, can be solved according to GAUSS total step iteration, GAUSS SEIDEL or by means of 
iterative methods, in particular  the method of Preconditioned Conjugate Gradients (PCG) (see 
section 1.3 linear equation system, page17 and the following). 
 
If we arrange these equations according to the elements hn,m we get an equation system (see table 
9.3), which has the characteristic diagonal shape. If we represent this as matrix equation, we get 
the coefficient matrix G with nx · my columns and just as many as rows. This coefficient matrix 
is only located in certain places, namely in the diagonals, the two directly bordering second 
diagonals and two further second diagonals, which is  nx distance from main diagonal. All other 
elements of the matrix are equal to zero  still symmetrical, the actual 
significant value space reduces to 3 · nx section 1.2.1 band matrix, page 8). 
The solution function, i.e. the water leve  is represented by a column vector nx 
· my. In contrast on the right side a column vector nx · my stands likewise.  
 
An example of the quantization of a two-dimensional aquifer by means of a net with four 
columns and fou onstrated. 
 
 

. Since this matrix is
 · my elements (see 
ls hn,m at he knots, t

r rows (see figure 9.4) as well as the equation system will be dem

 
 

figure 9.4: 4 х 4 grid net 
 
 
 
This example yields following 16 equations (see table 9.2) 
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Table 9.2: equation system for two dimensional aquifer quantization 
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Table 9.3: equation system in diagonal shape 
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Table 9.4: continuation 1 
 

 
 
 
 
 
 

 201



 
 

Table 9.5: continuation 2 
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Table 9.6: continuation 3 
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The calculation of conductivity can be achieved according to following scheme (see figure 9.5) 
 

 
 

figure 9.5: allocation of hydraulic parameter to compensatory conductivity 
 
 
 
The smallest quantization area is the area, which results from around the regarded point Pn,m with 
the edge lengths ∆x and ∆y. According to the quantization regulations this area will be uniformly 
parameterised, i.e. the parameters of the aquifer such as k-value, storage coefficient S, position of 
the aquiclude a, through flow thickness D and the current piezometer head or the situation of the 
free groundwater surface zR are considered as independent of location x, y within this planning 
element. A change of these values can take place only at the borders of the planning element. 
There however large jumps may arise. Thus the parameters and state variables of the aquifer are 
reflected by means of FDM with discontinuous functions in the quantized net. These usually 
contradict continuous functions in original process. For the flow processes this means this 
planning element is regarded as homogeneous aquifer with horizontal bed and horizontal 
groundwater level. According to the quantization step an interpolation between the nodes is not 
allowed. This corresponds to the same statements, which apply to quantized signals (see 
GRÄBER: Scripte zu den Vorlesungen Automatisierungstechnik bzw. Grundwassermesstechnik). 
If we consider these premises, the individual hydraulic conductivity can be defined. 
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Generally: 

 
 
whereby A is the perpendicularly through flow area and l is the parallel through flow length. A 

sults from the flow width b and through flow thickness D, which is equal to the thickness of the 
confined aquifer or the free groundwater height zR. The differential conductivity of a streamline: 
 

re

 
 
or the total conductivity of a perpendicularly through flow area results from parallel connection 

f the individual streamline conductivity. The parallel connection is regarded as summation or 
tegration of the differential conductivity: 

o
in

 
with:  

 

confined 
 
unconfined

aquifer 

 
 
This integral expression of the transmissibility will be evaluated numerically poorly, since the 
permeability coefficient is a step function and can not be represented as continuous function. 
Thus the transmissibility is always a piecewise linear function of the variable z and thereby can 
be written as sum formula: 
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with: 

 
 
zl is the absolute heights of the different soil layers and kl is the pertinent permeability 
coefficients. The single conductivity (indices O, W, S, N) is computed as follows:  
 

 
 
Since it is presupposed that in the planning element n,m all parameters, including though flow 
thickness, are constant, each pair of conductivities can be assumed equal:  
 

 
 
The interconnection of two partial conductivities, e.g. the Gx n,m O and the Gx n+1,m W, results in the 
conductivity between two knots. It is know from the fluid engineering or electro-technology that 
the series connection of two resistances is their sum:  

 
with 
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in the equidistant part, i.e. 

 
we get:  

 
generally: 

 
it yields: 

 
 
This harmonious averaging also corresponds to the hydraulic real condition very well, in which 
the smaller permeability coefficient or the smaller transmissibility dominantly intersperses. The 
computation of transmissibility is complicated in the steady case with unconfined aquifer, since 
here it is a matter of a value, which depends on the solution of the equation system. In the 
example of an unstratified aquifer the transmissibility is: 
 

 
In this start with an 
estimated value z(1) R n,m. The better this estimated value to the true solution zR n,m approaches, the 
fewer i or the transmissibility 
T(1)

n,m can be com atrix with the 
appropriate conductivity can be developed. It leads to solution z(2) , an improved 
approx proved 
transmissibility T(2)

n,m. The procedure is continued, until the deviation of two approximations is 
smaller
 

case it is necessary to compute the equation system iteratively. And we 

teration steps have to be implemented. The first approximation f
puted by means of the estimated value and the coefficient m

R n,m
imation of exact solution zR n,m. This is again used for the computation of im

 than a certain limit ε. 
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9.1.1.2 Consideration of boundary condition 

 
The pre s to the case of 
uninfluenced groundwater flow. For a unique simu ust work as in 

rical simulation at least one 1st type boundary condition must work on a knot. 
nd or 3rd boundary conditions, yield no unique simulation results. 

eans of THEIS 
ous models.  

 
y 

ceding accomplishment for the quantization of continuum applie
lation boundary conditions m

original procedure, and no groundwater flow comes about without it. With the discontinuous 
models on the basis of finite differences method the boundary conditions affect in principle on 
the knots. Above all the consideration of 1st type boundary conditions come across difficulties.  
 
During the nume
Models, which are endued with 2
The case of the infinitely expanded aquifer, which can be calculated by m
analytical solution, does not exist in discontinu

In the following the realization possibilities will be indicated for the different kinds of boundar
conditions. The 2nd type boundary condition, which affects on a knot (see figure 9.6), can be 
considered as follows based on balance equation: 
 

 
 

figure 9.6: consideration of  2nd type boundary condition 
 

 
unknown quantities  known quantities 

Thus the 2nd type boundary condition can be directly written on the right side of the equation. 
With introduction of the potential differences at lume flow place this equation turns into to the 
accustomed  matrix equation for grid network, whereby for the knots with 2nd type boundary 
condition the right side of is different from zero.
 

 

vo
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With 3rd type boundary condition (see figure 9.7) we proceed directly in principle. The balance 
equation is b ondition 3. 
Kind is by definition a potential decrease of a flo resistance, which is nothing else but a variable 
flow rate in turn. With 3rd type boundary condition the potential difference between a given 
potential (e.g. water level of a receiving stream or another surface water) and the water level at 
the point of aquifer, where the boundary condition affects, will be built:  
 
 
 
 

uilt for the knot, on which the boundary condition affects. The boundary c
w 

 
 

figure 9.7: consideration of a 3rd type boundary condition 
 
 

 
unknown quantities   known quantities 

           (9.18) 
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With introduction of potential difference for al
 

l volume flows:  

 
 
or arranged according to h: 

 
 
 
Thus we recognize that with existence of a 3rd type boundary condition the main diagonal a
has further addends besides the right side different from zero. 

lso 

rd 

on’t arise explicitly. 
ydraulically this mathematical step is quite meaningfully interpretable, since the 3rd type 

pe 
ng to the 

 
1st type boundary conditions will be treated in the discontinuous model as a special case of 3
type boundary condition with evanescent flow resistance. Since the balance equations of the 
knots orient flow rates, the potential of the boundary condition w
H
boundary conditions can be also regarded as combination of a 1st type boundary condition and a 
flow resistance. If the flow resistance approaches to zero, i.e. the potential loss between 
groundwater level and surface water disappears, this is equated with the influence of a 1st ty
boundary condition. Based on this conclusion the derivation can be taken over accordi
above statements of 3rd type boundary condition: 
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In this equation Ganström n,m = GRB 1 of mathematical shaping of 1st 

pe boundary condition. An evanescent resistance, i.e. Ranström → 0, means a conductivity 
RB1.Art n,m → ∞. This is not numerically realizable here. Since GRB1.Art n,m  has influent  

onductivity in additive linkage to the others at the knot n,m, it is sufficient that the conductivity 
s 

.Art n,m is set since it is a matter 
ty
G
c
GRB1.Art n,m  dominates the summation of conductivity. This is given, if the following inequation i
fulfilled:  

 
 
This inequation can be regarded as fulfilled if: 
 

 
Due to of numerical instabilities within the equation solution GRB1.Art n,m should not be select too 
large. 
 
In some simulation programs 1st type boundary conditions are also interpreted as infinitely large 
storage effect. This however only works in the application of unsteady flow regime. 
 
If the boundary conditions are located outside the nodes, which is in the majority of cases, and 
not all the field element boundary condition properties are arranged, then the boundary condition 
can be connected with four of resistances of neighbouring knots (see figure 9.8). The 
computation of resistances and the associated allocation of  boundary condition effect on the 
neighbouring knots can be achieved according to geometrical conditions, i.e. according to the 
distance between boundary condition and knots and the appropriate effect range.  The effect 
range results from the gravity centre of the representative area between the connecting lines of 
gravity centres and the adjacent knots. And the gravity centres should have coordinates xMn,m; 
yMn,m. 
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figure 9.8: outside knots lying boundary conditions 
 
 

 
 
The mathematical formulation of different kinds of  boundary conditions can be achieved 
according to above forms for 1st 2nd 3rd type boundary conditions. 
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9.1.2 Finite Element Method 

he finite element method (FEM) represents a further kind of  continuum transfer into a 
M (see section 9.1.1 finite differences method, 

page 237) in the determination of planning elements and parameters. While in the FDM the 
balance is essentially computed on the basis of the knot equation, in the FEM the balance takes 
sides with planning elements. 
 

rbitrary compounds in the form of polyhedrons can be selected as planning elements. In the 

 
el y the summary of more triangles. 

 the planning elements potential functions, e.g. water level, piezometer head, concentration 
perature or others, are presupposed as linear, homogeneous conditions. Thus the 

distribution can be computed analytically within the planning elements. This computation can be 
achieved by means of variation calculation or according to GALERKIN method. 
 
According to the principle of variation calculation an approximation function P*

(x,y) of the 
quantized continuums is looked for the potential distribution P(x,y) (e.g. h, zR, Φ) in the entire 
regarded area G. Since by definition linear system status dominates within the planning element, 
for a triangle element: 

 
T
quantized representation. It differs from the FD

A
two-dimensional level the planning elements become planes, which are formed by arbitrary 
closed polygons. The simplest form is formation of triangle elements. Each higher order planning

ments can be formed be
 
In
distribution, tem

 
 
In any cases this equation must fulfil the potential distribution at the supporting place, the triangle 
points i, j, k: 

 
 
Then we get three equations with three unknown quantities a, b, and c, which can be solved. As 
matrix equation: 
 

 
*To insert the solution into the equation about P (x,y) yields the solution of searched function. For 

the planning element m the potential distribution can be expressed as following: 

 

 213



 
the weight functions W(x, y) are linear in x and y direction in the region G and subject to 
orthogonal conditions, i.e.:  

 
Individually: 

 
∆ is the surface area of the planning triangle, and: 

 
 
P* is continuous in the entire range G. If the basic values are known at the knots, the function is 
representable in the whole area. In the following it is to be demonstrated how to determine the 
basic values pi of the continuum such that the potential values P*

i of the quantized area are 
adapted in best way. This is achieved according to GALERKIN method.  
The set up differential equations apply to the continuum exactly. In the case of the horizontal 
lanes groundwater flow equation (see equation 7.14, page 186): p

 

 
 
In quantized system in contrast only following approximation is valid: 
 

 
 
r(x, y) is designated a um adapts,  the 
maller the residue is. The approximation solution P*

i, here concretely z*
Ri,  converges for the 

continuum solution P or zR or other expressions in case of infinitely small planning elements or 
infinitely large number of supporting places, knots and planning elements. And the residue 
becomes zero.  
According to the weighted residues method the approximation solution will be searched in such a 
way that the residue disappears at the weighted mean. This is accomplished with the following 
expression for each planning element:  

s residue. The better the quantization area to the continu
s
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Under constant transmissibility condition in individual planning elements, the residue can be 
written by definition:  

It was still considered that the time dependence should 
steady processes. 
 
