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Remember the model
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Remember the model

Graph G = (V,€), K — label set, F' — observation set
ye):V — K —labeling, v € X : V — I — observation

An elemantary event is a pair (z,y). Its (negative) energy:
E(x,y) = Z Vi (Y, yj) + Z Vi(4, i)
ijes eV
Its probability:

1

p(z,y) = 7 exp[—E(x, y)}

With the partition function:

7 = Z exp{—E(x,y)]

reX yey
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Remember the inference with an additive loss

1. Compute marginal probability distributions for values

p(ki=llz) = > p(K'|x)

K"k =l

for each variable ¢ and each value [

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ¢;

(k1) - f— i
> ik, 1) - p(k; l\x)—>n]1€1n

leK

This is again a Bayesian Decision Problem — minimize the
average loss
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Remember the "question”

How to compute the marginal probability distributions

(yi=llz) = > p(kl|z)

yyi=l

It is not necessary to eat up the whole kettle completely in
order to test a soup. It is often enough to stir it carefully and
take just a spoon.

The idea: instead to sum over all labelings, sample a couple
of them according to the target probability distribution and
average — the probabilities are substituted by the relative
frequencies
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Sampling

Example: the values of a discrete Variable x € {1,2,3,4,5,6}
have to be drawn from p(z) = (0.1,0.2,0.4,0.05,0.15,0.1)
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The algorithm: input — p(x), output — a sample from p(z)
all] = pl1
for i=2 bis n
ali] = ali—1] + pli]
r = rand|0, 1]
for i =1 bis n
if afi] > r return i

&VLD Statistical principals ... : Statistical Learning in MRF-s 02.07.2014



Gibbs Sampling

Task — draw an x = (z1, 23 ... 2,,) (vector) from p(x)
Problem: p(z) is not given explicitly
The way out:
— start with an arbitrary 2°
— sample the new one x!*! "component-wise" from
conditional probability distributions
plaglat. . al_y ol . al))
— repeat it for all components i (Komponenten) many times

After such a sampling procedure (under some mild conditions):

— 2™ does not depend on z°

— 2" follows the target probability distribution p(z)
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Gibbs Sampling

In MRF-s the conditional probability distributions can be easily
computed !

The Markovian property
p(yi|yV\z‘) = p(yilyN(i))

(i.e. under the condition that the labels in the neighbouring
nodes are fixed, N (i) — neighbourhood structure) leads to

p(yi—k!yzvm)“exp{—%(k)— > %'(k,yj)}

JEN()
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Gibbs Sampling

A relation to Iterated Conditional Modes:

— ICM considers the "conditional
energies"

JEN(3)

and decides for the best label

!

®

%“ — Gibbs Sampling draws new labels
;@ according to the conditional

;. probabilities

p(yi=klyn)) o< eXP[—Ei(k)}
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Maximum Likelihood for MRF-s (supervised)

The Model — no hidden variables, the energy is parameterized
by a parameter 6 to be learned:

py) = de) exp|—E(y;0)] with Z(6) = " exp|~E(y; 0)|

Let a training set L = (y', 2. ..y!"!) be given.

The Maximum Likelihood reads:

p(L;0) = [[p(v0) =1] Z?&) exp|—E(y';0)] - max

Take the logarithm:
F(0) =Inp(L;0) = > [~ E(y';0) = n Z(0)| =

!
- _ L.g)y — .
= ;E(y 0)—|L|-InZ(6) — max
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Maximum Likelihood for MRF-s (supervised)

Consider the derivative with respect to ¢ (the gradient)

OF(0) 3 OE(y40) - 0ln Z(0)

00 4 90 00

Apply the chain rule for the second addent:

Oan(H OE(y;0)
20 Zexp[ w0 g5 =
1 IE(y; 0)
= —Ey: 700) exp[—E(y; 0)] - 0
o 9E(y;0)
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Maximum Likelihood for MRF-s (supervised)

All together (the complete normalized gradient)

OF(6) L 0E(y;6)
0 |L|Z + 2 p:0) —5g

Yy

The gradient is the difference of two expectations:

oF(e) _ OE(y:0)| | & OE(y; 0)
09 — data 80 model 09

one over the training set and other over all elementary events.

The first one is called data statistics the second one is the
model statistics.
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Maximum Likelihood for MRF-s (supervised)

What is 0E(y;6)/00 ?

Example: let the unknown parameter ¢ is composed of
unknown pairwise potentials v;;(k, k") (tables for all edges)
Consider a particular edge (i, j) and a label pair (k, k')

OE (y; ¥) { 1 ify=ky =k

Oi;(k, k) | 0 otherwise
It follows:
L 0E(yiY) _
2] 2 3y ko iy~ ")
OE(y; ¥) )
nyp(y,w) NN p(yi=Fk, y;=k"; ¥)

the first addend is the frequencies in the training set
the second one is the corresponding marginal probability
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Maximum Likelihood for MRF-s (supervised)

To summarize (for the example, where v are learned)

Algorithm:
1. Compute n;;(k, k') from the training set
2. Repeat until convergence:

a) Estimate the current marginal probabilities
p(yi=k,y;=K';1) (e.g. by Gibbs Sampling)

b) Compute the gradient as p(y;=k, y;=k';¢) — n;j(k, k")
and apply it with a small step size

Further topics: supervised learning for hidden MRF-s,
unsupervised learning (by gradient ascent, Expectation
Maximization), conditional likelihood (the next lecture) etc.
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