Data analysis:

Statistical principals and computational methods

Energy Minimization: Search Techniques
Dmitrij Schlesinger, Carsten Rother
SS2014, 18.06.2014

COMPUTER VISION LAB
DRESDEN

TECHNISCHE UNIVERSITÄT DRESDEN

Energy Minimization (recap - segmentation)

Original

A possible
Compactness terms

segmentation

Energy Minimization (recap)

Today - Energy Minimization Problems:

$$
y^{*}=\underset{y}{\arg \min }\left[\sum_{i} \psi_{i}\left(y_{i}\right)+\sum_{i j} \psi_{i j}\left(y_{i}, y_{j}\right)\right]
$$

Outline

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems - canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques - general idea
- α-expansion and $\alpha \beta$-swap

Iterated Conditional Modes

$$
y^{*}=\underset{y}{\arg \min }\left[\sum_{i} \psi_{i}\left(y_{i}\right)+\sum_{i j} \psi_{i j}\left(y_{i}, y_{j}\right)\right]
$$

Idea: choose (locally) the label that leads to the best energy given the fixed rest [Besag, 1986]

Repeat until convergence for all i :

$$
y_{i}=\underset{k}{\arg \min }\left[\psi_{i}(k)+\sum_{j: i j \in \mathcal{E}} \psi_{i j}\left(k, y_{j}\right)\right]
$$

+ Extremely simple, easy to parallelize
- "Coordinate-wise" optimization \rightarrow does not converge to the global minimum even for very simple energies Example: strong Ising model (Potts with $K=2$)

Iterated Conditional Modes

Extension: instead to fix all variables but one, fix a subset of variables so that the rest is easy to optimise (e.g. a chain or a tree). For images - e.g. row-wise/columl-wise optimization

\rightarrow can be solved exact and efficient by Dynamic Programming

Example - Stereo

Row-wise ICM: the labels for a nodes of a chain can vary. The rest is fix.

Start from an y^{0} (e.g. the result of independent row-wise Dynamic Programming), continue with the row-wise ICM

Outline

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems - canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques - general idea
- α-expansion and $\alpha \beta$-swap

Equivalent transformations (aka re-parameterization)

Two tasks $A=(\psi)$ and $A^{\prime}=\left(\psi^{\prime}\right)$ are called equivalent, iff

$$
\left[\sum_{i} \psi_{i}\left(y_{i}\right)+\sum_{i j} \psi_{i j}\left(y_{i}, y_{j}\right)\right]=\left[\sum_{i} \psi_{i}^{\prime}\left(y_{i}\right)+\sum_{i j} \psi_{i j}^{\prime}\left(y_{i}, y_{j}\right)\right]
$$

holds for all labelings y
$\mathcal{A}(A)$ - Equivalence class (all thasks that are equivalent to A).
Equivalent transformations (re-parameterization):

Binary MinSum Problems - canonical forms

For binary Problems $K=\{0,1\}$ the functions ψ can be re-parameterized as follows

$\Rightarrow \psi$ are not equal zero only for $k=1$ and $\left(k, k^{\prime}\right)=(1,1)$
\Rightarrow the energy can be written as

$$
E(y)=\sum_{i} y_{i} \cdot \psi_{i}+\sum_{i j} y_{i} \cdot y_{j} \cdot \psi_{i j}
$$

with nodes- and edge-specific numbers ψ_{i} and $\psi_{i j}$ (not functions anymore) - a polynom of second order

- is used for Quadratic Pseudo-Boolean Optimization

Binary MinSum Problems - canonical forms

Furthermore (in order to transform into a MinCut problem):

$$
\begin{aligned}
& 1 / 2 \leftrightarrow \rightarrow \rightarrow+1 / 2 \\
& E(y)=(\ldots)+\sum_{r r^{\prime}} \beta_{i j} \cdot \delta\left(y_{i} \neq y_{j}\right)
\end{aligned}
$$

All-in-all:

with $\beta=(b+c-a-d) / 2 \quad$ (keep in mind this expression !!!)

MinCut

Attention!!! Similar notations, different meaning
Let a graph $G=(V, \mathcal{E})$ be given

There are two "special" nodes

- s (source) and t (target).

Each edge $\{i, j\} \in \mathcal{E}$ has its costs $c_{i j}$.
A cut C is an edge subset so, that there is no path from s to t

The cut has to be minimal: a removal of an edge from this subset leads to existence of a path

MinCut

The quality of a cut is the summed costs of all involved edges
The task is to find the cut of the minimal quality:

$$
C^{*}=\underset{C}{\arg \min } \sum_{i j \in C} c_{i j}
$$

Alternatively: a cut corresponds to a partition of the node set into two subsets S and T with $s \in S$ and $t \in T, S \cup T=V$, $S \cap T=\emptyset$

$$
(S, T)^{*}=\underset{(S, T)}{\arg \min } \sum_{i j \in \mathcal{E}, i \in S, j \in T} c_{i j}
$$

Binary MinSum Problems \leftrightarrow MinCut

Each node of the MinSum problem correspond to an "intrinsic" node in MinCut. There are also two additional nodes s and t

Each labeling $y: V \rightarrow\{0,1\}$ correspont to a partition (S, T), with $y_{i}=0 \Leftrightarrow i \in S$ and $y_{i}=1 \Leftrightarrow i \in T$

