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Inference (Recognition)
The model:
Let two random variables be given:
– The first one is typically discrete (k ∈ K) – “class”
– The second one is arbitrary (x ∈ X) – “observation”

Let the joint probability distribution p(x, k) be “known”

The recognition task: given x, estimate k
Usual problems (questions):
– How to estimate k from x ?
→ Bayesian Decision Theory

– The joint probability is not always explicitly specified
– The set K is sometimes huge,
e.g. the set of all labelings in MRF
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Idea – a game
Somebody samples a pair (x, k) according to a p.d. p(x, k)

He keeps k hidden and presents x to you

You decide for some k∗ according to a chosen decision
strategy

Somebody penalizes your decision according to a
Loss-function, i.e. he compares your decision to the true
hidden k

You know both p(x, k) and the loss-function
(how does he compare)

Your goal is to design the decision strategy in order to pay as
less as possible in average.
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Bayesian Risk
Notations:

The decision set D. Note: it needs not to coincide with K !!!
Examples: decisions like “I don’t know”, “not this class” ...

Decision strategy is a mapping e : X → D

Loss-function C : D ×K → R

The Bayesian Risk of a strategy e is the expected loss:
R(e) =

∑
x

∑
k

p(x, k) · C
(
e(x), k

)
→ min

e

It should be minimized with respect to the decision strategy
Another “writing style”:

d∗(x) = arg min
d

∑
k

p(k|x) · C(d, k)
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Maximum A-posteriori Decision (MAP)
The loss is the simplest one:

C(k, k′) =
{

1 if k 6= k′

0 otherwise = δ(k 6=k′)

i.e. we pay 1 if the answer is not the true class, no matter
what error we make. From that follows:

R(k) =
∑
k′
p(k′|x) · δ(k 6=k′) =

=
∑
k′
p(k′|x)− p(k|x) = 1− p(k|x)→ min

k

p(k|x)→ max
k

i.e. choose the value with the highest a-posteriori probability
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Additive loss-functions – an example

Q1 Q2 . . . Qn

P1 1 0 . . . 1
P2 0 1 . . . 0
. . . . . . . . . . . . . . .
Pm 0 1 . . . 0
“∑” ? ? . . . ?

Consider a “questionnaire”:
m persons answer n questions.
Furthermore, let us assume that
persons are rated – a “reliability”
measure is assigned to each one.
The goal is to find the “right”
answers for all questions.

Strategy 1:
Choose the best person and take all his/her answers.

Strategy 2:
– Consider a particular question
– Look, what all the people say concerning this, do
(weighted) voting
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Additive loss-functions – example interpretation

People are classes k, reliability measure is the posterior p(k|x)

Specialty:
classes consist of “parts” (questions) – classes are structured

The set of classes is k = (k1, k2 . . . km) ∈ Km, it can be seen
as a vector of m components each one being a simple answer
(0 or 1 in the above example)

The “Strategy 1” is MAP

How to derive (consider, understand) the other decision
strategy from the viewpoint of the Bayesian Decision Theory?
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Additive loss-functions

Consider the simple C(k, k′) = δ(k 6= k′) loss for the case that
classes are structured – it does not reflect how strong the
class and the decision disagree

A better (?) choice – additive loss-function

C(k, k′) =
∑

i

ci(ki, k
′
i)

i.e. disagreements of all components are summed up

Substitute it in the formula for Bayesian Risk, derive and look
what happens ...

Statistical principals ... : Inference in MRF-s 25.06.2014 8



Additive loss-functions – derivation

R(k) =
∑
k′

[
p(k′|x) ·

∑
i

ci(ki, k
′
i)
]

= / swap summations

=
∑

i

∑
k′
ci(ki, k

′
i) · p(k′|x) = / split summation

=
∑

i

∑
l∈K

∑
k′:k′

i=l

ci(ki, l) · p(k′|x) = / factor out

=
∑

i

∑
l∈K

[
ci(ki, l) ·

∑
k′:k′

i=l

p(k′|x)
]

= / red are marginals

=
∑

i

∑
l∈K

ci(ki, l) · p(k′i=l|x)→ min
k

/ independent problems

⇒
∑
l∈K

ci(ki, l) · p(k′i=l|x)→ min
ki

∀i
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Additive loss-functions – the strategy

1. Compute marginal probability distributions for values

p(k′i=l|x) =
∑

k′:k′
i=l

p(k′|x)

for each variable i and each value l

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ci∑

l∈K

ci(ki, l) · p(k′i=l|x)→ min
ki

This is again a Bayesian Decision Problem – minimize the
average loss
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Additive loss-functions – a special case
For each variable we pay 1 if we are wrong:

ci(ki, k
′
i) = δ(ki 6=k′i)

The overall loss is the number of misclassified variables
(wrongly answered questions)

C(k, k′) =
∑

i

δ(ki 6=k′i)

and is called Hamming distance

The decision strategy is Maximum Marginal Decision

k∗i = arg max
l

p(k′i=l|x) ∀i
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Minimum Marginal Square Error (MMSE)
Assume, the values l for ki are numbers (vectors)
Examples:
– in Tracking it is the set of all possible positions of the
object to be tracked

– in Stereo it is the set of all disparity/depth values etc.

→ a more reasonable (additive) loss should account for metric
difference between the decision and the true position, e.g.

C(k, k′) =
∑

i

ci(ki, k
′
i) =

∑
i

‖ki − k′i‖2

The task to be solved for each position i is∑
l∈K

‖ki − l‖2 · p(k′i=l|x)→ min
ki
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Minimum Marginal Square Error (MMSE)

∑
l∈K

‖ki − l‖2 · p(k′i=l|x)→ min
ki

∂

∂ki

=
∑
l∈K

2 · (ki − l) · p(k′i=l|x) = 0
∑
l∈K

ki · p(k′i=l|x) =
∑
l∈K

l · p(k′i=l|x)

ki =
∑
l∈K

l · p(k′i=l|x)

The optimal decision for i-th variable is the expectation
(average) in the corresponding marginal probability distribution
Note: the decision is not necessarily an element of K, e.g. it
may be real-valued → sets D and K are different.
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Back to MRF-s
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Back to MRF-s
Graph G = (V, E), K – label set, F – observation set
y ∈ Y : V → K – labeling, x ∈ X : V → F – observation
An elemantary event is a pair (x, y). Its (negative) energy:

E(x, y) =
∑
ij∈E

ψij(yi, yj) +
∑
i∈V

ψi(xi, yi)

Its probability:

p(x, y) = 1
Z

exp
[
−E(x, y)

]
With the partition function:

Z =
∑

x∈X ,y∈Y
exp

[
−E(x, y)

]

Note: MAP for MRF-s is Energy Minimization !!!
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Example for MMSE – Stereo

MAP vs. MMSE

The left image MAP MMSE
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Example for MMSE – Stereo
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Other examples

Denoising:
Uwe Schmidt, Qi Gao, and Stefan Roth. A generative
perspective on MRFs in low-level vision. CVPR 2010

Deconvolution:
Uwe Schmidt, Kevin Schelten, and Stefan Roth.Bayesian
deblurring with integrated noise estimation. CVPR 2011

Segmentation:
remember on demo

How to estimate marginal label probability distributions (NP in
general)? → sampling (later, will also be needed for learning)
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Summary

Before:
– Markov chains
– Energy minimization

Today:
– Bayesian Decision Theory
– Additive loss-functions – structural loss
– MMSE for MRF-s

Next classes:
– Statistical learning (Maximum Likelihood)
– Discriminative learning (Structural SVM)
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