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Abstract. We present an MRF based approach for binary segmentation
that is able to work in real time. As we are interested in processing of
live video streams, fully unsupervised learning schemes are necessary.
Therefore, we use generative models. Unlike many existing methods that
use Energy Minimization techniques, we employ max-marginal decision.
It leads to sampling algorithms that can be implemented for the proposed
model in a very efficient manner.

1 Introduction

In this work we deal with segmentation – perhaps one of the most popular tasks
in computer vision. In our opinion, the actually most successful methods are
based on Energy Minimization techniques. Both modelling aspects (especially for
segmentation) and efficient algorithms were extensively studied and elaborated
in the past. However, there are still many open questions in this context. The first
one is that simple pairwise energies are rarely able to produce satisfactory results
in practice without further enhancement and/or learning. Simple and more or
less general models (like e.g. [3]) give satisfactory results only in quite easy
situations, for example if the colour distributions for segments are known and
do not essentially overlap. Usually, either user interaction [8] or very elaborated
energy functions (e.g. [2,4,6]) are necessary to improve the results. Unfortunately,
very often the Energy Minimization tasks to be solved occur to be quite hard.
It leads to inference algorithms, which are typically not very efficient.

In this paper we follow another strategy which is becoming increasingly popu-
lar for MRF-based approaches, namely the Maximum Marginal decision. It was
already shown, that the marginal based decision strategies give at least compet-
itive results for example for image denoising and deblurring [11,12] and stereo
reconstruction [9]. For segmentation however, this option seems to remain unex-
plored so far. In our opinion, the main challenge for a comprehensive comparison
is the lack of algorithms for marginal based inference, which are both accurate
and computationally efficient enough for typical computer vision tasks. There-
fore, for complex models the marginal based inference usually does not perform
well in practice. In this work we address this problem in a straightforward way –
we show, how to reach good (in our case real-time) performance using reasonable
assumptions and a careful implementation.

Another important question is learning. Modern models usually use Condi-
tional Random Fields (CRF) in order to incorporate as many additional aspects
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as possible. The CRF framework is very convenient in this respect, because it
allows to incorporate almost everything in a sound theoretical way. Elaborated
general methods can be used for learning, for example the framework of Struc-
tural SVM-s (see e.g. [7] and references therein). CRF-s have, however, their
price. The most crucial question is the generalization ability. The more complex
the model, the more effort is needed to provide statistically sound guarantees
for the results. The next problem is that the semi-supervised learning becomes
extremely difficult. Furthermore, fully unsupervised learning is not possible at
all. Especially this aspect becomes crucial in situations where there is no chance
to have completely labelled data for training. One such situation is the seg-
mentation of live video streams, which we address in this work. In dealing with
learning we heavily exploit the fact, that the same quantities are necessary for
both inference and learning. Therefore the latter can be easily included with
almost no additional computational cost.

2 Model

The presented approach is based mainly on [5,10] except for the appearance
model and the shape parametrization. In this section we recall the main ideas
and discuss different model parts.

Let R be a set of image pixels. They are considered as vertices of a graph
G = (R,E), where the edges {r, r′} ∈ E connect neighbouring pixels (in partic-
ular we use 4-neighbourhood). The image x : R → C is a mapping that assigns a
colour value c ∈ C to each pixel r ∈ R. The colour value in a pixel r is denoted by
xr. In binary segmentation a label k ∈ {0, 1} (background/foreground) should
be assigned to each position r forming a labelling y : R → {0, 1}. A label chosen
by the segmentation in a pixel r is denoted by yr. As we are interested in seg-
mentation of a live video stream, we cannot expect a reasonable user interaction,
i.e. the learning of unknown parameters should be performed in a fully unsuper-
vised manner. Therefore, we advocate a generative model that consists of the
prior probability distribution of labellings p(y) and a conditionally independent
probability distribution p(x|y) = ∏

r p(xr|yr) for observations. For the prior we
use the Ising model enhanced by a shape prior. To summarize, the probability
distribution for pairs (x, y) reads

p(x, y;φ, θ) =
1

Z(φ, θ)
exp

[
E(x, y;φ, θ)

]
, (1)

with the energy

E(x, y;φ, θ) = α
∑

rr′
1I(yr=yr′) + λ

∑

r

yrφ(r) +
∑

r

q(xr, yr; θ) (2)

and the normalizing constant Z(φ, θ)1. The coefficients α and λ weight the im-
portance of the Potts prior and the shape prior respectively. Unfortunately,

1 The parameters to be learned are separated from the random variables by semicolon.
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their learning is very time consuming (especially in an unsupervised manner)
and actually can not be performed in real time. Hence, we consider them to be
known. Other parameters of the probability distribution are the shape function
φ : R → R and the unknown parameters θ of the appearance model.