But also the unsteady processes can be treated in such w
independent of local quantization (see section 9.2 time 
This area integral must be solved for each supporting p
weighting functions with n unknowns. For the approxim
substitution was selected, which however has no second
must be transformed with 1st Green’s formula. Genera
 

Thereby B means the edge of the area and n is unit norm
edge and to is directed towards outside. w(x, y) and u(x
functions. This equation applies to residue: 
 

The line integral of the edge B describes the potential-i
regarded as boundary condition for the planning elemen

’whereby q n means the specific flow rate per unit length
same way internal boundary conditions e.g. wells can b
 
Similar to the finite differences method a high-dimensio
the FEM. In contrast to FDM the FEM does not oduc
matrix structure develops as a function of the number o
to a increased numerical expenditure in the solution equ

pr

 

 
be identically zero. This applies to the 

ay, since the time dependence is regarded 
quantization method, page 258). 
oint or net point. We get n equations 

ation solution z*
R at the net point a linear 

 derivative. On this account the integral 
lly: 

 
al, which stands perpendicularly on the 

, y) are arbitrary scalar potential 

 
ndependent flow over the edge and can be 
t n:  

 
 and V is the influx to the knot n. In the 
e also considered.  

nal equation system also develops here in 
e diagonal band matrices, but an irregular 
f affecting planning elements. This leads 
ation system. 

215



9.2 Time quantization method 
 

 

confined 
 
unconfined

aquifer 

 
On the basis of general form of horizontal planes groundwater flow equation the independent of 
treatment on the left side, local functionality, on the right side, the time dependence of a 

be transferred into a difference 
otient, since otherwise there are no possible simple numerical treatment. The construction of an 
propriate equation system is only again possible by this transfer. The transfer from the 

quotient should be visualised by first backward difference method as 

quantization must be undergone. Quantization of  place dependence can be achieved by the 
described method in the section 9.1. The temporal derivative must 
qu
ap
derivative into a difference 
implicit procedure. 
 
 

 

 

figure 9.9: Relationship from tangent to secant with a typical drawdown procedure 

ue to the introduction of the temporal difference quotient, a time point must be also arranged at 
e convection part, i.e. the left side of the equation. Different methods for time quantization are 

ifferentiated for allocating the time to the left side of the differential equation, i.e. the local flow 
rocess (see figure 9.9). The most substantial distinctions lie between one- and multi-step 
rocedures as well as between the explicit and implicit procedures. With the explicit one step 
ethod the equation system can be solved directly, since the parameters are known from the 

 
 
 
D
th
d
p
p
m
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preceding time step. The explicit method, also designated as forward difference, however has 
rge disadvantage that for mathematical stability reasons only very small time steps (in minute 
rder of magnitude) are realizable and an extremely large number of time steps (total simulation 
me divide by the time increments) must be worked out for a test run. The implicit one step 
ethod is also called backward difference method. It also yields stable solutions for large time 

teps and thus represents the standard method for numerical simulation systems. A series 
rocedures are developed to decrease the quantization error (to multi-step method, Predictor 

Corrector method, higher order method, see figur
procedure by GRÄBER. 

la
o
ti
m
s
p

e 9.10), and also a special extrapolation 
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figure 9.10: Argument association in time quantization of a 1-D-field problem 
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9.2.1 Backward difference - Implicit method 

, 
e 

 
In the implicit one step method, also designated as backward difference or LIEMANN method
the local flow part of the horizontal planes groundwater flow equation will be considered to tim
point t: 
 

 
 
After the transfer from the temporal derivative into the difference quotients: 

 
 
nstead of the squiggly equI

w
al sign the equals sign is mostly used, which actually is not exact. If 

 
e implement quantization again also on the left side and insert the (local-) conductivity 

according to physical FDM method, then balance equation at knot n, m arises (see figure 9.11):
 

 
unknown quantities    known quantities 

           (9.34) 
 

 
figure 9.11: consideration of time quantization 

confined aquifer 
unconfined
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The expression 

 

will be designated as hydraulic storage effect or capacity. The so called time conductivity is 
introduced For the quotient from capacity and time step. 

 

This represents flow rate in connection with the temporal potential, which is released or received 
from aquifer due to storage effect within the time step ∆t . 

 

If this is inserted into the upper equation system and within a row we arrange the known and 
unknown variables, then we get the following system, in which only known quantities stand on 
the right side: 

 
Thus the pentadiagonal equation system remains. A known quantity from the preceding time step 
was added on the right side. The main diagonal was also extended by the addends Gz n,m. The 
developed matrix equation is not explicitly solvable due to the potential dependence of 
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conductivity, in particular the transmissibility wi
be carried out. In the first step the conductivity G

th unconfined aquifer. Therefore iteration must 
(1) is computed according to the initial water 

(2) 
leads to the second approximation of 

(2) ity was assumed too small 
 value in form of a damped 

scillation. This iteration process will be continued until the changes between two iterations do 
ot exc e step ∆t. Nevertheless 

the iter ich grows proportionally with 
∆t, since the secant b ∆t is calculated instead of tangent at the point t. 
Since t ordingly approach to an abating exponential function 
asymptotic steady final state, th ent 
∆t, but  In the figures 9.12 and 9.13 the results are 
displayed to defined tim e 
increm ccurate. We clearly recognize the 
strong dependence of tim
conver he same time we 
recognize the small quantization errors of extrapolation. 
 

 

 

levels (zRt → ∆t). For groundwater drawdown procedures this means that the transmissibility and 
the conductivity are assumed too large. The matrix can be solved with these values, and we get 
water levels zRt

(1), which are too low compared with real situation. Improved conductivity G
can be computed with this first approximation zRt

(1),  which 
water height zRt . This exceeds the true solution, since the conductiv
and too little discharge was realized. The solutions approach to true
o
n eed an error bound any longer. Then we get the solution for the tim

ation within the time step remains a quantization error, wh
etween the points t and t - 

he groundwater flow processes acc
e time quantization error is not only dependent on the increm

also dependent on the dynamics of process.
e for the example of one dimensional ditch flow with different tim

ents.  The results with the increment ∆t /24 are assumed a
e quantization error on temporal gradients. In figure 9.14 the 

gence of the solution as a function of time increment is observed. At t

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
221



drawdown procedure  t/24 - - - - - LIEBMANN 
ZR = ZR(x) parameter: t ∆t   ―――LIEBMANN 

   ∆t   ............GRÄBER  

 
figure 9.12: Time quantized computed drawdown of a ditch flow 

 
 
 
 
rising    t/24 - - - - - LIEBMANN 

ZR = Z ――LIEBMANN 
parame

a
R(x)    ∆t   ―
ter: t   ∆t   ............GRÄBER 

 
 

figure 9.13: Time quantized computed groundwater rise of a ditch flow 
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figure 9.14: Dependence of the time quantization error on the time increment 
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9.2.2 Mixed methods 
 
The backw escribed. 
That means the parameters will be determined for the time point t. This leads to difficulties with 

onlinear parameters, like under unconfined groundwater conditions , since they must be adjusted 
eratively. There is therefore a series attempts, by weighted allocation of local partial derivative 

ard difference is often applied for simplifying time quantization like already d

n
it
as well as the parameter to quantized time, in order to achieve an error decrease. Generally we 
can write: 
 

 
 
Depending upon method selection (see figure 9.10, page 260) we get the following γ-values: 
 

 
0  explicit method 

 
1/2 CRANK-NICOLSON scheme 

γ =  
    2/3 GALERKIN-weighting 

 
1 implicit method 

 
Apart from the one step method (also with iteration cycles), in which only the time point t and t - 
∆t play a role, multi-step procedures are frequently used for the simulation to decrease the time 
quantization error. The Predictor Corrector method is common. In the Douglas JONES method, a 
two-step method, a half step ∆t/2 will be attended according to implicit solution scheme (λ = 1), 
and all parameters are adjusted to time t - ∆t and ht-∆t/2 (Predictor step) in the substitution. The 
CRANK NICOLSON Scheme (λ = 1/2) realizes a total step ∆t (Corrector step), whereby all 
parameters are set to time point t - ∆t/2 (see section 5.4.1 numerical integration, page 149). Very 
high approximation accuracies can be also obtained that not only the time derivatives at local 
quantization point Pn,m, but also at neighboring  knots are taken into consideration. In simplest 
form according to the Simpson’s rule (by an example of one dimensional case): 
 

 
 
A special scheme is suggested by STOYAN, with which all partial derivatives are subject to a 
controlled weighting. Thus a very stable and exact numerical solution is obtained, which changes 
into analytical solution for the case of net convection. The disadvantage of this method consists 
of the fact that we try to reduce the time quantization error effects by the manipulation of the 
differential equation remainder, usually the parameter of local convection term (the right side of 
the differential equation). Thus the cause of error remains untouched. It generally leads to no 
satisfactory solution and numerical instabilities possibly. 
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9.2.3 Extrapolation method 
 
a very effective method to decrease time quantization error is indicated by GRÄBER in 
extrapolation method. For the balancing processes, in which the horizontal planes groundwater 

ow arises, the function h = h(t) is always continuous monotonically increasing or decreasing fl
between the time points t - ∆t and t. It yields that the secant of backward difference is always 
smaller than the tangent at the point t according to amount. Thus the following inequation:  
 

 
 
The inequation can be changed into equation by introducing a correction factor: 
 

 
 
Thus the time quantization error is reduced and can converge to zero by proper selection of K. K 
is ≥ 1 by definition. Approximately the local point Pn,m can be represented by the following 
equivalent circuit diagram (see figure 9.15). H stands for equivalent potential (1st type boundary 
condition) and R is an equivalent resistance, which summarizes the hydraulic characteristics of 
aquifer between the neighbour knots and the regarded knots. It could be e.g. the entire 
quantization network or a 1st type boundary condition. Ct stands for the effective storage effect of 

e step.  the aquifer in this tim
 

 
 

figure 9.15: equivalent circuit diagram of local point Pn,m

or this equivalent circuit we get (see sections 5.2.1 first order ordinary differential equations, 
age 111 and 12.1 transmission behaviour with first order delay, page 334): 

 
 
F
p
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whereby ґ is designated as time constant ґ = R C. In place of the capacity Ct an equivalent 
sistance Rz can be computed now, which engenders the same groundwater flow as the capacity re

C for time t: 

 
 
The difficulty consists of determining time constant ґ. An analytical expression cannot be found. 
Therefore the quotient ∆t/ґ is determined from the system behaviour during the offset procedure. 
We simulate the system according to backward difference in first step, i.e. with the time 
resistance Rz n,mt = ∆t/Cn,m t. The change between the potentials hn,m t and hn,m t-∆t serves as basis 
for the time constant computation. For the case of the drawdown (h  ≥ h ):  n,m t n,m t-∆t

 
and for a groundwater rising process: 

 
 

able and are characterised by a good convergence behaviour and a 
ery small quantization error.  Accordingly a 24 times smaller time step is developed (see figure 
.14, page 265) with application of the backward difference. Using larger time steps means a 

substan puting time. 

 
Here two relatively simple expressions are developed for the corrected time resistance. These 
solutions are numerically st
v
9

tial economisation of com
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9.3 T
 

1. 

ents.  
 
 

asks of numerical calculation 
By means of one dimensional steady ditch flow calculate the position of free surface as a 
function of x, the outflow from head water and the inflow to bottom water (see figure 
9.16). Use five quantization elem

 
figure 9.16: stratified aquifer with steady flow regime 

 
 
 
 
2. By means of one dimensional steady ditch flow calculate the position of free surface as a 

function of x and t (0 to 2d), the outflow f om head water and the inflow to bottom water 
(see figure 9.1
Use five quantization elements and five time steps.                       

r
7).  

Select the time step according to expected gradients. 
 
 

 
 

figure 9.17: stratified aquifer with steady flow regime 

 

 
 

 227



3. In a aquifer a tunnel (underground) will be built parallel to a river (see figure 9.18).  
Compute how does the groundwater condition for steady case change caused  by this 
construction.               
Select a suitable rough quantization scheme. 
 

 
 

figure 9.18: tunnel construction in an aquifer 

 
 
 

4. In a plain tract the polder area is to be protected against floods by means of a dyke 

0 /s, no = 0.15, S0 = 0.002m ; 
Sealing material: k = 10-5m/s, no = 0.05, S0 = 0.001m-1 

 
ple discrete scheme to estimate the groundwater flow processes. 

 water flows into the polder area per meter dyke length? 

 

 
 

construction (see figure 9.19) (according to simplified scheme). 
Dyke: k = 1 -4m -1

a) develop the sim
b) How much

 
 

figure 9.19: dyke construction and core seal 
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5. d recharge 
waterworks (see figure 9.20). 

 
 
 
 

 
ation scheme with three knots to estimate the groundwater 

r time point t =1d. 
 

Expected groundwater flow conditions will be simulated for an induce

a) develop the simple quantiz
flow processes according to the given geometry. 

 
b) calculate the water level zR(t) in the GWOT fo

 
 
 

figure 9.20: aquifer with river and well 
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6. low model is built for an induce recharge waterworks (see 

  

Figure 9.21: influence of river and hanging inflow on the aquifer 

 
a) select a suitable simple quantization scheme with maximal five elements, in order 

to calculate the water level at gauge P in steady case most possible. 
 centre of the elements and demonstrate it  

A numerical groundwater f
figure 9.21) with parallel flow regime. The river is to be considered as idealized boundary 
condition. 

 

b) Formulate the balance equations at the
in matrix form.  

c) calculate the hydraulic conductivity for the flow.  
d) How does the equation system and the result change, if the river is not idealized, 

but imperfection a colmation are considered?  
Outline the solution and roughly estimate the result. 
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Chapter 10 
 
 

10 Simulation programme system ASM 
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10.1 Tasks 
 
1. Simulate the drawdown for the given points with distance r and at time t, which results from 
water conveying V in the well for following aquifer and state the result graphically. 
 

