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Analysis of Error-Agnostic Time- and
Frequency-Domain Features Extracted From
Measurements of 3-D Accelerometer Sensors

Waltenegus Dargie, Member, IEEE, and Mieso K. Denko, Senior Member, IEEE

Abstract—This paper investigates the expressive power of sev-
eral time- and frequency-domain features extracted from 3-D ac-
celerometer sensors. The raw data represent movements of hu-
mans and cars. The aim is to obtain a quantitative as well as a
qualitative expression of the uncertainty associated with random
placement of sensors in wireless sensor networks. Random place-
ment causes calibration, location and orientation errors to occur.
Different type of movements are considered—slow and fast move-
ments; horizontal, vertical, and lateral movements; smooth and
jerky movements, etc. Particular attention is given to the anal-
ysis of the existence of correlation between sets of raw data which
should represent similar or correlated movements. The investiga-
tion demonstrates that while frequency-domain features are gener-
ally robust, there are also computationally less intensive time-do-
main features which have low to moderate uncertainty. Moreover,
features extracted from slow movements are generally error prone,
regardless of their specific domain.

Index Terms—Accelerometer sensors, feature extraction, fre-
quency-domain features, measurement errors, time-domain
features, wireless sensor networks.

I. INTRODUCTION

T HIS paper examines an essential assumption based on
which a large number of self-organizing and communi-

cation protocols in wireless sensor networks are developed:
namely, nodes are deployed randomly. The assumption is
plausible for some reasons. For example, in a rescue operation,
one may not be able to carefully place sensor nodes, given the
urgency of the operation. Likewise, in a health care application
that monitors the activities of nurses, the nurses may not be
able to pay much attention as to how the nodes are placed in
some parts of their body (lower arm, upper arm; lower leg,
thigh; back, shoulder, etc.). The assumption, however, should
not entirely ignore placement and orientation errors and their
impact on the quality of sensed data. One way to go around
this problem is to have dense deployment, so that by taking
measurements from a large number of closely placed nodes,
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these errors can be minimized. Dense deployment, however, has
its own problem due to cost, management, and computational
complexities.

Another approach is to identify error agnostic features that
can be extracted from the sensed data. Ideally, these features
enable to recognize interesting events in the network with ap-
preciable accuracy regardless of how and where the sensors are
placed. Hence, we investigate the robustness of time- and fre-
quency-domain features to calibration, placement, and orien-
tation errors. We focus on cheap and randomly deployed ac-
celerometer sensors that monitor the 3-D movements of humans
and cars.

A close scrutiny into existing or proposed applications for
wireless sensor networks reveals that movement (vibration)
sensors are widely employed. For instance, accelerometer sen-
sors are used to monitor the integrity of structures (bridges and
building) [1]; transportation infrastructures [2]; supply-chain
management [3]; Healthcare [4]; and active volcano [5]. Al-
most all of these applications employ model-based digital
signal processing to detect interesting events such as defects in
structures, abnormal drives, and damage in wheels.

We shall demonstrate that even though frequency-domain
features are in general error agnostic, there are also simple
and straightforward time-domain features that can be useful
to many practical applications. The computational complexity
of time domain features is significantly lower and can be
carried out locally, on the wireless sensor nodes. Another
interesting observation is that slow movements are error prone
and difficult to recognize both with time- and frequency-
domain features.

The contribution of this paper is summarized as follows.
1) Whereas there is a significant body of work on accelerom-

eter sensors, to the best of our knowledge, this is the first
comprehensive work that investigates the expressiveness of
a large set of time- and frequency-domain features.

2) A qualitative metric based on fuzzy-sets and fuzzy mem-
bership functions that are defined and employed to examine
the robustness of the features considered.

