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Energy Minimization (recap)

Today – Energy Minimization Problems:

y∗ = arg min
y

[∑
i

ψi(yi) +
∑
ij

ψij(yi, yj)
]
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Outline

– Iterated Conditional Modes (+Variants)

– Equivalent transformations
– Binary MinSum problems – canonical forms
– Binary MinSum problems ↔ MinCut
– MinCut, MaxFlow

– Search techniques – general idea
– α-expansion and αβ-swap
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Iterated Conditional Modes

y∗ = arg min
y

[∑
i

ψi(yi) +
∑
ij

ψij(yi, yj)
]

Idea: choose (locally) the label that
leads to the best energy given the fixed
rest [Besag, 1986]
Repeat until convergence for all i:

yi = arg min
k

[
ψi(k) +

∑
j:ij∈E

ψij(k, yj)
]

+ Extremely simple, easy to parallelize
− ”Coordinate-wise” optimization → does not converge to

the global minimum even for very simple energies
Example: strong Ising model (Potts with K=2)
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Iterated Conditional Modes
Extension: instead to fix all variables but one, fix a subset of
variables so that the rest is easy to optimise (e.g. a chain or a
tree). For images – e.g. row-wise/columl-wise optimization

→ can be solved exact and efficient by Dynamic Programming
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Example – Stereo

Row-wise ICM:
the labels for a nodes of a chain can vary. The rest is fix.

Start from an y0 (e.g. the result of independent row-wise
Dynamic Programming), continue with the row-wise ICM
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Equivalent transformations (aka re-parameterization)
Two tasks A = (ψ) and A′ = (ψ′) are called equivalent, iff[∑

i

ψi(yi) +
∑
ij

ψij(yi, yj)
]

=
[∑

i

ψ′i(yi) +
∑
ij

ψ′ij(yi, yj)
]

holds for all labelings y
A(A) – Equivalence class (all thasks that are equivalent to A).
Equivalent transformations (re-parameterization):
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Binary MinSum Problems – canonical forms

For binary Problems K = {0, 1} the functions ψ can be
re-parameterized as follows

⇒ ψ are not equal zero only for k = 1 and (k, k′) = (1, 1)
⇒ the energy can be written as

E(y) =
∑

i

yi · ψi +
∑
ij

yi · yj · ψij

with nodes- and edge-specific numbers ψi and ψij (not
functions anymore) – a polynom of second order
– is used for Quadratic Pseudo-Boolean Optimization
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Binary MinSum Problems – canonical forms
Furthermore (in order to transform into a MinCut problem):

E(y) = (. . .) +
∑
rr′
βij · δ(yi 6=yj)

All-in-all:

with β = (b+ c− a− d)/2 (keep in mind this expression !!!)
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MinCut

Attention!!! Similar notations, different meaning

Let a graph G = (V, E) be given

There are two ”special“ nodes
– s (source) and t (target).

Each edge {i, j} ∈ E has its costs cij.

A cut C is an edge subset so,
that there is no path from s to t

The cut has to be minimal: a removal of an edge from this
subset leads to existence of a path
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MinCut

The quality of a cut is the summed costs of all involved edges

The task is to find the cut of the minimal quality:

C∗ = arg min
C

∑
ij∈C

cij

Alternatively: a cut corresponds to a partition of the node set
into two subsets S and T with s ∈ S and t ∈ T , S ∪ T = V ,
S ∩ T = ∅

(S, T )∗ = arg min
(S,T )

∑
ij∈E,i∈S,j∈T

cij
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Binary MinSum Problems ↔ MinCut

Each node of the MinSum problem correspond to an ”intrinsic”
node in MinCut. There are also two additional nodes s and t
Each labeling y : V → {0, 1} correspont to a partition (S, T ),
with yi = 0⇔ i ∈ S and yi = 1⇔ i ∈ T
The edge costs of the MinCut problem are:

cij = βij for all edges connecting intrinsic nodes
csi = ψi(1) and cit = ψi(0).
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Binary MinSum Problems ↔ MinCut

The energy of a labeling y is equal to the quality of the
corresponding cut (partition)
– The relation MinSum ↔ MinCut works always (the
problems are identical)

– MinCut is NP-complete in general
– MinCut is polynomially solvable if all edge costs are
non-negative, i.e. a+ d ≥ b+ c holds for all edges
(remember the ”expression”)

– Such problems are called submodular
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Solvability, MinCut ↔ MaxFlow
MinCut can be transformed into the corresponding MaxFlow:
There is a ”Pipe network” (a Graph with nodes i and edges
(i, j)). There are two special nodes s and t.
There is a flow xij through each pipe (i, j).
Each pipe has its capacity cij

The task is to find the maximal flow that can be sent from
the source to the target
If the capacities of the pipe network are the same as the edge
costs in a MinCut problem, these two problems are dual to
each other (attention!!! only if the edge costs are
non-negative).
The values of the maximal flow and of the optimal cut are
equal. The latter can be obtained given the former
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MaxFlow

Flows are directed: xij means ”from i to j”
Flows are restricted by the corresponding capacities:

0 ≤ xij ≤ cij

Nothing appears or disappears on the way:∑
j:ij∈E

xji =
∑

j:ij∈E
xij ∀i 6= s, t

The total flow to be maximized is:∑
i

xsi → max
x
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Search techniques – general idea
There is a neighbourhoodfor each labelling
– a subset of labelling so that
a) it can be described constructively"
b) the current labelling belongs to this subset
c) the optimal labelling in the subset is easy to find

The algorithm is an iterative search for the best labelling in
the neighbourhood of the actual one
– converges to a local optimum
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α-expansion
The neighbourhood of a labelling – for all nodes restrict the
label set [Boykov et al., 2001]
α-expansion: consider a label α, for each node consider two
labels (at most) – the actual one and α

the auxiliary task is a binary MinSum problem – can be
solved by MinCut under circumstances
This is repeated for all α-s until convergence
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α-expansion
In which cases the auxiliary tasks can be solved exactly?
Sufficient: if the pairwise functions ψij are Metrices, i.e.

a) ψ(k, k) = 0
b) ψ(k, k′) = ψ(k′, k) ≥ 0
c) ψ(k, k′) ≤ ψ(k, k′′) + ψ(k′′, k′)

Then the auxiliary tasks are submodular:

ψ(α, α) + ψ(β′, β′′) =
= 0 + ψ(β′, β′′) ≤ ψ(β′, α) + ψ(α, β′′)

Examples:
– the Potts Model ψ(k, k′) = δ(k 6= k′) – segmentation
– linear metric ψ(k, k′) = |k − k′| – stereo
– truncatedmetrices e.g. ψ(k, k′) = min(|k − k′|, C)
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αβ-swap
Consider a label pair α, β, in each node
– if the current label is α or β, only α and β are allowed,
– otherwise, only the current label is allowed.
→ each node can swap from α to β and back

the auxiliary task is a binary MinSum problem – solvable by
MinCut, if e.g. ψ(k, k) = 0 and ψ(k, k′ 6=k) ≥ 0 (Semimetric)
This is repeated for all pairs α and β until convergence
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A comparison

For an n×n grig as the graph, K labels, random labeling

#l – the number of labelings in the neighbourhood
#n – the number of neighbourhoods

ICM ICM+ α-exp. αβ-swap

#l K Kn 2
n2·(K−1)

K 2n2·2
K

#n n2 2 · n K K(K−1)
2

applicable ψ arbitrary arbitrary metric semimetric
exact for never chain K=2 (?) K=2

– very easy to parallelise
– can be freely combined with each other
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