 

2. Simulate the drawdown at point  (r = 10m) for the above mentioned aquifer every 10 minutes 
until maximally 100 minutes, if that flow rate of conveying well is subject to followi  stagger 
time. And plot the solution. 

ng

 
 
3. A foundation pit should be lowered in an aquif
is 100m
the rive  diameter of wells r0 = 0.3m and conveying 
capacity is V = 0.015m3/s 
The width of the river is B = 20m and a colmation layer  
k’ = 3 · 10-6m/s; M’ = 1m. 
The properties of the aquifer: 

er near a river. The centre of the foundation pit 
 far away from the river; the drainage well is 80m. Three wells are arranged parallel to 
r, which are 25m distant from each other. The

 

Will a drawdown of 2.5m be achieved in 10 days in the centre of the foundation pit? 

4. Please apply simulation programme ASM to check whether the centre of the foundation pit is 
drained after 7 days with conveying capacity of V = 0.01m3/s, r0 = 0.30m and a security of 0.5m 
(see fig

5. A co
(Br(100m  characterized by the following 
parame rs:  

ure 10.1). 

nstant flow rate of 25 l/s is conveyed from a well, which connects an ideal river 
500m)). The well has a radius of r0 = 0.35m. The aquifer is,

te
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Simulate the final steady state (the portion of temporal functionality should be smaller than 
0.001) for the point (P(200m,600m)). From when to calculate?  

 
figure 10.1: aquifer with well and foundation pit 

 
 
6. Simulate the following one dimensional groundwater flow: 
) By means of one dimensionaa l steady ditch flow (see figure 10.2) simulate the position of free 

he outflow from head water and the inflow to bottom 

 
 

surface as a function of x and investigate t
water. Use five quantization elements.  

 
figure 10.2: stratified aquifer with steady flow regime 

 
) By means of one dimensional unsteady ditch flow (see figure 10.3) simulate the position of 

d time t. 
b
free surface as a function of x an
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7. In a 
how do ed  by this construction. Select a 
suitable rough quantization scheme. 

 

aquifer a tunnel (underground) will be built parallel to a river (see figure 10.4). Simulate 
es the groundwater condition for steady case change caus

 
 

figure 10.3: stratified aquifer with unsteady flow regime 
 

 
 

 
 

figure 10.4: tunnel construction in an aquifer 
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8. In a plain tract the polder area is to be protected against floods by means of a dyke construction 
according to simple scheme in figure 10.5. 
a) Determine the time, when a steady flow regime appears, if the flood stands 5m over normal 

for long time. 
b) How much water flows into the polder area per meter dyke length? 
Dyke: k = 10-4m/s, no = 0.15, S0 = 0.002m-1; 
Sealing material: k = 10-5m/s, no = 0.05, S0 = 0.001m-1 

 
 
 

 
figure 10.5: dyke construction with core seal 

 
 
9. Model the following horizontal aquifer by means of program system ASM, which is limited on 
the right and left side by two perfect complete receiving streams with a water height of 50m. The 
aquifer possesses a thickness of 20m, a transmissibility of T = 0.01m2/s, a storage coefficient of S 
= 0.001 and a porosity of 0.1. A well with a surveying capacity of V = 0.05m3/s lies in the centre 
of the model area.  
c) Simulate the water level distribution (contour line) after one day well surveying.  
d) Graphically  place the water level hydrograph curves at the well every 200m (parallel and 

perpendicular to the receiving stream).  
e) Compute the water balance for the model area after one-day surveying, as well as the inflow 

from left receiving stream 
f) Check the hydraulic system of the task of c) the influence of the local and time quantization 

increments and solution methods. First plot the hydro contour line after one day and compare. 
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System theory and Modelling 

 

 
 

Part III 
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Chapter 11 

 
 

11 Fundamentals 
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The system theory makes up the theoretical frame, with which the control- and feedback control 
engineering can be scientifically investigated. The application of this theory in the water 
management is particularly important for the process analysis, i.e. for the modelling, as well as 
for the data extraction, transmission and processing. The system theory yields the fundamentals 
for the terms information and system. The introduction of information concepts for physical or 
chemical data enables the possibility to apply different methods of computer science, cybernetics, 
mathematics and electro technology in planning and realization of water management 
monitoring-control- and automation systems. 

 
11.1 Model classification 
 
The modelling or the process analysis can be carried out in theoretical or experimental way.  
 
The physicochemical processes are analysed and mathematically formulated under the help of the 
scientific laws in the theoretical modelling and process analysis. In this way the model 
structures, if possible, the model parameters of the internal influence mechanism are 
determinable. Analysing the objects takes place from inside to outside. The mathematical models 
are scientifically justified.  
 
The input- and output signals of objects are measured and evaluated in the experimental 
modelling and process analysis. Natural or artificial test signals are applied. The analysis of 
objects takes place from the outside.  

The disadvantages of theoretical modelling and  process analysis are unreliability with 
insufficient process knowledge and high expenditure with complex processes. The disadvantages 
of experimental modelling and process analysis consist of the only selective model validity in 
contrast to the necessity in the real experimental process and the difficulty of the scientific 
interpretation.  

Usually it is favourable to combine both methods and to a large extent the model structure are 
theoretically and the model parameters are experimentally determined. 

The justified models play a dominant role for the migration processes. The experimental 
modelling above all gains importance lately. The results of the experimental process analysis, the 
transfer functions, are usually difficult to interpret or physically imagine with the real processes. 
Therefore this method often comes across baseless scepticism. 

Like migration processes models the computers, hard- and software, can be also assumed as 
models (see figure 11.1). An important problem, which arises during processing of migration 
problems on computers, is the coupling of migration models to models on computers. In this 
connection the computer is regarded as simulators for the migration processes. However the 
coupling is impossible trouble free, if the models of simulators are not identical. Such differences 
arise e.g. in the consideration of the arguments (continuous, discontinuous) or the allocation of 
parameters and variables of state. In these cases an approximation must be accomplished between 
the two models. 
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figure 11.1: coupling of migration- and simulator model 

 
 
In investigation area the model basis contai
procedures, chemical processes and biological phenomena, i.e. the underground flow processes 
with the coupled material -, energy -, exchange -, and transformation processes as well as the 
migration processes in soil- and groundwater region. Thereby basis is generally nonlinear, and 
coupled material circulation. Simplified, aggregate models can be found for special cases. 
 
KRUG classifies the mathematical models into the justified and describable models (see 
figure11.2) according to the model development background. 
 
 
 
 

ns different mathematical models of dynamic 

 
 

Figure 11.2: model classification by KRUG 
 
 

The describable models are used e.g. for ecological systems and population problems. For the 
modelling of technical systems the class of the justified models is meaningful. 
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T
 
●
 

 continuous - discontinuous and 

extremely important. The 
hievable quality of the control- and feedback control task solution depends particularly on 
hether sufficient qualitative and quantitative knowledge of plant controlled system, here the soil 
d groundwater region, are available. The concept of modelling must be considered closely 

nciples 

odel Classification according to: 

xperimental model extraction/process analysis (experiments) 
 
● Model purpose of use 
 
Construction-, calculation-, behaviour model 
handling-, function model 
 
● Model notation 
 
Mathematical models in equation form/parametric models (equations) 

athematical models in graphic form (signal flow chart), non parametric models (curve, pair of 
tes) 

hysical 

 Model conclusion 

tatic models 

 

 Relationship of variables 

hese are classified in: 

 linear - non-linear 

●
 
● dynamic - static 

The question of modelling is in connection with the process control 
ac
w
an
connected with process analysis. TÖPFER/BESCH suggests following classification pri
for model application in the automation technical investigation area. 

 
M
 
● Model extraction method 
 
Theoretical model extraction/process analysis (laws of nature) 
E

M
varia
P models (analogy model, graphic model) 
 
●
 
S
Dynamic models 
 
● Model adaptability 

Prediction models 
Adaptive Models 
Adapted Models 
 
●
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Deterministic/stochastic models 
Linear/non-linear models 
 
● Model validity 

 

d not only by, about what the 
is. The object is also denoted by model original. The relationship 

between model and original is always a kind of image relation. The quality of a model is 
measured by 

● relative compatibility in view to the subject  

● relation fidelity of the image and the behaviour  

● application simplicity 

The status of process analysis, model and simulation within the scope of control and regulation is 
shown in the following figures 11.3 and 11.4. Thereby the model formulation of the soil- and 

roundwater processes should be understood in further process analysis. This can be also called 
. 

 
Type models (for classes of Objects) 

pecial models (for concrete object) S

 

The term model is usually not used uniformly. We can understand it as a triangle relation 
etween model, object and subject. The model is characterizeb

model is, but also by for what it 

g
procedure modelling. In contrary the progress of original process is reproduced in the simulation
The necessary parameters and variables of state are communicated to models and the process 
ycle starts. c
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figure 11.3: devices- and technical programming  realization 
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figure 11.4: process character of modelling and simulation 
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11.2 Methods of  process analysis 

ts is to be extracted. This process is also denote by modelling. These models can be 
attained in two different ways, on one hand by means of theoretical, on the other hand by means 
of experimental Process analysis. While the  process analysis yields the model 
tructure, the related parameters must be determined or improved by the experimental analysis. In 

contrast to the theoretic akes place as system 
sponse to input signals in the experimental process analysis. Both methods form a unity and 

omplement each other, because an experimental analysis without theoretical advance 
formation and a theoretical analysis without experimental supporting are hardly feasible.  

With the theoretical process analysis based on internal structure the transfer elements are 
tempted in order to find the mathematical descriptions (models) between in- and output variables. 
Transfer functions, which are formed on the basis of the theoretical process analysis, are always 
justified by natural laws. They always possess physical or chemical bases in water management 
pplication.  

● the analysis results with same process type are transferable,  

● the connections between technological and constructional data remain,  

● the process determinant variables are identified in the system and  

● important statements about the model structure are attained.  

 
 
The difficulties of this method consist of the fact that: 
 

● the expenditure is very high and the models are complicated,  

● the necessary process parameters can be achieved often very hard and only inaccurately,  

 

By means of process analysis methods a mathematical description of the behaviour of transfer 
elemen

theoretical
s

al proceeding an investigation of the output signals t
re
c
in

 
1.2.1 Theoretical Process analysis 1

a

The characteristics of the theoretical process analysis consist of the fact that: 

● the model can be already carried out before the practical realization, 
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● the proceeding is poor with respect to algorithm and  

● the physicochemical process must be acquainted sufficiently. 

n the scope of theoretical process analysis a fact has 

he experimental process analysis in contrast to the theoretical assumes the investigation of 
system in- and output signals. The systems are thereby regarded as transfer elements. Artificial 
x eriments are in progress at the original system, and special attention must be dedicated to the 
hoice o ena 

(e.g. floo  
analysis checks the systems from the outside.  

The methods of experimental process analysis are also known as black box method in 
cybernetics.  

Both methods form a unity and complement each other, because an experimental analysis without 
eoretical advance information and a theoretical analysis without experimental supporting are 

 table 11.1 some selected characteristics of the two kinds of process analysis are compared. 

 
 

 
 
 
 
 
 

For setting up mathematical models withi
been proved that, large systems by division into subsystems and then by individual balance 
equations (mass-, energy and momentum conservation law as well as source- and sink activities) 
are analysable.  

 
11.2.2 Experimental process analysis 

T

e
c

p
f input signals. If the execution of experiments is not possible, also natural phenom
d waves) can be used as database. We also mention that the experimental process

th
hardly feasible.  

In
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Table 11.1: comparison of theoretical and experimental process analysis 
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11.3 Signal representation 
 
Processes can be characterized by means of signals. In case of water management processes it 
means that these can be described by in- and output variables (e.g. water level, flow, chemical 
oncentrations, temperature). 

 
e call a function carried by physical variables signal, if it has a parameter, the image function is 

a vari onal 
nction x = f(x, y, z, t) mathematically. In the mathematical description of signals we consider 
e double meaning of symbol "x". It acts as general signal note and as character of local 

 

c

W
able of the physicotechnical space. In principle a signal is represented by a four dimensi

fu
th
coordinate. O rable to use as abbrev sical variable than
signal charact meters are called infor ers, and physical 
variables are 

 
In communic
and power ch

 
For more sim
following con
apply exactly
 
The descriptio

he signals a

distinguished
tio

Different repr
signals. The b

95), since th

applied in oth
level, the flow

oltage. Therv
addition, chem

T
the mathemat

transforma

2
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ften it is more favou
eristics. Signal Para
 
 

 

signal carriers, by which the signal is carried. Examples are specified in table 11.2. 