The second energy term is the shape prior, that assigns additional unary
terms φ(r) for the foreground label in each pixel r. We use simple quadratic
shape, parametrized in a Gaussian like manner as

φ(r) = φ0 − (rx − zx)
2

2σ2
x

− (ry − zy)
2

2σ2
y

. (3)

(subscripts x and y correspond to the horizontal and vertical directions, respec-
tively). The parameters of the shape function are the centre z, variances σ and a
bias φ0. The function has the following influence on the prior probability distri-
bution. Foreground labels yr=1 at positions close to the centre z are supported
by an additional positive energy φ(r). The centre z has thereby the maximal
possible support of φ0. Positions far from the centre are suppressed accordingly.
Zero level set is an orthogonal ellipse with the half-axes σx

√
2φ0 and σy

√
2φ0.

The data-terms q(xr , yr; θ) in (2) are logarithms of conditional colour proba-
bilities p(xr|yr; θ). A common choice for the appearance model is a multivariate
Gaussian mixture for each segment (see e.g. [8]). Taking into account that the
model should be as simple as possible for computation and can be learnt quickly,
we modify the standard Gaussian mixture model in the following way. First of all
we use orthogonal isotropic Gaussians instead of the multivariate ones, i.e. the
i-th Gaussian is given by2

N (c;μi, σ) ∼ 1

σ3/2
exp

[
−‖c− μi‖2

2σ2

]
. (4)

The variance σ is thereby common for all Gaussians. This simplification is ob-
viously computationally more efficient because it is not necessary to compute
matrix products. However, it has its price, namely more Gaussians are needed
in order to adequately represent the target probability distributions of colours.
In the next section we give some hints how to cope with this problem using
appropriate computational schemes.

The second modification is that we use a common set of Gaussians for both
segmentation labels, i.e. the probability of a colour c for a label k is

p(c|k) =
n∑

i=1

wkiN (c;μi, σ). (5)

Hence, the appearance models for labels differ only by the mixture coefficients
wki. This modification has numerous advantages compared to the standard case,
where distinct Gaussian sets are used for different segmentation labels. The main
one is with respect to learning. In video processing it is often the case that the

2 Colours c are three-dimensional vectors e.g. in the RGB colour space.
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appearance model should be re-learnt very quickly. Let us consider the situation,
when a new object appears in the video stream. If distinct sets of Gaussians are
used for different labels, this object is labelled as foreground or background
mainly based on its colouring. In the proposed modification instead, both labels
“have a chance” to occupy the object. Hence, other model aspects can influence
the final decision about it. Besides, it is easy to see that the case of separate
Gaussian sets for each segment is a special case of the proposed “common pool”,
if particular weights of the latter are set to zero. Therefore we do not see the
necessity to additionally restrict the appearance model.

3 Inference and Learning

The segmentation is formulated as a Bayesian decision task with the Hamming
distance between two labellings H(y, y′) =

∑
r 1I(yr �=y′r) as the cost function. It

leads to the maximum marginal decision

y∗r = argmax
k

p(yr=k|x;φ, θ). (6)

The posterior marginal probabilities of states are computed approximately using
Gibbs Sampling. In the next section we give some additional technical details
for its efficient implementation.

The most interesting part is the estimation of the shape function. We consider
it as an unknown parameter of the prior probability distribution of labellings and
follow the Maximum Likelihood principle. The goal is to maximize

F = ln
∑

y

p(x, y;φ) = ln
∑

y

exp
[
E(x, y;φ)

] − lnZ(φ) → max
φ

. (7)

(in doing so we assume that the appearance parameters θ are known and omit
them here for readability). We use the Expectation Maximization algorithm.
In the n-th E-step the marginal label probabilities – this time both posterior
p(yr=1|x;φ(n)) and prior p(yr=1;φ(n)) ones – should be estimated for the current
shape φ(n). The gradient of the function to be maximized in the M-step is then

∂F

∂· =
∑

r

p(yr=1|x;φ(n))
∂φ(r; ·)

∂· −
∑

r

p(yr=1;φ(n))
∂φ(r; ·)

∂· , (8)

where (·) stands for the parameter to be estimated (e.g. φ0, z or σ).
In practice we often observe (for reasonable values of the energy weights α

and λ), that the prior label probabilities for the foreground are almost 1 inside
and almost 0 outside the zero level set of φ. Therefore a good approximation
for the second term in (8) can be computed explicitly. In particular it is zero
for the differentiation with respect to the shape centre z, i.e. under the above
assumption the normalizing constant in (1) does not depend on z at all. To
summarize, the above assumption leads to the simple system of equations
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∂F