The edge costs of the MinCut problem are:

$$
\begin{aligned}
c_{i j} & =\beta_{i j} \text { for all edges connecting intrinsic nodes } \\
c_{s i} & =\psi_{i}(1) \text { and } c_{i t}=\psi_{i}(0)
\end{aligned}
$$

Binary MinSum Problems \leftrightarrow MinCut

The energy of a labeling y is equal to the quality of the corresponding cut (partition)

- The relation MinSum \leftrightarrow MinCut works always (the problems are identical)
- MinCut is NP-complete in general
- MinCut is polynomially solvable if all edge costs are non-negative, i.e. $a+d \geq b+c$ holds for all edges (remember the "expression")
- Such problems are called submodular

Solvability, MinCut \leftrightarrow MaxFlow

MinCut can be transformed into the corresponding MaxFlow:
There is a "Pipe network" (a Graph with nodes i and edges (i, j)). There are two special nodes s and t.
There is a flow $x_{i j}$ through each pipe (i, j).
Each pipe has its capacity $c_{i j}$
The task is to find the maximal flow that can be sent from the source to the target

If the capacities of the pipe network are the same as the edge costs in a MinCut problem, these two problems are dual to each other (attention!!! only if the edge costs are non-negative).
The values of the maximal flow and of the optimal cut are equal. The latter can be obtained given the former

MaxFlow

Flows are directed: $x_{i j}$ means "from i to j "
Flows are restricted by the corresponding capacities:

$$
0 \leq x_{i j} \leq c_{i j}
$$

Nothing appears or disappears on the way:

$$
\sum_{j: i j \in \mathcal{E}} x_{j i}=\sum_{j: i j \in \mathcal{E}} x_{i j} \quad \forall i \neq s, t
$$

The total flow to be maximized is:

$$
\sum_{i} x_{s i} \rightarrow \max _{x}
$$

Outline

- Iterated Conditional Modes (+Variants)
- Equivalent transformations
- Binary MinSum problems - canonical forms
- Binary MinSum problems \leftrightarrow MinCut
- MinCut, MaxFlow
- Search techniques - general idea
- α-expansion and $\alpha \beta$-swap

Search techniques - general idea

There is a neighbourhoodfor each labelling

- a subset of labelling so that
a) it can be described constructively"
b) the current labelling belongs to this subset
c) the optimal labelling in the subset is easy to find

The algorithm is an iterative search for the best labelling in the neighbourhood of the actual one

- converges to a local optimum

α-expansion

The neighbourhood of a labelling - for all nodes restrict the label set [Boykov et al., 2001]
α-expansion: consider a label α, for each node consider two labels (at most) - the actual one and α

the auxiliary task is a binary MinSum problem - can be solved by MinCut under circumstances

This is repeated for all α-s until convergence

α-expansion

In which cases the auxiliary tasks can be solved exactly?
Sufficient: if the pairwise functions $\psi_{i j}$ are Metrices, i.e.
a) $\psi(k, k)=0$
b) $\psi\left(k, k^{\prime}\right)=\psi\left(k^{\prime}, k\right) \geq 0$
c) $\psi\left(k, k^{\prime}\right) \leq \psi\left(k, k^{\prime \prime}\right)+\psi\left(k^{\prime \prime}, k^{\prime}\right)$

Then the auxiliary tasks are submodular:

$$
\begin{aligned}
& \psi(\alpha, \alpha)+\psi\left(\beta^{\prime}, \beta^{\prime \prime}\right)= \\
& =0+\psi\left(\beta^{\prime}, \beta^{\prime \prime}\right) \leq \psi\left(\beta^{\prime}, \alpha\right)+\psi\left(\alpha, \beta^{\prime \prime}\right)
\end{aligned}
$$

Examples:

- the Potts Model $\psi\left(k, k^{\prime}\right)=\delta\left(k \neq k^{\prime}\right)$ - segmentation
- linear metric $\psi\left(k, k^{\prime}\right)=\left|k-k^{\prime}\right|$ - stereo
- truncatedmetrices e.g. $\psi\left(k, k^{\prime}\right)=\min \left(\left|k-k^{\prime}\right|, C\right)$

$\alpha \beta$-swap

Consider a label pair α, β, in each node

- if the current label is α or β, only α and β are allowed,
- otherwise, only the current label is allowed.
\rightarrow each node can swap from α to β and back

the auxiliary task is a binary MinSum problem - solvable by
MinCut, if e.g. $\psi(k, k)=0$ and $\psi\left(k, k^{\prime} \neq k\right) \geq 0$ (Semimetric)
This is repeated for all pairs α and β until convergence

A comparison

For an $n \times n$ grig as the graph, K labels, random labeling $\# l$ - the number of labelings in the neighbourhood $\# n$ - the number of neighbourhoods

	ICM	ICM +	α-exp.	$\alpha \beta$-swap
$\# l$	K	K^{n}	$2^{\frac{n^{2} \cdot(K-1)}{K}}$	$2^{\frac{n^{2} \cdot 2}{K}}$
$\# n$	n^{2}	$2 \cdot n$	K	$\frac{K(K-1)}{2}$
applicable ψ	arbitrary	arbitrary	metric	semimetric
exact for	never	chain	$K=2(?)$	$K=2$

- very easy to parallelise
- can be freely combined with each other