Table 11.2: classification of information parameter and signal carrier 

ations technology such signals are used e.g. 
 above definition signal anges. According to

ech
g

ical

ple representation usually only time is ment
sideration. This should be without loss of g
 to the dependence concerning local coordin

n of signals can be done with a diagram and
re usually defined with a start time t = 0. It i

 from the transformed procedure in complex
ns for signals are FOURIER- and LAPLAC
esentations have proved their worth for the 
asic signals are of great importance (see sec
ey are the basis of all arbitrary signal forms.

er technical systems, like here in water t
 rate and the temperature also appear as si

efore the water level is expressed as three di
 material concentrations are conceivabl

ical description the original procedure in the
iation of each phy
mation paramet
 

in the form of voltage states, current 
and information concept can be also 
nical processe
nal carriers analogously to current and 

ensional signal x = f(x, y, t). In 

ioned as independent variable in the 
enerality. The implementations also 
ates.  

 by means of mathematical functions. 
s a matter of relative time to an event. In 

ime domain is usually 
 variable domain. Common 
E transformation. 
mathematical description of technical 
tion 11.3.1 basic signal forms, page 
 By means of basic signals arbitrary 

s. For example the water 

m
e as signal.  

 so called t



signals can be generated (see section 11.3.3 signal synthesis, page 301). Likewise arbitrary sign
forms can be decomposed into these basic signals (see section 11.3.4 signal analysis, page 301)
 

al 
. 

11.3.1 Basic signal forms 
 
The most common basic sign al magnitude, sine 

nction, step function (unit step) and the DIRAC impulse. 

 

 

al forms (see figure 11.5) are the identic
fu
 

 
 
 

figure 11.5: basic signal form 
 
 
 
The unit step is a normalised signal with step height (step height = 1) and is represented by 1(t). 
The DIRAC impulse only affects at t = 0 and has an infinite step height there. Unit step and 
DIRAC impulse are connected with each other mathematically by the integration or deviation. 
 

Identical magnitude 

DIRAC impulse Bar signal 

Sinusoidal signal
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11.3.2 Application of selected test signals 

n be 

ethod. 
 
Apart from the application of these special test signals the system reaction of natural events, i.e. 
natural signals, like flood waves, precipitation events etc. can be also drawn on for the 
determination of transient characteristic. This will be realized by the application of faltung 
operation (see to section 12.3 arbitrary transient characteristic, page 355).  
 
There are  following special definitions for the test signals according to TÖPFER, whereby the 
auxiliary term "unit -" always contains a normalisation to the value one. 
 
 

11.3.2.1 Impulse function

 
Test signals can be effectively used for the execution of the experimental process analysis (see 
figure 11.6). With these a special experiment must be accomplished to the real object. It is 
possible under different technical or technological conditions that only special test signals ca
used. Since the same system description develops independently of test signal type and the 

ifferent descriptive models are transferable, there are no restrictions in the experimental process d
analysis m

 
 
 
The impulse function is defined as: 
 

 
 
whereby ∆t is the impulse width. The area of impulses amount to: 
 

 
The area for a impulse with constant height and a definite impulse duration: 
 

 
The impulse area embodies an appropriate effect in form mass- or energy deposit. A finite pulse 
width will be always available with technical impulses. If the pulse width is smaller than a tenth 
of the smallest time constant (∆T < 0.1г) (see section 12.2 second order transient characteristic,
page 340), th

 
en it can be regarded as an approximately ideal impulse.  
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If we presuppose the fact that the area remains constant, and for ∆t → 0 the pulse amplitude must 
approach to infinite t signal, page 
349), 
 

 xe → ∞ (cp. also see section 12.2.3 DIRAC Impulse as inpu

 
 
 
whereby the impulse area has a definite value: 

 
 
the so called DIRAC impulse, also designated as unit impulse, arises when the impulse area is 
normalised to value one: 
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11.3.2.2 step function 

 
The step function is defined as: 

 
 

 the step height is normalised, we get the unit step: If
 

 
 
Please note that the bar signal already takes value xe0 at the time t = 0. 
 
 
 
11.3.2.3 ramp function 

 
The ramp function, also designated as slope function, is defined as: 

 
 
A unit function can be also generated here by normalization. The unit ramp function: 

 
Among the different illustrated test signals, in particular the unit signals, such connection exists 
that they are transferable with each other by integration or deviation (see table 11.3). 
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Table 11.3: relationship between different basic signals 
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figure 11.6: test signals 
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11.3.3 Signal syntheses 
 
Sev e 
signal s
 

eral input signals xe are additively merged to an output signal xa at a mixing place in th
ynthesis (overlay).  

 
The output signal can be determined based on mathematical equation of the mixing place by a 
signed addition or by means of graphic methods (see figure 11.7). 
 
 
11.3.4 Signal analysis 
 
The signal analysis of arbitrary signal forms can be achieved via a decomposition in basic signal 
forms. The most common method is Fourier series decomposition, with which periodic signal 
sequences are approximated by different frequencies sinusoidal oscillations. A practically well 
manageable method with for deadbeat signals, i.e. one time expiring signals, is the approximation 
through temporally  staggered signals. In the following the graphic method should be described, 
since in contrast to mathematical one it is substantially more simply manageable and more 
descriptive. 

he first step with signal analysis by means of  bar signals consists of the fact that arbitrary time 
fun lon flank 
and the
It has to be proved the integrals of the original curve and the step function draw near. It means 

at the same areas must be represented by both curves (see script for lecture groundwater 
easuring technique, section error calculation). 

 
Arbitra sum of impulses, particularly into an infinite sum 
of DIRAC impulses. This leads to faltung integral method  (see section 12.3 arbitrary transient 
characteristic, page 355). 
 
 
 
 
 
 

 
 
 
 

 
T

ction is approximated by a echelon form signals (see figure 11.8). The time of eche
 step height should be selected in such a way that the smallest mean error occurs.  

th
m

ry signals can be also decomposed into a 
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figure 11.7: signal syntheses 
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Example: 

 
 
 

figure 11.8: approximation arbitrary signals by bar signals 
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Here it should be pointed out again that the exemplary signal representation is applicable to all 
arguments as time function. The special place dependence in x¡ and y¡ direction plays a important 
role in  soil and groundwater range processes as well as in contaminated site treatment. 

 
11.3.5 Quantization 
 
The display format of signals can be classified according to different criteria. With respect to 
technology we differentiate signal classifications according to information parameter 
quantization and according to independent variable quantization. 
 
In the classification according to information parameter quantization we get: 
 

● analogy signals ediate value 
etric mag

● discrete signals, whose information parameter can be assumed only definite (finitely 
many) values within certain limits.  

 
The two mentioned classification principles can be also combined and we get the display format 
shown in the figure 11.9.  
 
The following subdivisions can be made for the class of independent variable quantization: 
 

● continuous signals, for those the information parameter to any value  
and  
 
● discontinuous signals, for those the information parameter can be only indicated for 
finitely many values of arguments. 

 
Some measuring instruments and methods are specified in table 11.4 as examples of appearances 
of different signal forms.  
 
 
 
 
 
 
 
 
 
 
 
 

, whose information parameter can be assumed any interm
nitude and  in a m
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Quatization of independent variables 

 

 
 

figure 11.9: representation forms of signals 

 exactly as the German industry 
s 

crete" 

, 
easured 

 an informati tization stages "0" and 
" (or "0" and "L") are a

 
Table 11.4: Measuring instruments and methods and signal forms 

 

 
 

 is still pointed out that the use of term cannot be always keptIt
standards specified. These will be after all conditional due to different application of some term
in the foreign language literature. Thus there are no clear separation between the terms "dis
and "discontinous". The word "discretisation" is often used for "independent variable 
quantization". Also the term "digital" (digital signals) is often used for discrete measured values

 they are indicated by means of number tablets. Digital measured values are rightly mif
values from on parameter quantization, whereby only the quan

llowed. "1
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11.4 Transmission systems 
 
The following methods serve the determination of dynamic behaviour of undisturbed systems. 

ince this is only technically idealized possibility, it must be required that the inpuS t signals 

 
● the system is undisturbed (disturb << wanted signal). 
 
● the system behaviour is linear. 
 
● the system behaviour is time-invariant. 
 
● the
 
● the system behaviour is describable by concentrated parameters. 
 

 
In the system theory, particularly in connection with the experimental process analysis, each 
process can be represented as so called "black box", which is only characterized by the relation of 
in- and output variables. This "black box" is then designated as system.  
A system is always identified by the boundary to its environment and coupled information 
exchange (see figure 11.10). With respect to the system theory we differentiate between concrete 
and mathematical systems. A concrete system is a spatially delimited part of reality, including 
some selected connections in its internal structure and its environment. The mathematical 
systems contain variables, equations or operators. 
 
 

substantially dominate compared to the disturbing signals.  
 

urther important prerequisites for application of the methods are: F
 

 system has only one input- and one output signal. 

 

 
 
 
 

 

 

figure 11.10: system with its connection to environment 
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11.4.1 Mathematical description 
 
Different methods emerge in the description of systems. The approach in connection with 
technical n systems is most widely used. Each system is identified by a 
input quan
unctionalf

In the foll
System w
oupled ec
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systems as transmissio

tity, which is a quantity dedicated by output variables (see figure 11.11). This 
 connection between the out- and input variables is called transient characteristic.  

th 
owing for each case only the relation of a input- or an output variable is regarded. 
ith several in- and output variables, so called multi signal systems, can be treated wi
quation system method. 

 
 

figure 11.11: transfer element 
 

iption of the systems by the influence in- and output signals can take place in diverse 
e most common is the mathematical equations and the time response diagram of step 

e used for the description of transient 
applied at input, we get the 

he transit function h(t) 
 get if a unit bar signal is applied at input. This is also designated as step response 
ction: 

unction. Three kinds of definition equations ar
stic. According to the basic signal relation, which are 
eight- and transfer function: 

 

he weight function g(t) 
yielded if a DIRAC impulse act on input, and is also designated as impulse response 
ction: 

 
he transfer function G(p) 

ED FROM LAPLACE TRANSFORMATION DESCRIPTION OF OUTPUT 
IF THE INPUT SIGNAL IS DIRAC IMPULSE: 

 



We differentiate between the time- (original-) domain and the complex variable domain in the 
escription of the transient characteristic (see figure 11.12), with signals, and the transfer 
nction, a transformation is subordinated. The most common integral transformations are 

OURIER and LAPLACE transformations (see section 5.3.2 LAPLACE transformation, page 
35). The advantage of the application of transformations consists of the fact that complicated 
rithmetic operations can be usually simplified with transfer functions in the complex variable 
omain based on four basic arithmetic operations. The disadvantage includes the poor 

gnals 
lex variable domain and back again after solving the transfer 

nction (inverse transformation). While prefabricated correspondences usually exist for the 
forward direction, the inverse transformation often proves more complex. 
 
The designations of signals and transfer functions are lowercase letters in the time domain, in 
contrast capital letters in complex variable domain. 
 
 

d
fu
F
1
a
d
descriptiveness of the complex variable domain as well as the expenditure to transform si
and mathematical models into comp
fu

 
 

 inverse transformation are defined as: 

figure 11.12: relationship between time- and complex variable domain 
 
 

he FOURIER transformation and itsT
 

 
Inverse transformation 

 
The LAPLACE transformation and its inverse transformation are defined as: 
 

 

Inverse transformation 
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While the FOURIER transformation is favourable for periodic or periodised signals, the 
APLACE transformation has been proved its worth for application to bar signals (e.g. switching 

 also 
sed for the computation of transient characteristic of arbitrary input signals (see section 12.3 

faltung operation, page 355).  
 
These three types, transition -, weight- and transfer function, the mathematical representation of 
transient characteristic, are equivalent, since they are only different mathematical computation 
forms for the same physical or chemical technical processes. They are therefore transferable with 
each other by means of mathematical connection (see table 11.5). According to definition, an 
integral or differential connection exists between unit bar signal and DIRAC impulse (also see 
table 11.3, page 299), and the arithmetic rules for LAPLACE transformation (see section 5.3.2 
LAPLACE transformation, page 135), yield the connections between different description types. 
 

 
ferent functions of transient characteristic 

L
operation) and impulses (DIRAC impulse). Particularly the LAPLACE transformation is
u

Table 11.5: relationship between dif

 
 
 
The methods of experimental process analysis introduced in the following can be only applied 
under definite conditions. Usually these conditions can be met in the water management 
processes investigation. Advanced methods are subject to special literature or are still the 
research subject nowadays. 
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11.4.2 Basic transient characteristic 
 
The basic forms of technical system transient characteristic can be described in proportional, 

ion behaviour. 
 

he system designations concerning the transient characteristic are done by capitalized initial 

Table 11.6: transient characteristic 

integral and differential forms as well as delay- and durat

T
letters of the characteristic or by the system response pictogram on a bar signal at input, i.e. via 
step response. Examples of the particular transient characteristic are summarized in table 11.6. 
 

