STATISTICAL PRINCIPALS AND COMPUTATIONAL METHODS.
 2. SEMINAR - ENERGY MINIMIZATION, SEARCH TECHNIQUES

Exercise 1. Consider one "elementary step" of the ICM-Algorithm, i.e. the choice of the best label in a node given the fixed rest:

$$
y_{i}=\underset{k \in K}{\arg \min }\left[\psi_{i}(k)+\sum_{i j \in \mathscr{E}} \psi_{i j}\left(k, y_{j}\right)\right] .
$$

The time complexity of this step is $O(m|K|)$ in general, where m is the number of nodes that are linked with i by an edge and $|K|$ is the number of labels.
How to improve the time complexity, if the functions $\psi_{i j}$ are:
a) the Potts model $\psi_{i j}\left(k, k^{\prime}\right)=a_{i j} \cdot \boldsymbol{\delta}\left(k \neq k^{\prime}\right)$
b) quadratic distance between labels $\psi_{i j}\left(k, k^{\prime}\right)=a_{i j} \cdot\left(k-k^{\prime}\right)^{2}$
c) hard restrictions $\psi_{i j}\left(k, k^{\prime}\right)= \begin{cases}0 & \text { if }\left|k-k^{\prime}\right|<\triangle \\ \infty & \text { otherwise }\end{cases}$
d) a modified version of c) $\psi_{i j}\left(k, k^{\prime}\right)= \begin{cases}a & \text { if }\left|k-k^{\prime}\right|<\triangle \\ b & \text { otherwise }\end{cases}$

Exercise 2. Re-parameterize a binary MinSum task (i.e. $K=\{0,1\}$)

$$
y^{*}=\underset{y}{\arg \min }\left[\sum_{i} \psi_{i}\left(y_{i}\right)+\sum_{i j} \psi_{i j}\left(y_{i}, y_{j}\right)\right] .
$$

so that it can be written in the form

$$
y^{*}=\underset{y}{\arg \min }\left[\sum_{i} \psi_{i} \cdot y_{i}+\sum_{i j} \psi_{i j} \cdot y_{i} \cdot\left(1-y_{j}\right)\right] .
$$

with nodes- and edge-specific numbers ψ_{i} and $\psi_{i j}$.
Exercise 3. Consider a binary MinSum task given in the canonical form

$$
y^{*}=\underset{y}{\arg \min }\left[\sum_{i} \psi_{i}\left(y_{i}\right)+\sum_{i j} \beta_{i j} \cdot \boldsymbol{\delta}\left(y_{i} \neq y_{j}\right)\right] .
$$

Numbers $\beta_{i j}$ are non-negative and functions ψ_{i} are arbitrary. Transform the task into a MinCut one with only non-negative edge costs.
Note: in the "standard" transformation MinSum \rightarrow MinCut some edge costs of the latter are just the values of the corresponding ψ_{i} (i.e. $c_{s i}$ and $c_{i t}$ - see the lecture, slide 14).

Is it possible to modify the unary potentials ψ_{i} of the original MinSum problem so that (i) all their values are non-negative and (ii) the modified MinSum task is equivalent (in some sense) to the original one?

Exercise 4. Let pairwise functions $\psi_{i j}$ of a MinSum problem are defined as follows. Consider a graph, whose nodes correspond to labels. Edges of this graph have costs. The value of $\psi_{i j}$ for a label pair $\left(k, k^{\prime}\right)$ is the cost of the shortest path (sum of the edgecosts along the path) from the node k to the node k^{\prime} in the graph.

Prove that the auxiliary tasks for α-expansion are submodular.
Hint: Use the fact presented in slide 21 of the lecture.
Exercise 5. Let a submodular binary MinSum problem be given. We start from a random labeling and perform α-expansions until convergence.
Prove that this procedure finds the globally optimal solution.