The remaining part of this paper is organized as follows. In
Section II, related work is summarized. In Section III, the time-
and frequency-domain features that are used in our analysis are
discussed. In Section IV, the methodology to acquire the sensor
data is presented; and the description of the scenarios for data
collection is given. In Section V, a detail account of the analysis
as well as its results are discussed. Finally, in Section VI, con-
cluding remarks and outlook to future work are given.
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II. RELATED WORK

A significant body of work exists on energy-efficient proto-
cols for communication and self-organization in wireless sensor
networks. Comparatively, the research community has so far fo-
cused on three aspects of signal processing, namely, aggrega-
tion, sampling, and compression. Dargie et al. [6] and Chao et
al. [7] employ a local maxima technique to reduce the network’s
traffic. Ganesan et al. [8] propose data aggregation and compres-
sion mechanisms based on spatial interpolation of data and tem-
poral signal segmentation. Lin proposes a sampling frequency
control algorithm and a data compression algorithm [9]—each
of them are dependent on the quality of the higher level features
extracted from the raw sensor data. The sampling algorithm
adjusts the sampling rate based on the features quality. When
the sampling frequency cannot be controlled, a data compres-
sion algorithm is adopted to reduce the amount of transmitted
data. Tang and Raghavendra [10] propose the ESPIHT compres-
sion algorithm that uses a distributed source coding and exploits
spatio-temporal correlation. Bandyopadhyay et al. [11] give an-
alytical results concerning the tradeoffs between sensor density,
energy usage, throughput, delay, temporal sampling rates and
spatial sampling rates. A more detailed survey concerning the
existing data aggregation and information fusion approaches is
given by Nakamura et al. [12] and [13]. Likewise, Tang et al.
[10] surveys compression techniques.

As far as modeling and processing measurements of ac-
celerometer sensors are concerned, several techniques and
features have been considered. Huynh and Schiele [14] rec-
ommend a careful selection of features for different activities.
Their experiment result suggests that the choice of a feature
and a corresponding window length over which the feature
is computed affect a recognition rate. Lukowicz et al. [15]
investigate the existence of correlation in accelerometer signals
to estimate various human activities.

Perhaps the most frequently employed technique in exam-
ining accelerometer data is coherence. An interesting work re-
lated to this is the one carried out by Engin et al. [16] and [17], in
which the presence of correlation between different axes of in-
dividual accelerometers and between different segments of the
same limb (of a human body) is used to study the characteristics
of tremor in patients with Parkinson’s disease (PD).

Marin-Perianu et al. [18] experiment with an incremental
correlation algorithm that enables wireless sensor nodes to
determine whether they are traveling together (in supply chain
management). The algorithm is implemented locally on a
sensor node and the data processed is a real-time data series.
The scalability of the algorithm is tested with respect to com-
plexities related to communication, energy, memory and speed
of execution.

The approaches above identify a set of time- and frequency-
domain features and adopt a particular technique to recognize
various activities; and to examine the existence of correlation
between these activities. Except for Huynh and Schiele, who
show how a recognition rate can be affected by the choice of fea-
tures and their window length, the rest focus rather on the mod-
eling aspect and employ a single technique (usually the coher-
ence function) to recognize activities. These approaches, how-

TABLE I
TIME- AND FREQUENCY-DOMAIN FEATURES TO ANALYZE

DATA FROM ACCELEROMETER SENSORS

ever, do not reveal sufficient insight about the robustness of the
features employed. We build upon the existing approaches, but
place our focus on investigating the robustness of the features
to measurement errors.

III. MAIN FEATURES

The time- and frequency-domain features we consider are
listed in Table I. These features are used by many of the
applications listed in Section I to recognize the occurrence of
interesting phenomena. The time domain features capture and
express temporal aspects, while the frequency-domain features
capture and express spectral aspects. The extraction of time
domain features does not require intensive pre-processing, but
requires that transmission errors (noise and packet-loss) should
be accounted for. Moreover, the comparison of two or more
time-series measurements requires that the measurements are
synchronized in time. On the other hand, the frequency-do-
main features are robust to transmission errors, but require
intensive pre-processing [framing, windowing, filtering, and
fast Fourier transformation (FFT)]. Hence, there is a tradeoff
between the cost of feature extraction and the robustness of
the features.

In the next subsections, a brief summary of the features listed
in Table I is given.