 

 
 
These basic forms will be described exemplary based on some examples. More detailed 
descriptions for 1st and 2nd delay elements are given in chapter 12 model regulation, page 333. 
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11.4.2.1 Proportional characteristic => P-element 

 
Example: first class lever 
Law of lever: 

 
 
l length of the fulcrum 
F force at the fulcrum 
 
If we set the forces as input- and the others as output signals, we get proportional transient 
characteristic: 

 
The transfer factor K can be determined either in way of theoretical process analysis from 
geometrical conditions of the lever arms: 
 

 
 
or by an experiment, the experimental process analysis, by means of known input signals, e.g. the 
test signal unit step 1(t), and measured output signal. In this case: 
 

 
 
T
eq

he transient characteristics are determined by inserting the appropriate input signals into the 
uation 11.19 as follows: 

 
● transit function h(t) 
A

 

ccording to definition xe = 1(t) will be inserted. Thus: 
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● weight function g(t) 
In this case the DIRAC impulse will be used as input signal: 
 

 
  

● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 
means of LAPLACE operation in this transfer function: 

 
 Since only linear systems are regarded according to prerequisite, K = is const. Otherwise 
 L{δ(t)} = 1. 
 
 

11.4.2.2 Integral characteristic => I-element 

xample: Filling procedure with constant flow rate 
 
E
The filling of a container with surface area A by a constant flow rate V leads to a rise of water 
height H in this container (see figure 11.13). 
 

 
 

figure 11.13: Filling procedure with constant flow rate 
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If we check the dependence of the rising of water height H on the influent flow rate V, then we 
nd out the following relation: fi

 

 
 
If we equate these two volumes and solve the equation respective to H, then we get: 
 

 
 
For V = const.  

 
 
If we consider again the system as transfer element with xe and xa, then 
 

 
 
This equation represents an integral transient characteristic with a proportionality factor K. This 
can be also decomposed into a series c
charact ristic, page 32

or x  = const. 

onnection (see section 11.4.3 combined transient 
6) of a pure p-element and a pure I-part. e

 
F e

 
 
Also here the transmission constant K can be determined in two ways, by means of theoretical or  
xperimental process analysis. In the first case, equation 11.28, which was derived on the basis of 
hysical laws, is definite: 

e
p
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In the second case, the experimental process analysis based on equation 11.30 yields under the 
condition x  = const.: e

 
Particularly if  the unit step xe = 1(t) is used as xe, K can be determined by the straight line slope 

a = K · t | xe = 1(t): x

 
For t = 0 and xa0 = 0, 

 
 
 
The transient characteristics are determined by inserting corresponding input signals into the 
quation 11.30 as follows: e

 
● transit function h(t) 
According to definition x  = 1(t) will be inserted. Thus: e

 
 

● weight function g(t) 
In this case the DIRAC impulse xe = δ(t) will be used as input signal: 

 

 
 according to definition: 

 

 271



● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 

means of LAPLACE operation in this transfer function: 

 
 since here applies: 

 
 
 

11.4.2.3 Differential characteristic => D-element 

 
Example: 
Transfer elements with differential behaviour come up in electro-technology and serve in control 
practice to affect processes with a certain mass- or energy deposit in a definite objective. In water 
management practice it appears in connection with oscillation phenomena such as water hammer 
in pipes. Differential transient characteristic is characterized by equation 11.42. 
 

 
 
● transit function h(t) 
According to definition xe = 1(t) will be inserted. Thus: 
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● weight function g(t) 
In this case the DIRAC impulse xe = δ(t) will be used as input signal: 

 

 
● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 
means of LAPLACE operation in this transfer function: 

 

 
 
 
 
 

11.4.2.4 First order delay => PT1-element 

 

 
Example: Filling procedure with variable discharge 
If a container is connected with a receiving stream through a hydraulic resistance Rhydr (e.g. gate 
valve, pipe), the container will have the same water level as in the receiving stream after 
infinitely long time. The container has a surface area A, and the water level in receiving stream 
and in the container are HFl and H respectively. The time dependence of water level H is wanted, 
if the water level HFL has the value Hmax over the entire period. H should be equal to zero at time t 
= 0 (see figure 11.14). Thus the following equations apply: 
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figure 11.14: Filling procedure with variable flow rate 

 

 
 
If we consider again the system as transfer element with xe and xa, and then the equation is, T = 
A2 · Rhydr: 

 
This differential equation has the solution (see section 5.2.1 solution of differential equation, 
page 111) for the case xe = const: 
 

 
Methods for the determination of the parameters K and T are described in detail in section 12.1 
model regulation, page 334.  
 
The transient characteristics are determined by inserting corresponding input signals into the 
equation 11.51 as follows: 
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● transit function h(t) 
According to definition xe = 1(t) will be inserted. Thus: 

 
● weight function g(t) 
In this case the DIRAC impulse xe = δ(t) will be used as input signal. The weight function 
is expressed as derivative of transit function: 

 
● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 
means of LAPLACE operation in this transfer function. Here we assume the differential 
equation of transient characteristic (see equation 11.52): 

 

 
 

the LAPLACE transformed form (see section 5.3.3 solution of differential equation with 
LAPLACE transformation, page 141) 

 

 
 

11.4.2.5 Second order delay => PT2-element 
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Example: filling procedure of two cascaded con ners with variable discharge  
Two containers with the surface areas A2 and A3  well as the water levels H2 and H3 are 
cascaded connected one after another. The first one is arranged as the preceding 1st order delay 
behaviour example and connected receiving stream through the hydraulic resistance Rhydr.1. 
Second is coupled to the first container through hydraulic resistance Rhydr.2. The water level in the 
receiving stream remains constant value H  (see figure 11.15).   

tai
 as

max

 
 

figure 11.15: coupled storage cascade 
 
 
The water level in 1st container results from the derivation according to equation 11.50: 

 
 
or with T  = A  · R : 1 2 hydr.1

 
 
Similarly the water level in 2nd container: 

 
  
or with T  = A  · R : 2 3 hydr.2

 
 
Inserting equation 11.61 into equation 11.59: 

 
If we consider again the system as transfer element with xe and xa, and then the equation: 
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This differential equation has solution (see section 5.2.2.2 solution of differential equation, page 
125) in case of xe = const. The determination of the Parameter K, T1 and T2 as well as th

nd
e 

olution steps are described in detail in the section 12.2 transient characteristic with 2  order 
elay. 

s
d

 
The tra sient characteristics are determined by inserting corresponding input signals into the n
equation 11.64 as follows: 
 
 
 

● transit function h(t) 
According to definition xe = 1(t) will be inserted. Thus: 

 
 
● weight function g(t) 
In this case the DIRAC impulse x  = δ(t) will be used as input e signal. The weight function 
is expressed as derivative of transit function: 
 

 
 
● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 
means of LAPLACE operation in this transfer function. Here we assume the differential 
equation of transient characteristic (see equation 11.64): 
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the LAPLACE transformed form (see section 5.3.3 solution of differential equation with 

LAPLACE transformation, page 141) 

 
 

with L{δ(t)} = 1 and xa0 = 0 

 
 
 

 

11.4.2.6 Duration behaviour => PTL-element  
 
 
Example: 
The duration behaviour arises in transportation processes, but a change in the balance occurs, i.e. 
in the case of pure transport without accumulation effect. Thus this process can be also described 
by a coordinate transformation. This behaviour also plays an important role, if processes should 
be considered together with different starting points. In these cases different starting points can be 
convinced different durations. 
 
The equation for this duration behaviour: 

 
 
The transient characteristics are determined by inserting corresponding input signals into the 
equation 11.72 as follows: 
 
 

● transit function h(t) 
According to definition xe = 1(t) will be inserted. Thus: 
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● weight function g(t) 
In this case the DIRAC impulse x  = δ(t) will be used as input signal: e

 
 
 according to definition: 

 
 

● transfer function G(p) 
The transfer equation of time domain must be transformed in complex variable domain by 
means of LAPLACE operation in this transfer function: 
 

 
 

the LAPLACE transformed form (see section 5.3.2 LAPLACE transformation, page 135): 
 

 
and L{δ(t)} = 1. 
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11.4.2.7 Overview of basic transient characteristic 

 
An overview of different b
summarized in figure 11.16

asic form of the transient characteristic step response functions is 
. 

 
The different kinds of the mathematical representation of transient characteristic, transition-, 
weight- and transfer function, for the basic transfer elements are displayed in table 11.7. 

anfigure 11.16: basic forms of tr
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sient characteristic 



 
 

table 11.7: basic transient characteristic with mathematical description 
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11.4.3 Combined transient characteristic 

ents can be ascribed to three basic types,  

● the series connection, 

 

 
The interconnection of linear transfer elem
 

 
● the parallel connection and 
 
● the circle circuit (also designated as feedback or back coupling)  

 
Transfer functions are shown in figure 11.7. And mathematical description is table 11.8.
 

 

circle circuit

parallel connection 

Series connection

 
figure 11.7: interconnection of linear transfer elements 
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Table 11
 

.8: composite transfer elements 
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According to the formation law of in series connected transfer elements the transfer function of 
a 2nd order delay element can be calculated as two in series connected 1st order delay elements 
(see figure 11.18): 

 
 

figure 11.18: two series connected PT1-elements 
 

 
 
 
The combined transient characteristic of parallel connected transfer elements can be generated 
from the addition of individual transfer elements mixture in linear transfer elements. Therefore 
basic transfer elements are occupied with the same input signal and the outputs are added at 
mixing place, i.e. the elements are parallel connected (see figures 11.19 and 11.20). 
 
For PI-element: 
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figure 11.19: realisation of a PI-element 
 
 
 
 

The transfer function for PI-element: 

 
 
The circle circuit (feedback systems), which appears in closed control process, is to be explained 
based on filling level control. This regulation process (seeing figure 11.21) is avowed in 
GRÄBER "groundwater measuring technique". We recognize that the forward directional 
transfer element, filling of the container, has integral transient characteristic; the feedback 
according to technical construction, float with attached lever and gate valve, has proportional 
behaviour. So it results in the computation of total transient characteristic according to figure 
11.17 (circle circuit, layout b) and table 11.8, page 327: 
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figure 11.20: realisation of a PID-element 
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This transfer function corresponds to a behaviour of 1st order delay element. 
 
How to attain transient characteristic in experimental away is shown in figure 11.21, and it 
orresponds likewise to delay characteristic. 

 
c

 
figure 11.21: feedback system for water level control 

Route:    filling procedure 
Setting:  lever and gate valve 
x:    actual water level H 
w:    reference water level Hmax
z:    outflow VA
y:    inflow V 
xw:    difference Hmax - H 
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Chapter 12 
 
 

12 Model regulation based on parameter 
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Concrete models and the determination of their aracteristics and parameters will be described 
in the following sections. 1st and 2nd order delay elements play a special role for water 

management systems. We find this behaviour in ansportation procedure not only in 
geohydraulics, in surface waters, as also in pipes. 

 
Descriptive procedures are described in this secti h can be also partly graphically solved. 
Computational procedures, which ar adjustment of measured values in 
regression functions, are treated in p entification, page 373. With these 
procedures optimisation will be applied, e.g. leas quares (MKQ). 

 
 
12.1 transient characteristic with 1st order delay  
 
12.1.1 Mathematical description 
 
The behaviour of water management systems corresponding to a 1st order delay can be found in 
all filling procedures with storage effect in connection with flow resistance (see figure 12.1). For 
determination of the required hydraulic parameters e.g. the so called pumping tests are used as 
filling attempts, which can be evaluated by means of the following described methods. 
 

ch

 filling- and tr

on, whic
e based on method i.e. the 
art IV indirect parameter id

t s

 
 

figure 12.1: equivalent circuit diagram of a transfer element with 1st order delay 
 
 
 
 
 
According to section 5.2.1 solution methods of ordinary differential equations, page 111, the 
systems, which consist of a flow resistance and a storage capacity (see figure 12.1) can be 
described by the following differential equation: 

 

 290



The solution of this differential equation with the boundary condition, the input signals (see 
figure 12.2) (xe t=0 = xe0 · 1(t)): (see section 5.2.1 first order ordinary differential equations, page 
111): 
 

 
 
Considering the impulse response g(t) is equal to the differential of step response: 
 

 
 

 The differential equation can be also solved by means of LAPLACE transformation (see section
5.3.2 LAPLACE transformation, page 135): 
 

 
 
The transfer function G(p) can be determined from this equation, while according to definition 
we consider L{δ(t)} = 1 as LAPLACE transformed DIRAC impulse input signal. 
 

 
 
These results are already contained in table 11.7, page 325 and have been verified. 
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figure 12.2: transient characteristic and circuit of a PT1-element 
 
 
 
If such a RC circuit (see figure 12.2) shows a 1st order delay behaviour, then we can conclude 
backwards uniquely that the 1st order delay behaviour of any system can be alternatively 
reproduced by such RC circuit. The task of the experimental process analysis is to determine 
these substitute parameters from the transient characteristic. This does not have to be absolutely 
physically interpretable. These are parameters, which show the same behaviour in the equivalent 
network as the original system. The equivalent network is a model original procedure.  
 
The determination of the transfer factor K and the time constants T is necessary for clear 
description of this behaviour. The basic approach of experimental process analysis enables it 
possible based on a step response function, i.e. the clear regulation of these constants is possible 
by original reaction on a bar signal. 
 
The transfer factor K can be determined from the transfer element behaviour with 1st order 
delay for infinite time: 
 

 
 
with t → ∞: 

 
 
for a bar signal: 

 
Thus the step response can be also written in following form: 
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From the comparison between the input curve and the output curve (see figure 12.2) or also from 
above equation we recognize that a proportional behaviour exists in infinite. 
 
