Network Self-Management and Vertical Policy Interactions in E2E Virtualized Networks

Waltenegus Dargie
Technical University of Dresden, Germany
The Composition

• Grid computing, Virtualised networks, Cloud computing

• The distinction between them is really fuzzy, but for us the network is most interesting
Shared Aspects: Technical

• Loosely-coupled

• Distributed

• Acting in concert to achieve a set of well defined goals
Shared Aspects: Implication

• Dynamic composition

• Slow

• Conflict between local and global interest

• Prone to failure
Managing the *Network*

• Should there be a core “network” which is always existing and which is self-managing?

• If the network is self-managing, does it matter whether it is virtual or fixed (dedicated)? Whether it is monolithic and homogeneous or distributed and heterogeneous?
Two Aspects of Management

• Topology creation and management
 – Efficient discovery of and binding to network elements
 – Support for of-the-fly negotiation

• Besides this there is also the need for managing an already established and running network

• Abstract network management accordingly
Complexity

- Numerous protocols
 - BGP, OSPF, IS-IS, EIGRP, RIP

- Data-plane mechanisms
 - Class-based queuing, RED, access control lists

- Innumerable configurable parameters
• Limited guidelines on:
 – Selecting and composing these features to build a network
 – Setting the tunable parameters to optimize the performance, reliability, and security of a running network
• SLA as a business goal

• Viewing the achievement of policies as goals

• Standard goal oriented requirement engineering can be used to refine goals into lower-level policies
Methodology and Tools

Requirements Analysis
 - Goal
 - Transformation

High-level Design
 - Task
 - Concept

Detailed Design
 - Context
 - AUI
 - Functional CoreAdaptor
 - Modality

Implementation
 - Code

3rd party tools
 - 3rd party tools
 - m2m-transf. (QVT)
 - QVT engine

model editors
 - model editors
 - m2c-transf. (JET, XTL)

Eclipse IDE
 - Eclipse IDE
 - Eclipse Workbench

Eclipse
 - Eclipse

m2m-transf. (QVT)
 - QVT engine

m2c-transf. (JET, XTL)
 - JET
 - XTL engine

MOF repository
 - MOF repository
Transition to Runtime

Design Time Environment

- Task Model
- Concept Model
- FCA Model
- AUI Model
- Modality Model
- Context Model

Application Data Model
- Data Classes

Application Workflow
- Runtime Task Model
- Functional Core Adapter
- Multimodal User Interface

Context Configuration
- Provider Configurations
- Context Patterns

Context Sources
- Context Provider

Runtime Environment
- Task Process Engine
- Multimodal Services Component
- Context Service
Model for PBNM

Model for PBNM

New Aspects

• Heterogeneity of network elements

• Need for deploying entirely new agents (event detectors, software modules, etc.)