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Inference (Recognition)

The model:
Let two random variables be given:

— The first one is typically discrete (k € K) — “class”
— The second one is arbitrary (z € X) — “observation”
Let the joint probability distribution p(z, k) be “known”

The recognition task: given x, estimate k
Usual problems (questions):

— How to estimate k£ from = 7
— Bayesian Decision Theory

— The joint probability is not always explicitly specified
— The set K is sometimes huge,
e.g. the set of all labelings in MRF
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|dea — a game

Somebody samples a pair (z, k) according to a p.d. p(x, k)
He keeps k hidden and presents = to you

You decide for some k* according to a chosen decision
strategy

Somebody penalizes your decision according to a
Loss-function, i.e. he compares your decision to the true
hidden &

You know both p(z, k) and the loss-function
(how does he compare)

Your goal is to design the decision strategy in order to pay as
less as possible in average.

&VLD Statistical principals ... : Inference in MRF-s 25.06.2014



Bayesian Risk

Notations:

The decision set D. Note: it needs not to coincide with K !l
" "not this class” ...

Examples: decisions like “l don't know",
Decision strategy is a mappinge: X — D
Loss-function C': D x K — R

The Bayesian Risk of a strategy ¢ is the expected loss:

R(e) = Z%:p(x, k) - C’(e(m), k:) — min

It should be minimized with respect to the decision strategy

Another “writing style":
d*(x) = argmin Y p(klz) - C(d, k)
d k
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Maximum A-posteriori Decision (MAP)

The loss is the simplest one:

1 if kAR

Clk, k) = { 0 otherwise O(k7K)

i.e. we pay 1 if the answer is not the true class, no matter
what error we make. From that follows:

Rk) = 2op(kle) ok =
- Zp K'lx) —pklz) =1 — p(k|lz) — min
p(k|x) — max

i.e. choose the value with the highest a-posteriori probability
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Additive loss-functions — an example

Consider a “questionnaire”:

B Q1| Q] ... an m persons answer n questions.
Pl 1 (1) Furthermore, let us assume that
2 | 0 SR persons are rated — a “reliability”

P measure is assigned to each one.
— 5 > — 51 The goal is to find the “right”
AR RN answers for all i

questions.

Strategy 1:

Choose the best person and take all his/her answers.

Strategy 2:
— Consider a particular question

— Look, what all the people say concerning this, do
(weighted) voting
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Additive loss-functions — example interpretation

People are classes k, reliability measure is the posterior p(k|z)

Specialty:
classes consist of “parts” (questions) — classes are structured

The set of classes is k = (k1, ks ... ky) € K™, it can be seen
as a vector of m components each one being a simple answer
(0 or 1 in the above example)

The “Strategy 1" is MAP

How to derive (consider, understand) the other decision
strategy from the viewpoint of the Bayesian Decision Theory?
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Additive loss-functions

Consider the simple C'(k, k') = 0(k # k') loss for the case that
classes are structured — it does not reflect how strong the
class and the decision disagree

A better (?) choice — additive loss-function

C(k, k) =" ci(ki, k)

)

i.e. disagreements of all components are summed up

Substitute it in the formula for Bayesian Risk, derive and look
what happens ...
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Additive loss-functions — derivation

R(k) = Z{ (K'|z) - ch(kl,k;)] = / swap summations

k,/
= ZZQ ki ki) - p(K'|x) = / split summation

— ZZ Z ci(ki, 1) - p(K'|x) = / factor out

i €K K'kl=

= > > {c, (ki, D)+ > p (K'|x) ] = / red are marginals
i leK Kok =

= S (kD) - k:’—l| ) — min
i leK K

/ independent problems

= > k1) - plki=llz) — Irllén Vi

leK
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Additive loss-functions — the strategy

1. Compute marginal probability distributions for values

p(ki=llz) = > p(K'|x)

K"k =l

for each variable ¢ and each value [

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ¢;

(k1) - f— i
> ik, 1) - p(k; l\x)—>n]1€1n

leK

This is again a Bayesian Decision Problem — minimize the
average loss
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Additive loss-functions — a special case

For each variable we pay 1 if we are wrong:
ci(ki, ki) = 0(ki#k;)

The overall loss is the number of misclassified variables
(wrongly answered questions)

C(k, k') = ch kiAk])

and is called Hamming distance
The decision strategy is Maximum Marginal Decision

kI = argmax p(ki=l|z) Vi
!
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Minimum Marginal Square Error (MMSE)

Assume, the values [ for k; are numbers (vectors)

Examples:

— in Tracking it is the set of all possible positions of the
object to be tracked

— in Stereo it is the set of all disparity/depth values etc.

— a more reasonable (additive) loss should account for metric
difference between the decision and the true position, e.g.

C(k, k) =3 _ci(ki k) Z\I/’ﬂ—k'll2

i
The task to be solved for each position i is

SOk — 1))? - p(K]=l|a) — min
ki

leK
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Minimum Marginal Square Error (MMSE)

> ki = U7 - p(ki=l|z) — min
i

leK
0

= 2 (k;—1 ki=lz) =0
an lez[:{ ) - p(ki=l]x)
S ki -p(ki=llz) = > L p(ki=l|z)
leK leK
ki =1 p(ki=l|z)

leK

The optimal decision for i-th variable is the expectation
(average) in the corresponding marginal probability distribution

Note: the decision is not necessarily an element of K, e.g. it
may be real-valued — sets D and K are different.
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Back to MRF-s

@VLD
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Back to MRF-s

Graph G = (V, &), K — label set, F' — observation set
ye)Y:V — K —labeling, v € X : V — F — observation

An elemantary event is a pair (z,y). Its (negative) energy:
E(x,y) = Z Vi (i, y;) + Z (24, vi)
ije€ iev
Its probability:

1

p(ZE, y) = E eXp [—E(ZL‘, y)}

With the partition function:

7 = Z exp{—E(x,y)}

zeX yey

Note: MAP for MRF-s is Energy Minimization !!!
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Example for MMSE - Stereo

MAP vs. MMSE

The left image

MAP

MMSE
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Example for MMSE - Stereo

@VLD
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Other examples

Denoising:
Uwe Schmidt, Qi Gao, and Stefan Roth. A generative
perspective on MRFs in low-level vision. CVPR 2010

Deconvolution:
Uwe Schmidt, Kevin Schelten, and Stefan Roth.Bayesian
deblurring with integrated noise estimation. CVPR 2011

Segmentation:
remember on demo

How to estimate marginal label probability distributions (NP in
general)? — sampling (later, will also be needed for learning)
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Summary

Before:
— Markov chains

— Energy minimization

Today:
— Bayesian Decision Theory

— Additive loss-functions — structural loss
— MMSE for MRF-s

Next classes:
— Statistical learning (Maximum Likelihood)

— Discriminative learning (Structural SVM)
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