 
 
There are several ways to determine time constant T: 
 
● determination of time, in which an integer multiple of time constant available 
 
● determination of slope at zero point. 
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12.1.2 Time constant from integer multiples 
 

e is an integral multiples of time constant: For the case that the tim
 

 
For bar signal as input f
 

unc onti  applies by definition xe0 = xe∞ and the following table: 

 
with  

 
This table can be evaluated in such a way that we look for the poin the 
ratio xa / xa∞ is a certain value. According to the table a definite rati e 
constant T  bel see figure 12.3). 
 

t on the ordinate, where 
o between time t and tim

ongs to this point on the curve (

 

 
Ratio  
xa / xa∞

Ratio t/T 
 
 

e constant determfigure 12.3: tim ination from its multiple 
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12.1.3 time constant from slope 

lso calculated from the tangen cording to equation 
12.9: 

 
The time constant can be a t at any point t . Ac

 
Ratio t/T 

 
Figure 12.4: tangent inter

 

 
We can see an intersection with asymptote of step response function xa∞ during setting up the 
straight line equation for tangent. This intersectio  T. 

section and time constant 
 

 

n has a distance tSchn =
 

 
 
 
Since the measuring errors are largest at the beginning of e zero, 
we can also set the tangent at any place. Time difference between tangent point and intersection 
with the asymptote of step response is then equal to the t ecause the exponential 
function possesses a constant slope (see figure12.4). 

 measurement series, i.e. at tim

ime constant, b

 
Ratio  
xa / xa∞

 295



12.2 transient characteristic with 2nd order delay 
 
 
12.2.1 Mathematical description 
 
The behaviour of water management systems corresponding to a 2nd order delay can be found in 
all tran ith storage effect in connection with flow resistance (see figure 
12.5). The tracer tests are implemented to determine the associated hydraulic transportation 
parameters, which can be evaluated by means of ethods. Also here we can 
assume te differential equation. According to the equivalent circuit 

 12.5) we can set up the following differential equation: 
 
 

sportation procedures w

following described m
 the solution of an appropria

diagram (see figure

 
 

figure 12.5: equivalent circuit diagram o with 2nd order delay 
 
f a transfer element 

 
 
with coupled conditions: 

 
 
nd the time constant: a

 

 
we get 
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We get the solution of this differential equation e.g. through the substitution method (see section 
5.2.2.2 differential equation of type b, page 125). The characteristic equation of the homogeneous 
differential equation: 

 
 
with new constants d = b/a and f =c/a: 
 

 
 
With the solution of this quadratic equation we differentiate three cases depending upon radian 
value. For the regarded technical systems here only the positive case, different from zero radian 
plays a role. 

 
Thus we get: 
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This yields the solution of differential equation: 

 
 
The constants KB1B and KB2 B can be determined base on concrete initial- or boundary conditions. 
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12.2.2 Unit Step as input signal (transfer function h(t)) 
 
For above transfer element the model parameters can be determined as the behaviour excited by a 
jump, the step response, in the 1P

st
P order delay elements (see figure 12.6).  

 

 
 

figure 12.6: Step response function and equivalent circuit diagram of a PTB2 BTBLB-element 
 
 
The behaviour can be described according to the derivation and under the consideration of 
excitement of a bar signal as follows. 2P

nd
P order delay elements, e.g. transportation processes, are 

bonded by their convective portion at delay characteristics. Therefore generally another delay TBLB, 
i.e. a time lag, should be considered. 
 
Assuming general solution of differential equation (see equation 12.20, page 342) under special 
condition of a bar signal x BeB(t) = x Be0 B · 1(t): 
 

 
 
 
The proportional transfer factor K, both time constants TB1 B and TB2 B as well as the delay TBLB must be 
determined on the basis of complicated structure parameter here. Again selected values of the 
step response function will be used. The transfer function G(p) can be assumed following shape 
for the 2P

nd
P order delay elements (PTB2 BTBLB): 

 
The distinction, which type of model deals with appropriate measurement series of characterized 
transfer element, is achieved by STREJC in table 12.1. 

So called model I 
 
So called model II
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Figure 12.1: classification of model type according STREJC 

 
 
The transfer constant K again results from the behaviour in infinite: 

 
and thus: 

 
 
The delay TBLB can be read directly from the diagram of the step response (see figure 12.7). The 
occurrence of a delay must be considered as shift of time axis. The appropriate variables (xBaWB, 
x Ba∞B, Γ Bu B, x Ba∞B) can be taken from figure 12.7. 
 

 
 

figure 12.7: parameter of step response 
 
U
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12.2.2.1 Model type I 

 
In this type of model, the case of different time constants TB1B ≠ TB2 B, the conditional equations must 
be found for both two time constants. According to the literature [STREJC] it is known that the 
value xBa 0.7 B = 0.7 x Ba∞ Bis nearly independent of the ratio of two time constants, but is strongly 
dependent on the sum of two time constants. With an error smaller than 1.7% we can apply: 
 

 

 
figure 12.8: determination of parameters TB1 B and TB2 B 

 
 
 
 
On the other hand we can assume that the function value xBa0.7/4B = x Ba(t(0.7xa∞)/4) B according to figure 
12.8 only depends on the ratio T B2B/TB1 B. The ratio TB2B/TB1 Bwill be determined from table 12.2. 
 
 
Thus two equations are available for determination of the time constants and the task is uniquely 
solvable. 
 
It is still to be noted that these transfer elements for large time (t >> TBWB) approximately behave as 
1P

st
P order transfer elements. Particularly with large difference of time constants the later process is 

dominated by process with time constant TB2 B, since the processes with time constant TB1 B already 
faded away. 
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Table 12.2: time constant ratio dependent on step response 

 

 
U
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12.2.2.2 Model type II 

 
The type of model II is shown in table 12.1 (T1 = T2, i.e. only one time constant), so we can 
determine the necessary parameters by table 12.3. In this case the transfer function can be even 
extended to arbitrary integer exponents n: 
 

 
 
The determination of K and TBLB is independent of model type and can be achieved as described in 
model type I (see page 344). 
 
 
 

Table 12.3: parameter estimation for model type II 

 
 
Base on table 12.3 we have the possibility to determine the time constant T in different ways. By 
averaging these values we can obtain a value with a smaller error. This is important since 
measuring errors of experiment also completely shrink in the parameter estimation. 
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12.2.3 DIRAC impulse as input signal (Weight function g(t)) 
 
Apart from the possibility for the determination of transfer parameter treated in the preceding 
section, a further way is described here. The parameters of systems, i.e. time constants, transfer 
factor etc., should be invariant compared to input signal, since linear systems are considered here. 
This circumstance allows to use different test signals for description of the systems, which 
however always lead to the same transfer function. In technical test practice usually one or other 
input signals will be more feasible. In DIRAC impulse the impressing of a very large impulse 
(energy- or mass deposit) in a very short time interval ∆T << T (proportional to smallest appeared 
time constant) is observed. The introduced method here yields expedient value up to a pulse 
width of ∆T ≤ 0.1 T. Thus the circumstances are displayed in figure 12.9. 
 
 

 
 

figure 12.9: 2 P

nd
P order transfer element (PTB2BTBL B) 

 
 
 
In contrast to the preceding section here only transfer elements with same time constant are 
considered (see equation 12.28). This is designated as model type II in the section 12.2.2.2.  
 

 
According to the relationship of the two output values xBaB(TBmB)/xBaB(TBmB/2) (see figure 12.10) 
the parameters n (number of coupled RC elements = exponent of the denominator polynomial) 
and T (time constant) will be determined based on table 12.4.  The time TBMB is the point which the 
impulse response function, the weighting function g(t) reaches maximally (see figure 12.10). A 
possibly appeared delay is also mentioned here. TBmB/2 stands for half time value to the maximum. 
TBmB, and TBmB/2 refer to time axis with T BLB shifted.  
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figure 12.10: impulse response function g(t) for a 2P

nd
P order delay element 

 
 
 

table 12.4: variables of impulse response function for 2P

nd
P order delay 

 

 
 
The transfer constant K can be determined by the fourth column in table 12.4. Base on variable 
A, the impulse area (A = xBeB · ∆t), technically realizable impulses can also be evaluated with real 
∆T ≤  0.1 T. 



 306

12.2.4 Tasks of experimental process analysis  
 

1. Compute the drawdown curve for a conveyor capacity V = 0.005mP

3
P/s by means of 

transfer element method with a flow rate of V = 0.015mP

3
P/s, if a pumping test yields 

following values (see table). Depict the result graphically. 
 

 
 
 

2. Please determine the transfer function including parameters for the following 
measurement series, which is originated from a supply function: 

 
 
 

3. The following dependence between flow rate V and groundwater drawdown s is found for 
groundwater position in a pumping test: 

 
Calculate the drawdown process with a flow rate of V = 0.15 mP

3
P/s. Apply the method of 

transfer functions. Plot the measured value and the result. 
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4. In pumping test two different position P1 and P2 are far away from the infiltration well 
with a distance of rB1B = 350m and r B2 B = 1000m respectively, and following concentrations C 
of positioning tracer are measured. A steady concentration  CB(0,t)B = 10g/mP

3
P is added in the 

infiltration well. 

 
 
Calculate the transfer functions for this system. 

 
 

5. In a tracer test 50kg concentrated NaCl solution infiltrates 5min long into the soil at the 
well.  
Calculate process of a possible pollutant dispersal, if average 1000kg solution had arrived 

into the soil. Place the measured values and prognosticated values graphically. 
 

 
 

6. In a column flow test the following impulse response function of  a pollutant with 
concentration 30mg/l was measured (see figure 12.11). 

 
a) determine the weighting function and the transfer function for these measured 

values. 
b) prognosticate the concentration after 160min, if the input concentration is of 

following characteristic: 

 
 
 

7. Following concentrations were measured according to tracer test in a groundwater 
observation tube. 50kg concentrated NaCl solution infiltrated in this tracer test within 5 
hours. 
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time in min 

 
figure 12.11: impulse response of a column flow test 

 
 
 
 

a) calculate process of total salt transport in the observation well, if the following 
individual measured values were obtained. 

b) places the measuring curve and the computed function graphically. 

 
c) calculate expected breakthrough curve by means of transfer function method and 

plot if an infiltration of 100kg worked within 2.5 hours. 
 
 
 

8. The following groundwater levels were measured in a pumping test (see figure 12.12) 
 

a) calculate water deficit (volume) of drawdown funnel, if the aquifer has the 
following characteristic values: 
h Bn B = 16m, M = 10m, k = 0.001m · sP

-1
P, SB0 B = 0.0001mP

-1
P, nB0 B = 0.20 

b) Compute by means of transfer element method and with a) founded value for the 
flow rate V the drawdown curve for conveyor capacity of 0.005mP

3
P · sP

-1
P. 
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Set up the first four equations of faltung integral for the model until observation time 
point t = 1d. 
 

 
 

figure 12.12: groundwater level dependent on radius 
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12.3 Arbitrary transient characteristic and arbitrary 
input signals 
 
12.3.1 Introductory 
 
Most natural processes take place one time and are not reproducible. In rarest cases it is also 
possible to impress arbitrary test signals on natural ecological processes happened only once, in 
order to determine the type and the parameter of the transient characteristic by means of 
experimental process analysis. Very often the task consists of one-time natural processes, e.g. 
flood waves, precipitation discharge events, groundwater formation rates or pollutant disposals, 
by means of mathematical method to derive the relationship between the input- and  output 
behaviour according to experimental process analysis, i.e. to determine the transient 
characteristic. For this reason other methods had to be developed. One of them is the application 
of faltung integral / DUHAMEL integral. The basic idea of this method is the decomposition of 
arbitrary input signal into a sum of impulses, which then possess a special transient characteristic 
individually. The faltung integral is in particular used for single deadbeat events. Afterwards the 
portions of the each transferred impulses will be again overlaid. Due to superposition law this 
method can be only applied in linear or in piecewise linearized systems. The application of 
FOURIER series analysis or syntheses is quoted in periodic functions.  
 
The books can be consulted as literature for this section: 
 
DYCK, S: Grundlagen der Hydrologie 
LUCKNER, L.; SCHESTAKOV, W. A.: Migrationsprozesse 
WERNSTEDT, J.: Experimentelle Prozessanalyse 
 
Furthermore all books can be recommended, in which applications of faltung integrals on 
technical processes are described. The different notations or the different symbols and 
abbreviations must be paid attention in a comparative literature study. Following abbreviations 
according to international standard in system technology (see table 12.5) will be used. 
 

Table 12.5 comparison of applied abbreviations 
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12.3.2 Decomposition of arbitrary input function  (Signal analysis) 
 
While in the preceding sections selected input signals (e.g. step function, DIRAC impulse) are 
discussed, here arbitrary input signals are considered. This is very necessary for many tasks of 
water management, hydrology and geohydraulic. Always, if artificial test signals cannot be used, 
but natural events must be exploited to experimental systems analysis, only the faltung integral 
method described in the following can be applied. Time should be considered as independent 
variables. An application of faltung integral on local variables is also conceivable. 
 
