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Outline

– The Idea of discriminative learning – parameterized
families of classifiers, non-statistical learning

– Linear classifiers, the Perceptron algorithm

– Feature spaces, "generalized" linear classifiers

– MAP in MRF is a linear classifier !!!

– A Perceptron like algorithm for discriminative learning of
MRF-s
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Discriminative statistical models
There exists a joint probability distribution p(x, k; θ)
(observation, class; parameter). The task is to learn θ
On the other side (see the “Bayesian Decision theory”),

R(d) =
∑
k

p(k|x; θ) · C(d, k)

i.e. only the posterior p(k|x; θ) is relevant for the recognition.

The Idea: decompose the joint probability distribution into

p(x, k; θ) = p(x) · p(k|x; θ)

with an arbitrary p(x) and a parameterized posterior.
→ learn the parameters of the posterior p.d. directly
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An example
Two Gaussians of equal variance, i.e. k ∈ {1, 2}, x ∈ Rn,

p(x, k) = p(k) · 1
(
√

2πσ)n
exp

[
−‖x− µ

k‖2

2σ2

]
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An example
Posterior:

p(k=1|x) = p(1)p(x|1)
p(1)p(x|1) + p(2)p(x|2) = 1

1 + p(2)p(x|2)
p(1)p(x|1)

=

= 1

1 + exp
[
−‖x−µ2‖2

2σ2 + ‖x−µ1‖2

2σ2 + ln p(2)− ln p(1)
] =

= 1
1 + exp

(
〈x,w〉+ b

) with w = (µ2 − µ1)/σ2

p(k=2|x) = 1− p(k=1|x) =
exp

(
〈x,w〉+ b

)
1 + exp

(
〈x,w〉+ b

)
Logistic regression model
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An example

Discriminative statistical learning (statistical learning of
discriminative models) – learn the posterior probability
distribution from the training set directly
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Generative vs. discriminative

Posterior p.d.-s have less free parameters as joint ones

Compare (for Gaussians):
– 2n+ 2 free parameters for the generative representation
p(k, x) = p(k) · p(x|k), i.e. p(1), σ, µ1, µ2

– n+ 1 free parameters for the posterior p(k|x), i.e. w and b

→ one posterior corresponds to many joint p.d.-s

Gaussian example again:
centers µ1 and µ2 are not relevant, but their difference
µ2 − µ1 (see the board for the explanation).
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Discriminant functions
– Let a parameterized family of p.d.-s be given.
– If the loss-function is fixed, each p.d. leads to a classifier
– The final goal is the classification (applying the classifier)

Generative approach:
1. Learn the parameters of the p.d. (e.g. ML)
2. Derive the corresponding classifier (e.g. Bayes)
3. Apply the classifier for test data

Discriminative (non-statistical) approach:
1. Learn the unknown parameters of the classifier directly
2. Apply the classifier for test data

If the family of classifiers is “well parameterized”, it is not
necessary to consider the underlying p.d. at all !!!
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Linear discriminant functions

As before: two Gaussians of the same variance, known prior
Now: let the loss function be δ so the decision strategy is MAP
Remember the posterior:

p(k=1|x) = 1
1 + exp

(
〈x,w〉+ b

)
→ the classifier is given by 〈x,w〉 ≶ b

It defines a hyperplane orthogonal to w that is shifted from
the origin by b/||w||

Note: for the classifier the variance σ is irrelevant
→ the classifier has even less free parameters then the
corresponding posterior
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Classifiers vs. generative models
Families of classifiers are usually ”simpler“ compared to the
corresponding families of probability distributions (lower
dimensions, less restricted etc.)

Often it is not necessary to care about the model consistency
(such as e.g. normalization) → algorithms become simpler.

It is possible to use more complex decision strategies, i.e. to
reach better recognition results.

However:

Large classified training sets are usually necessary,
unsupervised learning is not possible at all.

Worse generalization capabilities, overfitting.
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Conclusion – a ”hierarchy of abstraction“

1. Generative models (joint probability distributions)
represent the entire ”world“. At the learning stage (ML)
the probability of the training set is maximized.

2. Discriminative statistical models represent posterior
probability distributions, i.e. only what is needed for
recognition. At the learning stage (ML) the conditional
likelihood is maximized.

3. Discriminant functions: no probability distribution,
decision strategy is learned directly.
What should be optimized ?
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Part 2: Linear classifiers
Building block for almost everything: a mapping
f : Rn → {+1,−1} – partitioning of the input space into two
half-spaces that correspond to two classes

y = f(x) = sgn(〈x,w〉 − b)
with weights w ∈ Rn and a threshold b ∈ R. Geometry: w is
the normal of a hyperplane (given by 〈x,w〉 = b) that
separates the data. If ||w|| = 1, the threshold b is the distance
to the origin
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The learning task
Let a training set L =

(
(xl, yl) . . .

