Self-Organization in Autonomous Sensor/Actuator Networks

[SelfOrg]

Dr.-Ing. Falko Dressler

Computer Networks and Communication Systems
Department of Computer Sciences
University of Erlangen-Nürnberg

http://www7.informatik.uni-erlangen.de/~dressler/
dressler@informatik.uni-erlangen.de
Overview

- **Self-Organization**
 Basic methodologies of self-organization; comparison of central and hierarchical control, distributed systems, and autonomous behavior; examples of self-organization

- **Mobile Sensor/Actuator Networks**
 Ad hoc routing; reliable communication and congestion control; sensor assistance for mobile robots; applications

- **Coordination of Autonomous Systems**
 Coordination and synchronization; communication aspects; clustering

- **Bio-inspired Mechanisms**
 Swarm intelligence; artificial immune system; intra/inter cellular information exchange
Task and Resource Allocation

- (Multi-)Agent Systems
- Center-based algorithms
- Mediation algorithms
Task and Resource Allocation

- Problem description
 - Identify an appropriate system in a group of (autonomous) systems that
 - Has the required resources
 - These resources are available
 - The system is available to perform the requested task

- Types of resources
 - CPU capacity
 - Memory / storage
 - Energy
 - Time
 - Optimal position

- Allocation process
 - Identification of available nodes that show the required properties
 - election / negotiation / optimization
Dynamic Resource-Bounded Negotiation

- Negotiation protocols
 - Tasks can interact arbitrarily
 - Agents must negotiate the assignment of resources to tasks in dynamically changing environments
 - term negotiation to refer to any distributed process through which agents can agree on an efficient apportionment of tasks among themselves

- Assumptions commonly made in negotiation literature
 - Context in which a negotiation is made is irrelevant to the negotiation, thus task costs can be assumed to be additive
 - we allow for the possibility of positive and negative task interactions
 - The environment remains static during a negotiation
 - we allow for the possibility that important changes can occur during a negotiation that affect the result of the negotiation
 - All changes can be anticipated during negotiation
 - in any realistic domain, the world may change in unexpected ways
Examples

- Sensor challenge problem
 - If a deactivated emitter is activated, the beam is unstable and will not give reliable measurements for 2 seconds
 - If one task is immediately followed by another in the same sector, the beam will not require the 2 second warmup → this corresponds to **positive task interaction**

```plaintext
Arrival of task 1, Negotiation to S1
Arrival of task 2, negotiation to S1
0 2
Sensor S1
Sensor S2
```

- Multiple detectors
 - Consider that only one of three detectors on a sensor can be scanned at a given time and each scan takes between 0.6-1.8 seconds
 - Two sequential tasks that are less than 0.6 seconds apart and occur in separate sectors will **interact negatively**

```plaintext
Arrival of task 1, Negotiation to S1
Arrival of task 2, negotiation to S2
0 0.6
Sensor S1
Sensor S2
```
Center-Based Algorithms

- Working principle
 - Center agent collects bids on proposed allocations
 - Each bid is meant to compactly encapsulate important local information
 - Decision is taken by the center-agent

- Remark: *there is a difference to central coordinator!*
 - Central coordinator has up-to-date information regarding the local states of the agents; used to compute optimal allocations
 - Amount of information (local state of the agents) may be large
 → infeasible in cases of communication limits and system faults
Center-Based Algorithms

- Formal definition
 - Task allocation system: $M = <A, T, u, P>$
 - $A = \{a_1, \ldots, a_n\}$ is a set of n agents with some agent designated as the mediator
 - $T = \{t_1, \ldots, t_m\}$ is a set of m tasks
 - $u: A \times 2^T \rightarrow \mathbb{R} \cup \{\infty\}$ is a value function that returns the value which an agent associates with a particular subset of tasks
 - P is an assignment (or partition) of size n on the sets of tasks T such that $P = <P_1, \ldots, P_n>$, where P_j contains the set of items assigned to agent a_j
 - We refer to P as a proposal; for example $P_5 = <a_1, a_5, a_3>$ corresponds to the allocation in which task t_1 is assigned to agent a_1, t_2 to a_5, and t_3 to a_3