A. Time-Domain Features

1) Zero-Crossing: This reveals how often a signal (measure-
ment) crosses a zero-reference line. It is a direct indication of
the fundamental frequency of the signal. If the calibration posi-
tion is known, the zero-crossing rate can be used to estimate the
orientation of an accelerometer sensor. For example, if a sensor
is calibrated by standing it up (say, along the -axis), then it will
produce an acceleration of 1 g if it is laid flat with a displacement
of 90 either in the -axis or in the -axis. The zero-crossing rate
is expressed as

(1)

where is a discrete, time-series sequence and and
are the th and th sample values. if the evalu-
ation is true, otherwise. Sensors which have different
calibration will apparently have different zero-reference line.
Therefore, it is difficult to compare their time-series measure-
ments. To avoid this problem, the mean-value crossing rate is
used, in which case a calibration-sensitive threshold is defined
as .
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2) Correlation Coefficient: This is a measure of the existence
of a linear dependency between two time-series measurements.
It takes the quotients of the covariance and variance of the indi-
vidual measurements into account

(2)

where
and, .

3) Cross Correlation: Is an indication of the existence of
a correlation between two time series measurements and

, where and may represent either the same type of
movement measured at different locations, or a single move-
ment measured at the same location but at different times. In
case represents , where is a specified time lag,
the two variables are usually not statistically independent, and
large cross correlations between and can result. Mathe-
matically, the cross correlation, , is described as follows:

(3)

Similarly, the autocorrelation is the cross correlation of a
time-series measurement with itself.

B. Frequency-Domain Features

In order to extract frequency-domain features, the FFT is
computed. It has a computational complexity of ,
where is the number of samples. It is the fastest transforma-
tion process between time and frequency domain. However, the
FFT does not reveal how fast the signal’s frequency changes
over time. Therefore, it is necessary to divide the time-series
measurements into different, short-duration windows. In order
to avoid frequency leakages at the two edges of each window, it
is customary to overlap neighbor frames, as a rule the overlap
is 25% to 50% [6], [19]. Afterwards, FFT is performed on each
of these windows. This process is called Short Time Fourier
Transformation (STFT). Once the FFT or STFT coefficients
are obtained, various more expressive features can be extracted.
Below is a short summary of some of them.

1) Spectral Centroid: This represents the balancing point of
the spectral power distribution

(4)

where is the magnitude value of the spectrum at position
(frequency) .

2) Band Energy: Expresses the energy of the subbands nor-
malized by the total energy of the signal.

3) Spectral Roll-Off (SRO): Measures the frequency below
which a certain amount of spectral energy resides. It measures
the “skewness” of the spectral shape [20]. Mathematically, it is
expressed as

(5)

The sum of the spectrum up to the roll-off frequency signifies
1 of the total spectrum.

4) Spectral Flux: This is defined as the difference between
the magnitude spectra of successive frames [20]

(6)

where is the normalized magnitude value of the po-
sition of the frame.

5) Maxima: This measures the similarity in transition of
the first Maxima of an expressive feature. The measurements
should have the same number of samples and these samples
will be transformed into the frequency domain. The discrete
samples produce discrete frequency coefficients. Since the
Maxima is dependent on the dominant frequency components,
they can be considered to contain typical structural characteris-
tics. Equation (7) expresses how the corresponding frequencies
can be calculated from the discrete spectrum

(7)

Hence, two sets of measurements exhibit similarity if their
first Maxima exhibit strong similarities. This applies to the
magnitude as well as the position of the Maxima.

IV. METHODOLOGY

We used SunSpot sensor nodes, each containing three ac-
celerometers that are aligned orthogonally, along the -, -, and

-axes. For the detail description of the nodes employed in the
experiment, the reader is referred to [21]. The nodes maximum
sampling frequency was 350 Hz (i.e., maximum sampling at

3 ms). The average communication delay between the sensor
nodes and the remote sink was 4 ms. To minimize packet loss, all
data are logged to a remote computer at an average frequency of
150 Hz. Sampling was carried out in a controlled environment to
make sure that reading of all sensors takes place in a similar set-
ting. Throughout the measurement, the RAM memory did not
overflow so that there was no local congestion.