The basic idea of the signal analysis consists of the fact that arbitrary time response of a function 
can be represented as an infinite sum of selected single signals (see section 11.3.4 signal analysis, 
page 301). In principle the different signals can be used. The sinusoidal signals are of special 
meaning, which can be found in well known FOURIER series analysis application. The bar 
signals and the impulses lead to LAPLACE transformation. Therefore periodic and periodization 
functions are analysed by means of FOURIER analysis and unique, deadbeat procedure by means 
of LAPLACE transformation.  
 
The arbitrary input signal is decomposed into a sum time shifted impulses in the application of 
the faltung integral (see figure 12.13).  
 
 
 

 
figure 12.13: approximation of a function by impulse 

 
 
 
The effect of a signal on a system is usually characterised by energy- or mass flow. It is defined 
by the respective signal variable and the effect duration, i.e. by the function integral of time. With 
the approximation of input signal by a sum of individual square pulse, the integral is 
approximately described by a sum of the products of pulse amplitude xBei B(Γ Bi B) and –width ∆t: 
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The individual impulse of time point ΓBi B, which affects as input signal of transmission system, 
produces individual impulse response functions at system output (see figure 12.14), the weighting 
functions gBi B(t - ΓBi B). These are superposed and yield system response to the input signal x BeB(t). It 
should be noted that the superposition can be only applied for linear systems. 
 
For pulse width ∆t → 0 the technical impulse approaches DIRAC impulse and finite sum in 
integral representation, whereby an infinite number of impulses is considered. 
 

 
 

figure 12.14: impulse response function g(t) for a 2P

nd
P order delay element 
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12.3.3 composition of output function (Signal syntheses) 
 
As already mentioned the output signal by the overlay of sum of individual impulse response 
functions, results in weighting functions gBi B(t - ΓBi B) at time t.  For computation we must note that all 
preceding impulses in time interval 0 to t contribute, since the weighting functions are not yet 
faded away at time t.  
 
As recognized from figure 12.15, the output signal xBaB(t) to time t B0 B is composed from the time 
shifted weighting functions portions for the time tB0B: 
 

 
 
∆Γ is the time lag of DIRAC impulse, the so called aperture time. If we arrange the border 
crossing to infinitesimal aperture time, the sum changes into integral form, which can be also 
designated as faltung integral or DUHAMEL integral: 
 

 
 
 
In this case * - operation stands for Faltung operation. 
 
We can also interpret faltung integral in such a way that, all impulses of input signal xBeB(t) in time 
interval 0 ≤ Γ ≤ t contribute to the value to output signal at time point t, which are weighted 
according to aperture time (t - Γ) with the factor g (t - Γ)  in each case.  
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figure 12.15: overlay of individual step response function 
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Considering the connection between weight- and transfer function we can also carry out 
following identical transformation: 
 

 
 
With application of LAPLACE transformation the faltung operation changes into multiplication 
(see section 5.3.2 LAPLACE transformation, page 135): 

 
 
In practice the numerical execution of faltung operation must be accomplished in a time 
quantization as its derivation. For a process, which begins from time t = 0, can be described in 
sum form introduced above as follows: 
 

 
 



 316

This equation system can be transformed in matrix equation: 
 

 
 
With different notations t BkB = k and Γ BkB = i, and the introduction of aperture time T = ∆Γ: 
 

 
The matrix equation can be written for short: 

 
or  

 
Thus GP

-1
P is designated as inverse matrix of G. 
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12.3.4 Determination of weighting function g(t) for general case 
 
 
The weighting function g(t) will be determined as follows: 

 
 
The experimental determination of g(t) were treated in the preceding sections. The determination 
of the weighting function can be achieved by a test attempt with an impulse as input function (see 
section 12.3.2 signal analysis, page 357). If a step function is used as input function, then 
weighting function must be obtained by appropriate differentiation (see section 11.4 transmission 
systems, table 11.5, page 310). 
 
 
Experiments on real object will not always be accomplished for regulation of weighting function. 
Only in case the real input- and output signals can be obtained for  computation of g(t). The 
matrix equation for calculation of output signal (see section 12.3.3 signal synthesis, page 359) 
can be used for regulation of g(t) or matrix G.  
 

 
 
 
 
If both the input- and output function are known for one observation period, the following matrix 
equation can be developed from the above equation system: 
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The corresponding matrix equation: 
 

 
or 

 
 
Thus the weighting function g(t) can be described by a value sequence. 
 
 
 
In metrological practice the regulation usually looks somewhat different. In above derivation it 
was presupposed that the process for t < 0 does not exist and started with the first input impulse. 
Real processes run off independently of observations. Therefore we must begin at arbitrary time 
point with the observation of in- and output signals. The determination accuracy of the weighting 
function g(t) must be specified by the administrator. The questions are the measuring expenditure 
and of the main dynamic process criteria for specification of the sample width T and the number 
of scanning values n. This is the same problem as discontinuous measuring signals treatment and 
error description (see GRÄBER: Lehrbrief Automatisierungstechnik). 
 
If we always specify that m values are considered for the conditional equations, then 2 ·  m 
equations are to be set up, in order to determine m supporting places of the weighting function 
g(t). Hence we must already observe the process before explicit prognostication about the 
duration of 2 · m sampling intervals T, i.e. a period of 2 · m · T (see figure 12.16). According to 
this scheme following equation system can be set up: 
 

 
 
 
 
Thus we have four equations with four unknown weighting function portions, whereby the 
equation system is uniquely solvable. Since the observed values, generally measured values of 
the input signals as well as the output signals are erroneous, in practice more equations are built, 
which leads to an overdetermined equation system. They will be solved by means of special 
iterative methods, e.g. HOUSEHOLDER method. The solution is then the value range of 
weighting function portions, which fulfils the  equation system with the smallest sum of square 
deviation. 
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figure 12.16: formation of discontinuous response signals from measured values 
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12.3.5 Forecast models 
 
In water management using models to prognosticate also shows a main field of application of 
faltung operation. The procedure of prognosis contains the algorithm as follows. A precondition 
of application faltung integral to prognosticate is that the process was already observed in a lead 
time, i.e. before a prognosis the in- and output signals of regarding system must be collected by 
means of suitable measurement. We also speak of the model learning curve in this time. These 
measured values serve for the determination of weighting function g(t), exactly g(i) or G. How 
long does the learning curve last, depends on the historical data base, the precision requirement 
and the desired numerical expenditure. 
 
In the following examples the manipulation will be demonstrated (see figure 12.16, page 365). In 
this case measured input signal values exist for a range of seven sampling intervals before the 
forecast horizon. The output signal was measured from the fourth interval. Based on these values 
following four equations with unknown quantities g1 to g4 can be formulated. Therefore only 
four supporting places of the weighting function will be proceeded in this example. For real 
practical tasks this is quantized too roughly: 
 
 

 
 
 
By means of suitable methods for the solution of equation system we get the weighting function 
portions g1 to g4. These are used into a conditional equation for the first prognosis time step 
(xBa8 B). Thus the prognosis value can be computed explicitly: 

 
 
 
Parallel to prognosis the process should be further supervised metrologically.  In this case we get 
a new value pair xBe8ProgB and x Ba8gemB at time point 8. This can be used to calculate new weighting 
function portions. With retention quantity of weighting function portions the input signal xBe1 B will 
not be incorporated into calculation any longer. The first equation with the input signal x Be1 B can 
however remain in the computation, and then five equations are available for the determination of 
four weighting function portions. This overdetermined equation system is then solved iteratively 
with an appropriate method, e.g. HOUSEHOLDER method. That founded values represent the 
transient characteristic of the regarding system is possibly better than those with the definite 
system. This comparison between prognosis and real process is also called constant learning 
system. 
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12.3.6 Tasks of application of faltung integral: 
 
1. The following groundwater levels were measured in a pumping test (see figure 12.17) 
 

a) calculate water deficit (volume) of drawdown funnel, if the aquifer has the following 
characteristic values: 
h Bn B = 16m, M = 10m, k = 0.001m · sP

-1
P, SB0 B = 0.0001mP

-1
P, nB0 B = 0.20 

b) Compute by means of transfer element method and with a) founded value for the flow 
rate V the drawdown curve for conveyor capacity of 0.005mP

3
P · sP

-1
P. 

Set up the first four equations of faltung integral for the model until observation time point 
t = 1d.  

 
 

 
 

figure 12.17: groundwater level dependent on radius 
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2. Following groundwater level are measured in a pumping test: 

 
 
The aquifer has following parameters: 
hBn B = 16m, M = 10m, k = 0.001m · sP

-1
P, SB0 B = 0.0001, nB0 B = 0.20 

Set up the first four equations of faltung integral for the model until observation time point t = 
135min.  
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3. Prognosticate the temperature pattern in a bank filtration frame with application of faltung 
integral, if the following measured values are known: 
  

 
 
Calculate the temperature pattern from the sixth time step with application of three faltung 
integral equations in each case. 
Compare the calculated temperature in the frame to the measured and correct the weighting 
function with consideration of measured values. 
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Part IV 
 
 

Indirect Parameter identification 
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The indirect parameter identification is treated here as method for parameter estimation. It stands 
in contrast to physical and chemical methods for the direct Parameter estimation which is 
described in GRÄBER " Grundwassermesstechnik". The methods of indirect parameter 
identification are mathematical, which according to experimental process analysis determines 
parameter for a transmission system. The transient characteristic can be found by means of 
experimental or theoretical process analysis. Accordingly the identified parameters are more or 
less physically/chemically interpretable. On all accounts parameters can be found, which well 
reflect the system behaviour within validity scope of experiment. 
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Chapter 13 
 
 
 

13 Estimation procedure 
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In water management practice the experimental process analysis is primarily used for parameter 
estimation. The model structure is specified by a theoretical process analysis. We try to transfer 
this model structure into simple mathematical representation. The parameters can be determined 
by solving conditional equations or by solving parameter approximation problems. Thus there is 
task, on the basis of structure cognition or -assumption, to determine such models, that 
 
 

• reflects the characteristics of the system so exactly as required and 
 
• eliminates the overlaid influences of noise and errors. 
 

 
In order to satisfy these demands the comparison of output values of original function as input 
function or an independent variable (time or place) with the model is accomplished. In the result 
a change of model parameters is to be made or the model changes until the deviation reaches 
minimum. The changes can be achieved according to a certain strategy (search algorithms, 
optimisation programs), statistically (random number generator) or empirically. The visual 
comparison between two diagrams (original- and model output signal) is also possible.  
 
This task is also designated as parameter estimation. In particular the following introduced 
approaches will be classified as iterative estimation method. 
 
In the algorithm or iterative model adjustment (see figure 13.1) we try to let the same input 
vector, the manipulated vector y  affect on the process and model. With a first parameter 
substitution, the initial parameter, the model output vector xP

1
PBMB can be calculated as first 

approximation. The deviation of these process output vectors is designated as quality of the 
model adaptation. In water management applications the quadratic evaluation will be carried out. 
The goal of changing parameters is to minimize the Q value. 

 
 

figure 13.1: iterative model adjustment 
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Chapter 14 
 
 
 

14 Flow parameters 
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14.1 Pumping test evaluation 
 
14.1.1 Fundamentals 
 
The evaluation of pumping test, with which e.g. water is conveyed from a well and the drawdown 
is recorded as a discontinuous function of place and time, is very significant and representative 
method to determine geohydraulic parameter. 
 
Compared to laboratory procedures it has advantages that: 
  

• is accomplished in undisturbed aquifer and 
 
• advance normally integral statements of the aquifer in regarded flow field section.  

 
 
The parameter estimation of aquifer occurs in the direct laboratory experiment of soil samples, 
which can be achieved by means of Stechzylinder or cuttings. The disadvantages consist the fact 
that only a punctiform parameter estimation can be obtained in very inhomogeneous aquifer with 
this method. Besides the granular structure of soil is destroyed by the sampling and thus another 
is evaluated in lab. A third difference is that in lab the entire water content is determined, while in 
nature and with pumping test only the drainable pore volume affects. The representation by 
means of definite parameter method increases due to the integral character of the pumping tests 
(see table 14.1). 
 

 
Table 14.1: difference between pumping test evaluation and laboratory method 

 
 
 
On the other hand the pumping tests are substantially more complex and expensive than 
laboratory test. Therefore the experimental design, execution and special worthy analysis must be 
attached. Also usually only one time test execution is possible.  
 
For the evaluation of such pumping tests in practice particularly two methods are used: 
 
 

• the graphic method; in water management practice designated as straight line method 
and typical curve method and 
 
• the search method or optimisation method.  
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The well incident flow is used as model in the pumping tests. As in the section 8.1 THEIS well 
equation, page 196 deduced, the partial differential equation solution according to THEIS is 
suitable for the computation of drawdown processes due to water extraction from well. This 
model of course can be only assumed approximately for practical flow conditions. The 
application of model is prohibited to better reflect the original due to too large number of free 
parameters to adapt. The most substantial restriction of analytical models is the consideration of 
only one aquifer. The constant of parameter transmissibility T and storage coefficient S as well as 
the horizontal bed situation can be presupposed in the little spatial expansion of pumping tests as 
given. Of course it must be also noted that the transmissibility change during drawdown 
procedure remains negligibly small (linearization around operating point). 
 
