Data analysis: Statistical principals and computational methods

Energy Minimization: Search Techniques

Dmitrij Schlesinger, Carsten Rother

SS2014, 18.06.2014

Energy Minimization (recap – segmentation)

Original

A possible segmentation

Energy Minimization (recap)

Today – Energy Minimization Problems:

$$y^* = \arg\min_{y} \left[\sum_{i} \psi_i(y_i) + \sum_{ij} \psi_{ij}(y_i, y_j) \right]$$

€VLD

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques general idea
- α -expansion and $\alpha\beta$ -swap

$$y^* = \underset{y}{\operatorname{arg\,min}} \left[\sum_{i} \psi_i(y_i) + \sum_{ij} \psi_{ij}(y_i, y_j) \right]$$

Idea: choose (locally) the label that leads to the best energy given the fixed rest [Besag, 1986]

Repeat until convergence for all i:

$$y_i = \arg\min_k \left[\psi_i(k) + \sum_{j:ij \in \mathcal{E}} \psi_{ij}(k, y_j) \right]$$

- + Extremely simple, easy to parallelize
- "Coordinate-wise" optimization \rightarrow does not converge to the global minimum even for very simple energies Example: strong Ising model (Potts with K=2)

Iterated Conditional Modes

Extension: instead to fix all variables but one, fix a subset of variables so that the rest is easy to optimise (e.g. a chain or a tree). For images – e.g. row-wise/columl-wise optimization

ightarrow can be solved exact and efficient by Dynamic Programming

€VLD

Example – Stereo

Row-wise ICM: the labels for a nodes of a chain can vary. The rest is fix.

Start from an y^0 (e.g. the result of *independent* row-wise Dynamic Programming), continue with the row-wise ICM

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques general idea
- α -expansion and $\alpha\beta$ -swap

Equivalent transformations (aka re-parameterization)

Two tasks $A = (\psi)$ and $A' = (\psi')$ are called **equivalent**, iff

$$\left[\sum_{i} \psi_i(y_i) + \sum_{ij} \psi_{ij}(y_i, y_j)\right] = \left[\sum_{i} \psi'_i(y_i) + \sum_{ij} \psi'_{ij}(y_i, y_j)\right]$$

holds for all labelings y

 $\mathcal{A}(A)$ – Equivalence class (all thasks that are equivalent to A). Equivalent transformations (re-parameterization):

Binary MinSum Problems – canonical forms

For **binary** Problems $K = \{0, 1\}$ the functions ψ can be re-parameterized as follows

 $\Rightarrow \psi$ are not equal zero only for k=1 and (k,k')=(1,1) \Rightarrow the energy can be written as

$$E(y) = \sum_{i} y_i \cdot \psi_i + \sum_{ij} y_i \cdot y_j \cdot \psi_{ij}$$

with nodes- and edge-specific **numbers** ψ_i and ψ_{ij} (not functions anymore) – a polynom of second order

- is used for Quadratic Pseudo-Boolean Optimization

Binary MinSum Problems – canonical forms

Furthermore (in order to transform into a **MinCut** problem):

$$E(y) = (\ldots) + \sum_{rr'} \beta_{ij} \cdot \delta(y_i \neq y_j)$$

All-in-all:

€VLD

with
$$\beta = (b+c-a-d)/2$$
 (keep in mind this expression $!!!)$

MinCut

Attention!!! Similar notations, different meaning

Let a graph $G = (V, \mathcal{E})$ be given

There are two "special" nodes -s (source) and t (target).

Each edge $\{i, j\} \in \mathcal{E}$ has its **costs** c_{ij} .

A **cut** C is an edge subset so, that there is no path from s to t

The cut has to be **minimal**: a removal of an edge from this subset leads to existence of a path

MinCut

The quality of a cut is the summed costs of all involved edges The task is to find the cut of the minimal quality:

$$C^* = \arg\min_C \sum_{ij \in C} c_{ij}$$

Alternatively: a cut corresponds to a **partition** of the node set into two subsets S and T with $s \in S$ and $t \in T$, $S \cup T = V$, $S \cap T = \emptyset$

$$(S,T)^* = \underset{(S,T)}{\operatorname{arg\,min}} \sum_{ij \in \mathcal{E}, i \in S, j \in T} c_{ij}$$

$\mathsf{Binary}\ \mathsf{MinSum}\ \mathsf{Problems}\ \leftrightarrow\ \mathsf{MinCut}$

Each node of the MinSum problem correspond to an "intrinsic" node in MinCut. There are also two additional nodes s and t

Each labeling $y: V \to \{0, 1\}$ correspont to a partition (S, T), with $y_i = 0 \Leftrightarrow i \in S$ and $y_i = 1 \Leftrightarrow i \in T$

The edge costs of the MinCut problem are:

$$c_{ij} = \beta_{ij}$$
 for all edges connecting intrinsic nodes
 $c_{si} = \psi_i(1)$ and $c_{it} = \psi_i(0)$.