The measurements were subject to three types of errors (un-
certainties): calibration, random placement (some sensors were
not placed near the event of interest), and random orientation
(alignment).2 Fig. 1 displays an example of a combined error
that arises from orientation and calibration differences between
two sensor nodes measuring one and the same movement. The
aim of this paper is to quantify and qualitatively describe the
degree of indifference of the features considered to these types
of errors.

A. Measurements

In this subsection, we describe the different types of move-
ments we considered for our analysis. Each of these movements

1In speech recognition the spectral-roll is expressed as ��� �
������� � 	�
, where � as a rule equals 85%.

2There are, of course, other sources of errors, but we do not consider them
here.
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Fig. 1. Snapshot of two time-series measurements taken by two different nodes
measuring the same movement. The two sensor nodes have different calibrations
and placements. In both graphs, the x-axis represents time, and the y-axis the
magnitude of acceleration.

was captured by at least two SunSpot sensor nodes in different
placement settings. The nodes directly transmit the raw data to
a nearby base station. Each packet was acknowledged; in case
of a lost or corrupted packet, retransmission was requested and
granted.

1) Movement of People:
• A single person: Two sensor nodes were placed at the op-

posite thighs and wrists of a walking person. The mea-
surements were taken from calibrated sensors, but each
time, they were placed randomly and they had random
orientation.3

• Two persons climbed up and down a staircase, side by
side (without synchronization of steps): Two sensor nodes
were randomly placed in the thighs and wrists of each test
person. The persons climbed a staircase of 18 steps side by
side. After the climb was over, the persons turned back and
climbed down the staircase. The two types of movements
were labeled independently.

• Two persons climbed up and down a staircase one after an-
other (without synchronization of steps): Two sensors were
attached to the test persons as described in the previous set-
ting, but this time, one person was walking in front of the
other.

• Dancing: Two sensor nodes were attached to the thighs
of the test persons. They danced for about a minute. The
dance was a free and uncoordinated movement (with no
premeditated pattern), but the occurrence of certain body
contacts signifying some distinct movements were labeled.

• Couch: Two nodes were attached at the thighs of two test
persons. The experiment measured actions and reaction

3Orientation errors were kept below 90 throughout the experiment, however.

TABLE II
OVERVIEW OF THE MEASUREMENTS DURATION AND DATA SIZE

movements whenever the test persons sat down on and got
up from a couch. During the analysis of the measurements,
other types of movements (drinking a coffee from a mug;
writing, etc.) were deliberately filtered out.

2) Movement of Car:
• Highway drive: a series of measurements were taken from

two accelerometer sensor nodes that were placed on the
back and front seats of a car during a highway drive, with
an average speed of 120 kmph. The sensors themselves
were untethered. Measurements from these sensors were
taken to investigate the existence of correlation between
the different parts of a car even though these parts react
differently to accelerations and brakes as well as to the
irregular surface on which the car drives.

• Highway drive: Two sensors were attached to the seat belts
of the driver and the front passenger and were very close
to the center of gravity. However, exact alignment to the
center of gravity was not made.

• Free drive: In this setting, the sensors were placed in the
front cabin of the car; they were calibrated and aligned to
the seats of the driver and the front passenger. This mea-
surement was used as a reference to the measurements
taken in the previous settings.

• City drive: the sensors were placed inside the glove box at
the front cabin of the car, untethered.

Table II summarizes the durations and size of the measure-
ments obtained.

