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Remember the model
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Remember the model
Graph G = (V, E), K – label set, F – observation set
y ∈ Y : V → K – labeling, x ∈ X : V → F – observation
An elemantary event is a pair (x, y). Its (negative) energy:

E(x, y) =
∑
ij∈E

ψij(yi, yj) +
∑
i∈V

ψi(xi, yi)

Its probability:

p(x, y) = 1
Z

exp
[
−E(x, y)

]
With the partition function:

Z =
∑

x∈X ,y∈Y
exp

[
−E(x, y)

]
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Remember the inference with an additive loss

1. Compute marginal probability distributions for values

p(k′i=l|x) =
∑

k′:k′
i=l
p(k′|x)

for each variable i and each value l

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ci∑

l∈K
ci(ki, l) · p(k′i=l|x)→ min

ki

This is again a Bayesian Decision Problem – minimize the
average loss
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Remember the "question"

How to compute the marginal probability distributions

p(yi=l|x) =
∑
y:yi=l

p(k|x)

It is not necessary to eat up the whole kettle completely in
order to test a soup. It is often enough to stir it carefully and
take just a spoon.

The idea: instead to sum over all labelings, sample a couple
of them according to the target probability distribution and
average → the probabilities are substituted by the relative
frequencies
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Sampling
Example: the values of a discrete Variable x ∈ {1, 2, 3, 4, 5, 6}
have to be drawn from p(x) = (0.1, 0.2, 0.4, 0.05, 0.15, 0.1)

The algorithm: input – p(x), output – a sample from p(x)
a[1] = p[1]
for i=2 bis n

a[i] = a[i−1] + p[i]
r = rand[0, 1]
for i = 1 bis n

if a[i] > r return i
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Gibbs Sampling
Task – draw an x = (x1, x2 . . . xm) (vector) from p(x)
Problem: p(x) is not given explicitly
The way out:
– start with an arbitrary x0

– sample the new one xt+1 "component-wise" from
conditional probability distributions
p(xi|xt1. . .xti−1, x

t
i+1. . .x

t
m)

– repeat it for all components i (Komponenten) many times

After such a sampling procedure (under some mild conditions):

– xn does not depend on x0

– xn follows the target probability distribution p(x)
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Gibbs Sampling

In MRF-s the conditional probability distributions can be easily
computed !!!

The Markovian property

p(yi|yV \i) = p(yi|yN(i))

(i.e. under the condition that the labels in the neighbouring
nodes are fixed, N(i) – neighbourhood structure) leads to

p(yi=k|yN(i)) ∝ exp
[
−ψi(k)−

∑
j∈N(i)

ψij(k, yj)
]
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Gibbs Sampling

A relation to Iterated Conditional Modes:

– ICM considers the "conditional
energies"

Ei(k) = ψi(k) +
∑

j∈N(i)
ψij(k, yj)

and decides for the best label

– Gibbs Sampling draws new labels
according to the conditional
probabilities

p(yi=k|yN(i)) ∝ exp
[
−Ei(k)

]
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Maximum Likelihood for MRF-s (supervised)
The Model – no hidden variables, the energy is parameterized
by a parameter θ to be learned:

p(y) = 1
Z(θ) exp

[
−E(y; θ)

]
with Z(θ) =

∑
y

exp
[
−E(y; θ)

]
Let a training set L = (y1, y2 . . . y|L|) be given.

The Maximum Likelihood reads:

p(L; θ) =
∏
l

p(yl; θ) =
∏
l

1
Z(θ) exp

[
−E(yl; θ)

]
→ max

θ

Take the logarithm:

F (θ) = ln p(L; θ) =
∑
l

[
−E(yl; θ)− lnZ(θ)

]
=

= −
∑
l

E(yl; θ)− |L| · lnZ(θ)→ max
θ
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Maximum Likelihood for MRF-s (supervised)
Consider the derivative with respect to θ (the gradient)

∂F (θ)
∂θ

= −
∑
l

∂E(yl; θ)
∂θ

− |L| · ∂ lnZ(θ)
∂θ

Apply the chain rule for the second addent:

∂ lnZ(θ)
∂θ

= 1
Z(θ)

∑
y

exp
[
−E(y; θ)

]
· −∂E(y; θ)

∂θ
=

= −
∑
y

1
Z(θ) exp

[
−E(y; θ)

]
· ∂E(y; θ)

∂θ
=

= −
∑
y

p(y; θ) · ∂E(y; θ)
∂θ

Statistical principals ... : Statistical Learning in MRF-s 02.07.2014 11



Maximum Likelihood for MRF-s (supervised)

All together (the complete normalized gradient)

∂F (θ)
∂θ

= − 1
|L|

∑
l

∂E(yl; θ)
∂θ

+
∑
y

p(y; θ) · ∂E(y; θ)
∂θ

The gradient is the difference of two expectations:

∂F (θ)
∂θ

= −Edata
[
∂E(y; θ)
∂θ

]
+ Emodel

[
∂E(y; θ)
∂θ

]

one over the training set and other over all elementary events.

The first one is called data statistics the second one is the
model statistics.
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Maximum Likelihood for MRF-s (supervised)
What is ∂E(y; θ)/∂θ ?
Example: let the unknown parameter θ is composed of
unknown pairwise potentials ψij(k, k′) (tables for all edges)
Consider a particular edge (i, j) and a label pair (k, k′)

∂E(y;ψ)
∂ψij(k, k′)

=
{

1 if yi = k, yj = k′

0 otherwise

It follows:
1
|L|

∑
l

∂E(y;ψ)
∂ψij(k, k′)

= nij(k, k′)

∑
y

p(y;ψ) · ∂E(y;ψ)
∂ψij(k, k′)

= p(yi=k, yj=k′;ψ)

the first addend is the frequencies in the training set
the second one is the corresponding marginal probability
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Maximum Likelihood for MRF-s (supervised)

To summarize (for the example, where ψ are learned)

Algorithm:
1. Compute nij(k, k′) from the training set
2. Repeat until convergence:

a) Estimate the current marginal probabilities
p(yi=k, yj=k′;ψ) (e.g. by Gibbs Sampling)

b) Compute the gradient as p(yi=k, yj=k′;ψ)− nij(k, k′)
and apply it with a small step size

Further topics: supervised learning for hidden MRF-s,
unsupervised learning (by gradient ascent, Expectation
Maximization), conditional likelihood (the next lecture) etc.
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