$\mathsf{Binary}\ \mathsf{MinSum}\ \mathsf{Problems}\ \leftrightarrow\ \mathsf{MinCut}$

The energy of a labeling y is equal to the quality of the corresponding cut (partition)

- The relation MinSum ↔ MinCut works always (the problems are identical)
- MinCut is NP-complete in general
- MinCut is polynomially solvable if all edge costs are non-negative, i.e. a + d ≥ b + c holds for all edges (remember the "expression")
- Such problems are called submodular

Solvability, MinCut \leftrightarrow MaxFlow

MinCut can be transformed into the corresponding MaxFlow:

There is a "Pipe network" (a Graph with nodes i and edges (i, j)). There are two special nodes s and t.

There is a **flow** x_{ij} through each pipe (i, j).

Each pipe has its capacity c_{ij}

The task is to find the **maximal** flow that can be sent from the source to the target

If the capacities of the pipe network are the same as the edge costs in a MinCut problem, these two problems are **dual** to each other (attention!!! only if the edge costs are non-negative).

The values of the maximal flow and of the optimal cut are equal. The latter can be obtained given the former

MaxFlow

Flows are **directed**: x_{ij} means "from *i* to *j*" Flows are restricted by the corresponding capacities:

 $0 \le x_{ij} \le c_{ij}$

Nothing appears or disappears on the way:

$$\sum_{j:ij\in\mathcal{E}} x_{ji} = \sum_{j:ij\in\mathcal{E}} x_{ij} \quad \forall i \neq s, t$$

The total flow to be maximized is:

$$\sum_{i} x_{si} \to \max_{x}$$

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques general idea
- α -expansion and $\alpha\beta$ -swap

Search techniques – general idea

- There is a neighbourhoodfor each labelling
- a subset of labelling so that
 - a) it can be described constructively"
 - b) the current labelling belongs to this subset
 - c) the optimal labelling in the subset is easy to find

The algorithm is an iterative search for the best labelling in the neighbourhood of the actual one

- converges to a local optimum

α -expansion

€VLD

The neighbourhood of a labelling – for **all** nodes restrict the **label set** [Boykov et al., 2001] α -**expansion**: consider a label α , for each node consider two labels (at most) – the actual one and α

the auxiliary task is a **binary MinSum problem** – can be solved by MinCut under circumstances

This is repeated for all $\alpha\text{-s}$ until convergence

α -expansion

In which cases the auxiliary tasks can be solved exactly? Sufficient: if the pairwise functions ψ_{ij} are **Metrices**, i.e.

a)
$$\psi(k,k) = 0$$

b) $\psi(k,k') = \psi(k',k) \ge 0$
c) $\psi(k,k') \le \psi(k,k'') + \psi(k'',k')$

Then the auxiliary tasks are submodular:

$$\psi(\alpha, \alpha) + \psi(\beta', \beta'') =$$

= 0 + \psi(\beta', \beta'') \le \psi(\beta', \alpha) + \psi(\alpha, \beta'')

Examples:

- the Potts Model $\psi(k,k')=\delta(k\neq k')$ segmentation
- linear metric $\psi(k,k')=|k-k'|$ stereo
- truncated metrices e.g. $\psi(k,k') = \min(|k-k'|,C)$

 $\alpha\beta$ -swap

Consider a label pair α,β , in each node

- if the current label is α or β , only α and β are allowed,
- otherwise, only the current label is allowed.
- \rightarrow each node can swap from α to β and back

the auxiliary task is a binary MinSum problem – solvable by MinCut, if e.g. $\psi(k,k) = 0$ and $\psi(k,k' \neq k) \ge 0$ (Semimetric)

This is repeated for all pairs α and β until convergence

A comparison

For an $n \times n$ grig as the graph, K labels, random labeling

#l – the number of labelings in the neighbourhood #n – the number of neighbourhoods

	ICM	ICM+	α -exp.	lphaeta-swap
#l	K	K^n	$2^{\frac{n^2 \cdot (K-1)}{K}}$	$2^{\frac{n^2 \cdot 2}{K}}$
#n	n^2	$2 \cdot n$	K	$\frac{K(K-1)}{2}$
applicable ψ	arbitrary	arbitrary	metric	semimetric
exact for	never	chain	K=2 (?)	K=2

- very easy to parallelise
- can be freely combined with each other