V. ANALYSIS AND RESULTS

A. Time-Domain Features

1) Zero-Crossing Rate: Comparison of the zero-crossing
rates of the correlated and uncorrelated movements is a
straightforward and inexpensive process. However, a high
zero-crossing rate may indicate a high frequency measurement
as well as a measurement which is highly corrupted by noise.
As expected, all the measurements we took exhibit strong
dissimilarities due to calibration error. Even those sensors
which had similar orientation and placement and measured the
same movement resulted in 40/s zero-crossing rate due to
calibration error. Substituting the zero-crossing rate by a mean
value-crossing rate resulted in a deviation ranging between 2
and 15/s for individual axes; and only 0–2/s for the absolute
acceleration values of the individual measurements.4 Cross test

4The absolute acceleration value, ��� is given as: ��� �
�
� � � � � .
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Fig. 2. Autocorrelation of the absolute acceleration values of the measurements
taken from the first person.

of uncorrelated measurements, on the other hand, resulted in an
overall deviation that ranges from 7 to 50/s for the individual
axes; and 5–30/s for the absolute acceleration value.

2) Mean Value: The mean value is perhaps the simplest
and the least computationally intensive feature. The deviation
in value between similar (correlated) fast movements (car) for
individual axes was 0.5 g. The absolute mean value of these
movements, even for randomly oriented measurements, has a
markedly small deviation, i.e., 0.05 g. On the contrary, the
deviation in human movements was high. For example, the
average deviation in the absolute acceleration value of similar
(correlated) measurements was 0.4 g.

3) Correlation Coefficient: The correlation coefficient in this
context is a measure of the degree of similarity in movement
patterns, i.e., how similar are the temporal structure of two sets
of measurements. Once again, the measurements that are taken
from the different parts of a car during the same drive yield a cor-
relation between 0.4 and 0.9. On the other hand, the correlation
between dissimilar measurements was . Exceptions
to this were the measurements taken from the sensors which laid
fixed on the front and back seats of the car. In which case, it was
not at all possible to establish correlation. The correlation coef-
ficients related to human movements are markedly small, i.e., in
the ranges of 0.2 and 0.3 for measurements representing similar
movements. The correlation coefficients of the absolute accel-
eration values of all the measurements are notably better. The
scenario that produced the highest correlation was the move-
ments of people on the couch. Figs. 2 and 3 show the absolute
values of the correlation of the readings taken from the thighs
of the two people as described in Section IV-A. As can be seen,
the movement of one person produced a reaction movement in
the other person.

The problem with autocorrelation is its requirement of time
synchronization. In the absence of time synchronization, the
correlation coefficients of all movements were very small.

4) Cross Correlation: The cross correlation is used to mea-
sure the magnitude of the time offset between two time-series
measurements. This is particularly useful to model correlated
movements that cannot be compared piecewise. A typical
example is the correlation between the movements of people
climbing up and down a staircase without synchronizing their

Fig. 3. Autocorrelation of the absolute acceleration values of the measurements
taken from the second person.

Fig. 4. Membership function for establishing the fuzzy set of the MCR feature.

steps. Intuitively, the movements should demonstrate strong
correlations. However, due to the anatomy of the persons and
the relative distance between the two people (back and forth),
a sample-by-sample correlation was irrelevant. With the help
of the cross correlation, we were able to detect and correct
a mean offset value of 1.4 s over all the three axes of the
accelerometer sensors.

5) Autocorrelation: Another approach to deal with measure-
ments that cannot be compared piecewise is to test the linear
correlation between two autocorrelation functions. This feature
performs very well to test uncorrelated movements instead of
correlated movements. For example, comparison of the autocor-
relation of the measurements taken during the staircase move-
ments revealed that the structure of the autocorrelation functions
was almost identical even though their magnitude at any given
location was different.

Table V summarizes the different time-domain features we
considered. The features test both the presence and the absence
of correlation between different measurements. In the second
and the third column, the boundary signifies the width of the
variance of similarity.

For a qualitative analysis, we defined fuzzy sets to model the
uncertainty associated with each feature. We used empirical ob-
servations to define the membership function of the fuzzy sets
for each feature. In each case, the membership function is de-
fined as a trapezoid function in which the beginning and the end
of the trapezoids were taken from the experiment results. The
trapezoid function for the MCR is shown in Fig. 4. Equation (8)
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TABLE III
MEMBERSHIP FUNCTION DEFINITION FOR THE MCR

TABLE IV
MEMBERSHIP FUNCTION DEFINITION FOR THE

LINEAR CORRELATION COEFFICIENTS

TABLE V
SUMMARY OF TIME DOMAIN FEATURES

shows the expression of the membership function for this fea-
ture. Tables III and IV display the membership definitions of the
MCR and the linear correlation coefficients

(8)

B. Frequency-Domain Features

The frequency-domain features were extracted after trans-
forming the time-series measurements in their entirety into fre-
quency domain using the FFT. Exception to this is the short-time
Fourier transform (STFT), in which case, the time series mea-
surements were divided into several overlapping short frames
before they were transformed into frequency-domain features.