The quality function GF in the pumping test evaluation is defined as sum of the square deviation 
of the measured values at the original process and model results on different local- and time 
points (see figure 14.1): 
 
 
 

 
 
 

figure 14.1: iterative model adjustment in a pumping test 
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With: 
 
W Bi,j B  weighting factor 
 
s  original drawdown value  
 
s BM B  model drawdown value 
 
m maximal number of time steps 
 
n  maximal number of local observation points 
 
 
 
 
14.1.2 Practical realisation 
 
The method of least squares (MKQ) is used for parameter adjustment to the measured values. 
The goal is to minimize the quality function GF. General correspond effective methods were 
shown in section 4.3 least square method, page 96. It shows that the search strategy on that basis 
of the nonlinear regression with the utilization of gradients is best suitable for pumping test 
evaluation. In contrast to ROSENBROCK search algorithm the number of search steps will be 
drastically (factor 10) reduced by JONES (DAMMERT) spiral method in pumping test 
evaluation. This procedure presupposes that the quality function is constant and differentiable. 
Both are given in the analytical solution of well function according to THEIS. 
 
The program system PSU (Pumping test evaluation) was developed by BEIMS/GRÄBER for 
practical realization. This program system (see figure 14.2) has a modular structure, which allow 
arbitrary model creations of quality function and search algorithm coupled with appropriate main 
programs. 
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figure 14.2: programme system for  pumping test evaluation according to BEIMS/GRÄBER 
 
 
All the most substantial practical pumping tests can be evaluated with the following specified 
versions PSU2, PSU5 and PSU8 (see table 14.2).  
 
 

Table 14.2: Realised programme versions with geohydraulic scheme 

 
 
In table 14.2: 
 

 
 
The programs PSUX are written in the form of main program and realise data in- and output as 
well as the search algorithm control. The fitted values of each search step or only the parameters 
could serve as output by inserting appropriate control variables, which yield the adjustment 
according to given error bound. Furthermore a graphic comparison between the measured values 

Transmissibility, profile permeability 
 
Storage coefficient 
 
Supply factor 
 
Effective boundary condition distance 
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of pumping test and  the adapted drawdown curve is possible. The search program was realized 
according to JONES spiral method. It acquires the minimum of the quality function on the basis 
of nonlinear regression with employment of differential (see figure 14.3 and 14.4). The quality 
function is to be selected according to the geohydraulic conditions. It is defined as the sum of 
square deviations between the measured value and the theoretical drawdown curve.  In the 
module the auxiliary programmes are combined with important subprograms to solve well flow 
equation, e.g. the well functions W(σ) according to THEIS and W(σ, B) according to 
HANTUSCH as well as BESSEL function KB0 B(x) and IB0 B(x). 
 
A special problem exists in the search of parameters B (supply factor) and λ P

* 
P(effective boundary 

condition distance), since they are not independent of T and S. The search algorithm is however 
then applied for more parameters if they are independent of each other. In these cases it is a trick 
to exclude the region in drawdown curve, which depend on different parameters dominantly. So 
physically it can be justified that, the drawdown strongly depends on the transmissibility T and 
the storage coefficient S of well vicinity area in the initial phase of a pumping test. In the quasi 
steady phase the supply factor B and/or the boundary condition (effective boundary condition 
distance λP

*
P) work as further influence variables. A so called stage search is accomplished based 

on this drawdown curve classification in different phases. The parameters T and S will be 
searched in phase 1. The measured values of the phase 2 serve to the estimation of supply factor 
and/or the effective boundary condition distance. The parameters T and S will be applied as 
known quantity (determined from phase 1) during this phase and thus are not included in search 
process. The measured values from arising process are combined in a phase 3. With them an 
improvement of adapted values can be obtained. In this phase the parameters of phase 2 will be 
as known, i.e. as not adjustable, regarded and again only one search for the two values T and S is 
carried out.  
 
The pumping test evaluation with the programs PSUX can be of course only as good as measured 
values; the drawdown values from pumping test are as good as the well incident flow equation 
model reflects natural processes. For complex geohydraulic conditions we must resort to others, 
e.g. the pumping test simulator.  
 
The expressiveness of pumping tests or experimental process analysis method generally also 
depends on the used test signal. In classical pumping test this is a step function with the step 
height V, the conveyed water quantity. The best results can be achieved by using a DIRAC 
impulse (theoretical impulse with a infinite height and a length of time, which approaches to 
zero). This is technically not realizable. As compromise the impulse function, the step function 
carry periodic signals and stochastic signal sequences. The step function is favourable for the 
determination of final steady state, the so called static behaviour.   
A combination of different test signals in the Variants 
 

• step function - impulse function,  
 
• step function - periodic signals or  
 
• step function - stochastic signal sequences  

 
leads to effective determinations of dynamic transition- and static final state. 
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figure 14.3: quality mountain in a pumping test evaluation with 

search procedure of different start points 
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figure 14.4: Iteration performance in the pumping test evaluation 
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14.2 Pumping test simulator 
 
The program packet PSUX for the evaluation of pumping tests with corresponding analytical 
solutions on the basis of THEIS well function or HAUTUSCH demonstrated above shows 
considerable restrictions. So not all characteristics of the aquifer such as anisotropy, stratification, 
heterogeneity or capillary space and not all kinds of characteristics of well design such as 
imperfectness, well diameter, well bottom inflow, filter losses can be considered with this system. 
Either with application of natural signals for parameter identification, or with artificially 
produced test signals like in the pumping tests, it has to be assumed that normally it is a matter of 
one time procedure, which is not reproducible or changeable due to cost and other reasons. 
Therefore it is necessary to consider such field tests intensively with the experimental design. 
 
 
A numerical model was described by MUCHA/PAULIKOVA, with which and pumping test can 
be simulated and interactively evaluated. This model is based on a vertical plane rotation 
symmetrically quantized flow model, which does not consider simplified assumption. This was 
converted into a program system WELL, the so called pumping test simulator by 
BEIMS/GRÄBER. With it the effect of a pumping test can be demonstrated and optimised on the 
basis of hypothetical assumption of regarding area. With this model besides the inhomogeneity 
the existence of multiple aquifers and also key elements well vicinity area can be considered. The 
transmissibility can be considered in horizontal and vertical inhomogeneity. Furthermore the 
specific elastic as well as the gravimetric storage coefficient can be processed. The model takes 
free groundwater flow conditions as a compressible system and the free surface as a mobile 
border. The transmissibility is computed according to the concrete position of free surface. On 
the last radius point rBnB the system is regarded as impermeable, i.e. the discretisation must be 
chosen in such a way that practically no drawdown appears there (see figure 14.5, page 392).  
 
 
On the basis a graphic display the effect of different input signals can be demonstrated and at the 
same time the optimal measuring time points dependent on the distance and the drawdown 
gradients for real pumping test can be determined. The local situation of the level observation 
tubes is usually default due to technological conditions.  
 
 
The pumping test simulator WELL will be applied for following fields: 
 

 
• simplification and assumption analysis, which underlie different analytical solutions. 
 
• determination of flow- and speed relationship in the proximity of well. 

 
• calculation of typical curves for special well- and aquifer conditions.  

 
• interactive pumping test evaluation. 

 
 



 

The employment of pumping test simulator WELL represents a substantial complement of 
pumping test evaluation and -interpretation. The exertion as model in the indirect parameter 
identification can be only realised by means of specially large expenditure. 
 
 
The pumping test simulator is 
obtained in vertical direction a
horizontal direction quantizatio
junctions lie in the centre of gr
centre around ∆rBi B outwards shi
 

 
 
The permeability values are de
conductance in horizontal dire
DUPUIT THIEM equation ass
 

 
With  
 
 
k Bh,4 B  horizontal perm
 
bB4  Bthickness of 4P

th
P 

 
r B5B, r B6  Bradii of knots 5 
 
 
 
 
The conductance in vertical di
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a vertical finite difference model, whose quantization can be 
ccording to geological stratification and well geometry. In 
n will be carried out logarithmically (rBi B = r Bi+1 B · 10P

0.25
P). The 

avity of the reticule, i.e. they are in contrast to the geometrical 
fted: 

 

fined as hydraulic conductance between the knots. The 
ction, for example between the knots 5/4 and 6/4, under the 
umption for groundwater flow to a well is: 

 

eability coefficient of 4P

th
P discrete layer 

layer 

and 6 

rection, for example between the knots 6/2 and 6/3 
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With  
 
kBv,2, BkBv,3 B vertical permeability coefficient of 2P

nd
P or 3 P

rd
P layer 

 
b B2 B, bB3  Bthickness of 2P

nd
P or 3 P

rd
P layer 

 
r B6B, r B7  Bradii of element border 6 and 7 
 
 
The conductance then yields flowing water quantity, for example between the knots5/4 and 6/4: 

 
 
whereby HB5/4 B and HB6/4B are the piezometer head in knots 5/4 and 6/4. The storage coefficient S 
designates the relationship of the volume in unit water, which becomes 1m empty during gauge 
level change, to the total volume of this unit. So the storage factor in the knot 6/5 is e. g.: 
 

 
 
SBs,5 B  specific elastic storage coefficient of 5P

th
P layer 

 
bB5  Bthickness of 5P

th
P layer 

 
r B6B, r B7  Bradii of corresponding elements 
 
 
The storage coefficient for the free waster surface e.g. at knot 5/1 is:  

 
SBy  Bgravitation storage coefficient 
 
The released water volume for knot 5/1: 

 
 
 
HB5,1,t B and HB5,1,t-∆t B are potentials at knot 5/1 to time point t and t - ∆t, whereby ∆t is time interval. 
The storage factor for well is expressed by knot 1/1: 
 

 
r B1,j B   effective well radius of j-th layer 
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The linear well loss is contained in coefficient φ: 
 

 
 
The flow from 4P

th
P layer in the well is expressed by the factor: 

 
 
 
Whereby c/a is the relative position of junction 1/4 between water level in well and  water level 
in the knot 2/1. The flow in the well can take place through filter or well bottom. 
 
The time discretisation begins with a small increment ∆t and will automatically increase 
according to rules. 
 

 

If the discharge flow is not constant, the input of time steps and flow rate are achieved on the 
basis of each calculation period.  
 
The resulting band matrix with the five diagonal elements will be solve according to a direct 
method (GAUSS method). 
 
 
 
 
 
 
 
 
 
 

     Well loss
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figure 14.5: structure scheme of pumping test simulator (BEIMS/MUCHA/GRÄBER) 
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Chapter 15 
 
 

15 Suction power distribution 
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Another application field of the parameter identification methods in soil system exists in 
laboratory scale determination of suction power saturation distribution (SSV) within the 
unsaturated region. The measuring method for this soil behaviour is specified in GRÄBER " 
Grundwassermesstechnik" and the mathematical model is deducted in the section 6 differential 
equations, page 175 groundwater process. 
 
Typical suction power saturation behaviour is connection similar to hysteresis between the 
suction power pBkB and the saturation nBb B. As mathematical model these SSV curves were indicated 
by an equation from LUCKNER/SCHESTAKOV, whereby A, B, C, and D are four constants, 
which must be separately determined from the experimentally technically gained upper 
(drainage) and lower (irrigation) limiting curves of hysteresis branches: 
 

 
  
Determination of these parameters comes into the indirect parameter identification task range, 
whereby in this case it is a matter of static characteristic curve approximation. On this account no 
conclusions about the test signal type have to be made. The dynamic behaviour corresponding to 
the partial differential equation of this process is not yet evaluated at present.  
 
The estimation of the four parameters thereby can be achieved according to the empirical graphic 
method (method of typical curves) or the mathematical search algorithm. The first approach is 
used in order to obtain the initial value for the search strategy in the experimental design phase 
and the other is to reach optimal test conditions (measuring point selection). The mathematical 
search algorithm is then used to approximate the mathematical model at founded measured values 
pairs (pBk B, nBb B) as accurately as possible. Also the adjustment is made here by the square quality 
factor, which represents the  deviations between n B0 B and nBmB in all adjusted operating points 
(pressure ranges). FIBONACCI method is applied for the minimum search. This has the 
advantage that it is relatively " robust ", but stagnates with a very rough approximation. This 
behaviour also depends on the relative flatness of the quality mountain. It is therefore suggested 
applying POWELL method. It shows good convergence behaviour. Since the quality mountain, 
due to its abstract formulation, is constructed in such a way that, minima exist in the range, which 
do not allow physically meaningful interpretation (e.g. negative saturation), and special 
weighting function will be introduced. As soon as physically conditional limits for the saturation 
are reached (air or water restsaturation), the quality function acquires appropriate maximal value. 
The gradient method of the nonlinear regression, as favourably used in pumping test evaluation, 
conks out here, since the quality mountain runs very flatly and shows kinks at physically 
conditional edges, which contradicts the required differentiability. 
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