)
be given with

(i) data xl ∈ Rn and (ii) classes yl ∈ {−1,+1}
Find a hyperplane that separates data correctly, i.e.

yl · [〈w, xl〉+ b] > 0 ∀l

x1

x2

The task can be reduced to a system of linear inequalities:
〈w, xl〉 > 0 ∀l
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The perceptron algorithm
1) Search for an inequality that is not satisfied, i.e. an l so

that 〈xl, w〉 ≤ 0 holds;
2) If not found – End,

otherwise, update wnew = wold + xl, go to 1).
x2

walt

xl

wneu

x1

The algorithm terminates after a finite number of steps (!!!), if
there exists a solution. Otherwise, it never finishes :-(
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A generalization (example)

Consider the following classifier family for a scalar x ∈ R

f(x) = sgn(anxn + an−1x
n−1 + . . .+ a1x+ a0)

= sgn
(∑

i

aix
i
)

i.e. a polynomial of n-th order.

The unknown coefficients ai should be learned from a
classified training set

(
(xl, yl) . . .

)
, xl ∈ R, yl ∈ {−1,+1}.

Note: the classifier is not linear anymore.

Is it nevertheless possible to learn it in a perceptron-like
fashion?
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A generalization (example)

Key idea: although the decision rule is not linear with respect
to the input x, it is still linear with respect to the unknowns ai
→ can be represented by the system of linear inequalities

w = (an, an−1, . . . , a1, a0)
x̃ = (xn, xn−1, . . . , x, 1) for each l (an n+1-dim. vector)∑
i aix

i = 〈x̃, w〉 ⇒ perceptron task

In doing so the input space X is transformed into a feature
(vector) space Rd
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A generalization
In general: many non-linear classifiers can be learned by the
perceptron algorithm using an appropriate transformation of
the input space (as e.g. in the example above, more examples
at the exercises).
The "generalized" linear classifier:

f(x) = sgn
(
〈φ(x), w〉

)
with an arbitrary (but fixed) mapping φ : X → Rd and a
parameter vector w ∈ Rd

The parameter vector can be learnt by the perceptron
algorithm, it the data are separable in the feature space
Note: in order to update the weights in the perceptron
algorithm it is necessary to add φ(x) but not x
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Multi-class perceptron

The problem: design a classifier family f : X → {1, 2 . . . K}
(i.e. for more than two classes)

Idea: in the binary case the output y is more likely to be "1"
the greater is the scalar product 〈x,w〉

Fisher classifier:

y = f(x) = arg max
k
〈x,wk〉

The input space is partitioned
into the set of convex cones.
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Multi-class perceptron, the learning task

Given: training set
(
(xl, kl) . . .

)
, x ∈ Rn, k ∈ {1 . . . K}

To be learned: class specific vectors wk.

They should be chosen in order to satisfy

yl = arg max
k
〈xl, wk〉

It can be equivalently written as

〈xl, wyl〉 > 〈xl, wk〉 ∀l, k 6= yl

– system of linear inequalities
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Multi-class perceptron algorithm
In fact it is the usual perceptron algorithm but again in an
appropriately chosen feature space (exercise)

1) Search for an inequality that is not satisfied, i.e. a pair
l, k so that 〈xl, wyl〉 ≤ 〈xl, wk〉 holds;

2) If not found – End,
otherwise, update

wnewyl
= woldyl

+ xl

wnewk = woldk − xl

go to 1).

All the stuff can be also done for "generalized" linear classifiers
→ "generalized" Fisher classifier
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Part 3: Back to MRF-s
Remember the energy minimization, i.e. MAP for MRF-s:

y∗ = arg min
y

E(x, y) =

= arg min
y

[∑
ij

ψij(yi, yj) +
∑
i

ψi(yi, xi)
]

It can be understood as a "usual" classification task, where
each labeling y is a class

The learning task: given a training set
(
(xl, yl) . . .

)
, find the

parameters ψ that satisfy

arg min
y

[∑
ij

ψij(yi, yj) +
∑
i

ψi(yi, xli)
]

= yl ∀l

The goal is now to express the energy as a scalar product
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MAP in MRF is a linear classifier
Example for non-hidden MRF (y only), for E(x, y) – similar

In the parameter vector w ∈ Rd there is a component for each
ψ-value of the task, i.e. tuples (i, k) or (i, j, k, k′)
φ(y) is composed of "indicator" values that are 1 if the
corresponding value of ψ "is contained" in the energy E(y)

φijkk′(y) =
{

1 if yi = k, yj = k′

0 otherwise

→ the energy of a labeling can be written as scalar product

E(y;w) = 〈φ(y), w〉
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Multi-class perceptron + Energy Minimization
1. Search for an inequality that is not satisfied so far, i.e. for

an example l and a labeling y so that

E(xl, yl) > E(xl, y)

Note: it is not necessary to try all y in order to find it. It
is enough to pick just one, for instance solving

y = arg min
y′

E(xl, y′)

2. If not found – End;
otherwise, update ψ by the corresponding φ-vectors

ψnewij (k, k′) =


ψoldij (k, k′)− 1 if yli = k, ylj = k′

ψoldij (k, k′) + 1 if yi = k, yj = k′

ψoldij (k, k′) otherwise
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Multi-class perceptron + Energy Minimization

Further topics:
– How to obtain the "best" possible classifier ?
→ SVM

– What to do if the data are not separable ?
→ loss-based learning, empirical risk ...

– Technical issues ...
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