 - The objective function f determines the desirability of an assignment based on the values that each agent ascribes to the items it is assigned

$$f(p, A) = \sum_{a \in A} u(a, p) \quad p \in P$$
Center-Based Algorithms

- Formal definition (cont’d.)
 - The *negotiation problem* is that of choosing an element p^* of P that maximizes the objective function

$$p^* = \arg \max_{p \in P} f(p, A)$$

- The proposal chosen is called the *outcome* of the negotiation

- Both, mediation and combinatorial auctions are examples of algorithms that can be used to solve the assignment problem
 - class of center-based assignments (CBA)
Auctions

- Sequential auctions? (serialized item allocation)
 - Simple building rules
 - Provide no context (list of other tasks to which an agent will be assigned in later auctions)
 - Assumptions must be made about the outcomes of other, related auctions

- Combinatorial auctions? (for exploring allocations of items that interact
 - agents have the freedom to choose particular bunches of items)
 - Allow an agent to pick certain bundles of tasks which might interact in a favorable way
 - Introduce a bid generation problem

→ re-allocation might help to solve these issues
Mediation Algorithm

- **Basic idea**
 - An agent is selected to act as mediator
 - It implements a *hill-climbing search* in the proposal space
 - Use of a communication channel
 (costly in terms of time, etc. but assumed to be lossless)

- **Mediation algorithm**
 - Inputs: P, A, update procedure such as AIM (allocation improvement mediation)
 - Supports group decisions

 - The algorithm is anytime: it can be halted at any time and will return the best proposal found so far
 - Therefore, the mediation is applicable even if the agents do not know in advance how much time they will have to negotiate
Mediation Algorithm

function MEDIATION returns an outcome
inputs: \(P \), \(A \), UpdateProcedure

let \(b \leftarrow 0 \), \(b_{\text{val}} \leftarrow \text{VALUE}(0) \)
loop
 \(c \leftarrow \text{next value generated by UpdateProcedure} \)
 broadcast \(c \) to \(A \)
 for each \(a_i \) in \(A \)
 receive \(\text{msg}_i \) from \(a_i \)
 \(c_{\text{val}} \leftarrow \text{VALUE}(\text{msg}_1, \text{msg}_2, \ldots, \text{msg}_n) \)
 if \((c_{\text{val}} > b_{\text{val}})\) then
 \(b \leftarrow c, b_{\text{val}} \leftarrow c_{\text{val}} \)
until (stop signal)
return \(b \)

1. Mediator initializes \(b \) (representing the best proposal found so far) along with an initial value
2. An update procedure generates another proposal \(c \) (current proposal)
3. This proposal is broadcast to the group
4. Each agent responds with a message \(\text{msg}_i \) based on the proposal \(c \)
5. Messages are combined to form a value
6. If the value is preferred to the current \(b_{\text{val}} \), \(b \) is updated with the current proposal
Allocation Improvement

- Update procedure for mediation that supports task allocation domains

 let p ← a random element of P - {0}; return p
 for i = 1 … |T|
 for t ← every set of tasks of size I
 for a ← every possible assignment of agents in A to tasks in t
 q ← substitute a in p; return q
 if qval > pval in mediation then p ← q

- The first proposal p is chosen randomly from P
 - The proposal provides a context, from which subsequent proposals are generated, e.g. it might return <{t2},{t0,t1}>, i.e. agent 0 is assigned task 2 and agent 1 to tasks 0 and 1
 - This context is common to all agents and ensures that each task is assigned to an agent

- Subsequent iterations
 - the procedure returns proposals that result from making substitutions in p for i-tuples of tasks where i goes from 1 to |T|
 - p is always maintained to correspond to the best proposal in mediation
Experimental Analysis

- Allocation Improvement Mediation
- Random Mediation (returns a random element of \(P \) at each iteration)
- Full Search (simply returns successive elements of \(P \))

4-agent sensor domain

20-agent sensor domain

[SelfOrg], SS 2006
Task Allocation: Where to go?

- So far, only sets with static resources have been investigated into, what about the possibility to let tasks and resources dynamically appear and disappear?

- First solution (usually found in the literature): the ongoing negotiation is interrupted / a re-allocation is initiated.

- More practicable (and more sophisticated): dynamic mediation
 - a mixture of central coordination and mediation
 - The bids are enriched to include all relevant local state information
 → a negotiation space is available at the mediator (set of resources and tasks)
 - This negotiation space might change because of
 - A negotiation event (the mediator considers a new resource)
 - A domain event (a new task appears)