All the frequency-domain features require preprocessing. The
resource consumption of these steps is discussed in more detail
in [6] and [19]. Additional to these processes, we carry out fre-
quency normalization using a hamming window, so that the fre-
quency resolution for each measurement is optimized.

1) Maxima: The -maxima of a frequency spectrum was
used to compare the dominant frequencies of different measure-
ments. To obtain a significant size of representative frequency
samples, first the -th Maxima were summed up and divided by
the total Maxima. Once this was done, comparison was made
by selecting the -th Maxima and observing the deviation from
the average Maxima.

For human movements, was sufficient, while for car
should be in the order of 1000. This is because human move-

ments contain low frequency components. The average distance
between the first 100 Maxima of the individual axis for similar
movements lied between 0.7 and 3 Hz, while it was between
0.7 and 3.5 Hz for the absolute value of the individual axes. On
the other hand, the same distance for uncorrelated (dissimilar)
movements was between 1.4 and 3.9 Hz for the individual axes
and between 1.6 and 4.8 Hz for the absolute value. For car move-
ment and with the distance between the first 1000 Maxima, the
corresponding results were between 5–13 Hz for strong corre-
lation and 20–30 Hz, for uncorrelated (individual dimensions);
and 7–18 Hz and 11–25 Hz for absolute values.

2) Energy: The spectrum energy of a set of sensor readings
reveals the spectrum’s structure. In this context, the spectrum
energy refers to the overall energy of the two readings being
analyzed. To start with, the spectrum was divided into sub-
bands and the portion of energy in each band was normalized
by the overall energy of the spectrum. Correlation test was per-
formed subband by subband comparison on different measure-
ments—the stronger the correlation between the measurements,
the lesser the difference between the subband energies. As a re-
sult the average difference of the subband energies was used to
measure correlation. In our analysis, the energy mass of similar
movements of objects was between 0.006 and 0.1, while for un-
correlated, dissimilar movements, the mass was between 0.2 and
0.9. Human movement was very difficult to categorize with the
energy mass as the range was not strikingly different for similar
and dissimilar movements.

3) Linear Correlation Coefficient: Ideally, if the spectral
structures of two sets of measurements are similar, then there
is a strong correlation between them. The frequency-domain
linear correlation coefficients examine this hypothesis. Indeed
the measurements taken from different places during the same
type of movement revealed the existence of a strong correlation
(between 0.6 and 0.99). Unfortunately, we also observed that
correlation coefficients of unrelated movements frequently
yielded values above 0.6. The best explanation for this is that
all types of movements have high frequency components which
undermine the significance of the band-pass frequencies, which
are distinct from movement to movement. As a result, a large
portion of the curves are similar and can wrongly be interpreted
as being correlated.

We attempted to reduce this effect by quantizing the mea-
surements. Even though there was some improvement, linear
correlation coefficients in the frequency domain are the feeblest
features. Moreover, the quantization level was very much de-
pendent on the measurements being compared or tested—the
bigger the pick to pick individual amplitudes, the larger should
be the quantization level.

We investigated the change of frequencies over time as a mea-
sure of correlation. For this, we used the STFT, which is com-
puted by dividing the sensor measurements into several overlap-
ping frames. Each frame is then Fourier transformed, and the
complex result is added to a matrix, recording the magnitude
and phase of each point in time and frequency domain. As a
scaling factor, we summed up the correlation coefficients and di-
vided them by the size of the frequencies being considered. The
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test showed that a marked difference between the movements of
people and the movements of cars. For human movements, the
results were on the average between 0.1 and 0.3, which confirms
the results we got in the time domain for the same data set. Cross
tests of uncorrelated movements resulted in weighted linear cor-
relation coefficients that rangeg from 0.03 to 0.09. This much
could not be achieved in the time domain for the same data sets.

