
STATISTICAL PRINCIPALS AND COMPUTATIONAL METHODS.
4th SEMINAR – STATISTICAL LEARNING IN MRF-S

Exercise 1. Consider the Potts model

p(y) =
1

Z(α)
exp

[
−α ∑

i j∈E
δ (yi 6= y j)

]
The only unknown parameter of the model is the Potts strength α . It should be learned
according to the Maximum Likelihood principle from a training set of labelings L =
(y1,y2 . . .yl).

a) Derive the gradient of the log-likelihood with respect to α .

b) Generalize the derivation for arbitrary homogeneous models, i.e. those where the
pairwise functions ψi j are the same for all edges:

p(y) =
1

Z(ψ)
exp

[
∑

i j∈E
ψ(yi,y j)

]
Exercise 2. Consider the probability distribution for pairs (x,y) that is decomposed into
the prior and the conditional probability distribution, i.e.

p(x,y;θ1,θ2) = p(y;θ1) · p(x|y;θ2)

Thereby each part depends on its own parameter θ1 and θ2 respectively.

a) Show that in the supervised case the parts (the corresponding parameters) can be
learned independently.

b) Let the prior part be an MRF for labelings y (for example like the one from the
previous exercise) and the conditional p.d. be conditionally independent, i.e.

p(x,y;θ1,θ2) =
1

Z(θ1)
exp
[
−E(y;θ1)

]
·∏

i
p(xi|yi;θ2)

Furthermore, assume that we are interested in the learning of the conditional part only,
i.e. θ1 is known. To be concrete let us consider a "non-parametric" probability distri-
bution p(xi|yi), i.e. it is given by a table, that assigns a value for each pair (xi,yi). For
instance, if xi represent pixel gray-values, the table is composed of K histograms of
gray-values – one per label.

Show that in the supervised case the conditional probability distribution p(xi|yi) can be
learned exactly (globally optimal).
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