∂z
∼

∑

r

p(yr=1|x;φ(n)) · (r − z) = 0

∂F

∂σx
∼

∑

r

p(yr=1|x;φ(n)) · (rx − zx)
2 − πφ2

0σ
3
xσy = 0

(likewise for σy)

∂F

∂φ0
=

∑

r

p(yr=1|x;φ(n))− 2πφ2
0σxσy = 0, (9)

that can be easily solved for z, σ and φ0.
Let us remember that the marginals are calculated approximately by sam-

pling. An important question is, how many samples are necessary in order to
reliably approximate marginals. The parameters of interest here are “of global
nature” – these are just five real numbers that influence (and are influenced
by) the whole pixel domain. Hence, it is reasonable to assume that statistics
accumulated over the whole set of labellings do not deviate essentially from the
statistics that are accumulated just over one labelling, sampled according to
the given probability distribution. This leads to the following updating schema.
First, a labelling ȳ is sampled according to the posterior probability distribution
with current parameters. The posterior label probabilities in (9) are replaced
by 0/1 depending on the sampled label ȳr in each pixel r. Then the system (9)
is solved for the unknown parameters. Finally, the actual shape parameters are
moved towards the found “optimal” ones by a step η < 1.

We omit the detailed considerations for learning of the appearance model
p(c|k). In short, we follow a similar scheme. According to the Maximum Likeli-
hood principle the corresponding Expectation Maximization schema is derived.
Then the necessary statistics are replaced by the ones accumulated for one gen-
erated labelling.

4 Implementation Details

To start with, we consider Gibbs Sampling for labellings y. In each pixel r a
label is sampled according to the posterior label probabilities conditioned on
the current labels in the neighbouring pixels (we denote them by N(r) and the
corresponding restriction of y by yN(r)):

p
(
k|x, yN(r)

) ∼ exp
[
q(xr , k) + φ(r) · k + α

∑

r′∈N(r)

1I(k=yr′)
]
. (10)

As these probabilities are normalized to sum to 1, it is not necessary to compute
the above expression for both background and foreground. Only a difference of
energies (expression in the square brackets) should be computed:

�e = q(xr , k=1)− q(xr , k=0) + φ(r) + α
∑

r′∈N(r)

(2yr′ − 1) (11)
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(here for “foreground−background”). Let ξ be a random number sampled in the
range [0 . . . 1]. Then the foreground label should be chosen if

ξ >
1

1 + exp(�e) (12)

holds. The expression on the right-hand side is a simple function of the energy
difference �e, which can be precomputed in advance and stored in a look-up
table. In summary, it is only necessary to compute (11) in order to sample a new
label in a pixel. It is indeed a very simple expression and can be computed very
fast, provided that q and φ are known.

The most time consuming part is the computation of the data energies q, which
are logarithms of the observation probabilities (5). To accelerate it we make use
of the observation that the Gaussian number i in (5) can be seen as an additional
random variable ir for each pixel – i.e. the probabilities p(xr|yr) are obtained by
marginalization over ir. Therefore the summation over ir can be replaced by its
sampling. Note, that in this case the values of q in (11) are just Gaussian weights,
i.e. q(xr , k) = lnwkir , which makes the computation of (11) even faster. We
tested different sampling techniques for generation of ir and finally decided for
Metropolis Sampling that gave the best results (taking into account both quality
and efficiency). In one sampling step only two “proposals” are considered – the
current Gaussian and a new one chosen randomly. The sampling is performed
based on difference of their energies. Since we use isotropic Gaussians of the same
variance, this difference is a linear function of colour values. Its coefficients can
be pre-computed in advance (after each learning step) that makes computations
in each pixel extremely fast. For the exponent the corresponding look-up table
can be used in a similar way as for the Gibbs Sampling considered above.

Gaussians i

Labelling y

Metropolis Sampler for Gaussians

Image x

Camera

Gibbs Sampler for Labellings

φ

Shape Optimization

Fig. 1. System architecture
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The last question we would like to discuss is the possibility to run different
parts of the model in parallel. It is often useful to provide sampling procedures
with an initial labelling of high probability in the target probability distribution
in order to reduce the so-called “burn-in” phase. In the case of video processing
it is reasonable to take as an initialization the last generated labelling, sampled
for the previous frame. Consequently, nothing additional should be done in the
sampling procedure during the transition from frame to frame, i.e. the procedure
should just continue to generate. Moreover it needs not “to know” that the frame
was changed. To summarize, the overall system structure is presented in Fig. 1.
Common data blocks are shown by rectangles. Rounded rectangles represent
procedures, which work asynchronously. Arrows depict data flows. In addition, a
fourth procedure is necessary for frame capturing and visualisation. Hence, the
system fits very well into modern quad-core architectures.

In this section we described only the most important aspects that allow to
implement the needed inference and learning procedures in a very efficient man-
ner. More technical details will be given in a technical report in the near future.
The complete source code can be found in [1].