The result of car related movements were even better. While
the correlation coefficients for similar movements were between
0.2 and 0.6, for unrelated movements, these were between 0.02
and 0.1. This observation suggests that other frequency-domain
analysis, such as coherence, can be more expressive if they con-
sider STFT instead of the FFT.

4) Spectral Roll-Off: The spectral roll-off is another struc-
tural feature in the frequency domain in which only the Fourier
transformation of the acceleration vectors was taken into ac-
count. In most cases, such as in speech recognition, it is usually
customary to consider . This, however, did not pro-
duce any significant difference between correlated and uncorre-
lated movements. Not unexpectedly, a significant portion of the
energy of most movements was contained within the lower fre-
quency components. Subsequently, we lowered down the value
of to 60%. As a result, similar movements revealed a roll-off
distance that ranged from 0–4 Hz while the roll-off distance for
uncorrelated movements were between 2.5 and 10 Hz.

5) Spectral Centroid: The spectral centroid is similar to
the “first -Maxima” and indicates the relative location of the
“center of gravity of the spectrum. It is computed as the weighted
mean of the frequencies—the magnitudes of the frequencies
being taken as weights. This scheme requires a precise knowl-
edge of the movements being considered. The analysis was
carried out by dividing the main frame into several subbands and
the centroid of each subbands was independently computed and
piecewise comparison was performed. The mean difference of
the subband centroids, , is summarized by (9) as

(9)

where and refers to the spectral centroid of sensor 1
and 2, respectively; and is the number of subbands.

Regardless of the movement types, division of the entire spec-
trum into five equal segments resulted in a centroid distance that
ranged from 0.2 to 0.5 Hz for related movements; and from
0.3 to 1.7 Hz for unrelated movements. By taking the abso-
lute values of the spectrum, the related movements yielded a
better correlation, the centroid being tighter than the previous,
i.e., from 0.2 to 0.3 Hz.

6) Spectral Flux: The spectral flux is a measure of how
quickly the power spectral changes. Ideally, similar movements
should have a deviation of 0 flow. To compute the spectral flux
of two measurements, both should have the same time duration.
In the simplest case of considering the entire duration, we ob-
tained a spectral flux that ranged from 0.0026 to 0.25 for similar
movements—0.25 is rather the worst case. Otherwise, the spec-
tral flux of similar movements was between 0 and 0.1. On the
contrary, the spectral flux of unrelated movements varied from
0.2 to 1.0.

TABLE VI
SUMMARY OF THE FREQUENCY-DOMAIN FEATURES

Table VI summarizes our observation for the frequency-do-
main analysis.

VI. CONCLUSIONS

We investigated the expression power of several time- and
frequency-domain features in the presence of calibration, place-
ment and orientation errors. The measurements from which the
features are extracted represent movements of humans (slow
movements) and cars (fast movements) for various scenarios,
both in calibrated and un-calibrated conditions. The time-do-
main features we considered were zero-crossing rate (mean-
value crossing rate), correlation coefficients, and cross corre-
lations. The frequency-domain features were Maxima and en-
ergy; correlation coefficients of FFT and STFT, spectral roll-off,
spectral centroids, and spectral flux. We observed that the fea-
tures extracted from the absolute values of the raw measure-
ments were more robust to noise and calibration errors than the
features extracted directly from the raw measurements of indi-
vidual axes. The frequency-domain features that were least vul-
nerable to noise and exhibit the strongest expression power were
the correlation coefficients of the absolute values of the STFTs.
The features extracted from slow movements were in general
prone to measurement errors.

In the future, we aim to extend our studies by employing
different types of sensors. We have already collected a large
amount of data with MicaZ sensors. This will enable us to eval-
uate how feature extraction can be affected by node architecture.
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