5 Experiments

The first question we would like to discuss in this section is the quality of obtained
segmentations3. We would like to note from the very beginning that our system
of course does not outperform state-of-the-art methods, mainly because of its
simplicity. In our opinion, the main advantage of the proposed approach is a
closed and compact form that gives satisfactory results, it includes unsupervised
learning and works in real time. Therefore we prefer just to give qualitative
results together with discussions about the system capabilities and limitations.

The model consists of three main parts: the Potts prior, the shape prior and
the appearance model. Hence, an important question is, what is, for example, the
influence of the shape prior and would the results be considerably worse without
it. The impact of different model parts is illustrated in Fig. 2. In the top row two
examples are presented. In the first one (fish) the colours are highly ambiguous
which makes the segmentation quite difficult. In the second example (flower) the
colours are discriminative enough. However, the shape differs considerably from
an ellipse. In the second row results are presented that were obtained by the
model without the Potts prior (i.e. α = 0). The zero level set of the found shape
is shown in red. A higher density of foreground pixels can be clearly observed
close to its centre. However, the results are very noisy and obviously far from
satisfactory. In the third row results are shown that were obtained without the
shape prior (i.e. λ = 0). This clearly illustrates, that in this case the unsupervised
learning of the appearance model often goes into a completely wrong direction
– although the results are not noisy as before, the foreground segment does not
represent a compact “object”.

3 Here we present results for still images only. Examples of the live video segmentation
are given in [1].
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(a) Original images

(b) Results without the Potts prior

(c) Results without the shape prior

(d) Full model

Fig. 2. Influence of different model parts
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(a) Original image (b) α = 1, λ = 1 (c) α = 4, λ = 3

Fig. 3. Influence of the model parameters

Table 1. Performance indicator for different environments

Intel Core i7-2620M 4×2.7 GHz Ubuntu 2062
Intel Xeon 54XX v7.0 8×2.8 GHz MacOS 2020
Intel Core2 Quad Q6600 4×2.4 GHz WindowsXP 1970
Intel Core2 Duo T5750 2×2.0 GHz Ubuntu 735
AMD Athlon X2 2×2.2 GHz Windows7 473

In the next experiment we would like to illustrate the influence of the model
parameters, which are not learned, i.e. the Potts strength α and the weight λ for
the shape. This is shown in Fig. 3. In Fig. 3(b) the results are given for values,
which we consider as most appropriate for the real-time video processing. It is
easy to see, that they lead to non-satisfactory results due to both colour ambi-
guities and deviation from the elliptical shape. In order to obtain better results
(see Fig. 3(c)) it is necessary to make the prior model stronger (in particular
to use higher Potts strength). Unfortunately, a high Potts parameter leads to
the long burn-in phase of Gibbs Sampling – i.e. more iterations are necessary to
sample a good segmentation for the current frame starting with the last gener-
ated labelling for the previous one. Therefore a strong prior model can be used
for real-time set-up only with video streams of low resolution or for a relatively
slow motion.

Finally, we discuss the computational speed of the method. Unfortunately, the
notation “real-time” is not well defined as such, because it highly depends on the
particular environment. Therefore we prefer to give some concrete data, obtained
for different architectures. Most of our experiments were performed on an Intel
Core i7-2620M, 2.70GHz (64 bit, quad-core) for frame resolution 320×240 at 30
frames per second under Linux. TheMetropolis Sampling forGaussianswas able to
performabout 11 sampling iterations4per frame, theGibbs Sampling for labellings
– about 13 iterations per frame and the shape optimization was done about 45
times per frame. We measure the overall performance of a particular environment
just by counting all activities (sampling iterations or optimization steps) per sec-
ond. For example, in the above configuration there were about 2060 activities per

4 One iteration is a scan over the whole image.
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second. This performance indicator for different environments for 320×240 frame
resolution is summarized in Table 1. In higher resolution (e.g. 640×480) the sys-
tem gives satisfactory results as well. Of course, in comparison with low resolution
the performance drops accordingly (to about 530 for the first environment), that
influences the quality of the results, especially for fast motion.

6 Conclusions

In this work we presented an approach for binary segmentation that (i) is simple
and therefore more or less general, (ii) includes fully unsupervised learning, (iii)
is able to work in real-time and (iv) gives satisfactory results.

As our model is very simple, there are numerous ways for improvements. The
main one is to use more elaborated shape priors. In our current implementation
it is oversimplified and does not represent a “shape” in a common sense, but
rather a “region of interest” that regularizes the learning. We hope however that
more complex shapes can also be implemented in a similar manner, because our
assumption about prior marginal probabilities in (9) seems to hold for other
shape models as well.
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