Dynamic Power Management in Embedded Systems

Waltenegus Dargie
TU Dresden
Chair of Computer Networks
Outline

• Motivation
• Aspects of power consumption
• Selective switching
• Dynamic scaling
• Research Issues
Motivation

• Power dissipation
 – Due to circuit leakage
 – Unforeseen circumstances
 – Overhead of the operating system calls
 – Inefficient code
 – System resource utilisation

• This talk focuses on the last aspect only
Motivation

• Embedded system
 – Smart phones
 – Personal MP3 players
 – Point of sale mobile devices
 – Portable GPS navigators
 – Digital cameras
 – Digital video cameras
 – Pen digitizers
 – Handheld OCR
Motivation

- The global market for embedded systems is expected to increase from $92.0 billion in 2008 to an estimated $112.5 billion by the end of 2013, a compound annual growth rate (CAGR) of 4.1%.
- Embedded hardware was worth $89.8 billion in 2008 and is expected to grow at a CAGR of 4.1% to reach $109.6 billion in 2013.
- Embedded software generated $2.2 billion in 2008. This should increase to $2.9 billion in 2013, for a CAGR of 5.6%.

Source: BCC, April 2009
Motivation

Algorithmic Complexity (Shannon’s Law)

Processor Performance (Moore’s Law)

Battery Capacity

Source: EMUCO Project 2008
Outline

- Motivation
- Aspects of power consumption
- Selective switching
- Dynamic scaling
- Research Issues
Embedded Sys.: Architecture

Analogue Baseband

- I/O Interface
- ADC/DAC (Audio/Video)
- Filters and Synthesisers controllers
- Power/Voltage Amplifiers
- Receiver
- Synthesiser
- Modulator
- Flash Memory
- Microcontroller
- Memory Unit
- DSP

Digital Baseband

- Keyboard
- Display
- SIM card

RF

- Power/Voltage Amplifiers
Power Consumption

Source: Vargas, 2005

Source: Siemens
Power Consumption

Source: Siemens

Source: Vargas, 2005
Power Consumption

• Batteries
 – Specified by a rated current capacity, C, expressed in Ampere-Hour (mAh)
 • Drawing current at a rate greater than the discharge rate results in a current consumption rate higher than the rate of diffusion of the active elements in the electrolyte.
 • If this process continues for a long time, the electrodes run out of active material even though the electrolyte has not yet exhausted its active materials.
 • This situation can be overcome by intermittently drawing current from the battery.
Power Consumption

<table>
<thead>
<tr>
<th>Discharge Rate</th>
<th>Battery Capacity Normalised to 1C Discharge Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/5</td>
<td>107%</td>
</tr>
<tr>
<td>C/2</td>
<td>104%</td>
</tr>
<tr>
<td>1C</td>
<td>100%</td>
</tr>
<tr>
<td>2C</td>
<td>94%</td>
</tr>
<tr>
<td>4C</td>
<td>86%</td>
</tr>
</tbody>
</table>

Source: Bellosa, 2000: Lithium-ion Battery
Outline

- Motivation
- Aspects of power consumption
- Dynamic Power Management
- Selective Switching
- Dynamic scaling
- Research Issues
• Fundamental premises about Embedded systems:
 – Predominantly event-driven
 – Experience non-uniform workload during operation time
• DPM\(^1\) refers to selectively shutting-off and/or slowing-down system components that are idle or underutilised
• A policy determines the type and timing of power transitions based on system history, workload and performance constraints

1. DPM: Dynamic power management
Concept

• It has been described in the literature as a linear optimisation problem
 – The objective function is the expected performance
 • Related to the expected waiting time and the number of jobs in the queue
 – The constraint is the expected power consumption
 • Related to the power cost of staying in some operation state and the energy consumption for the transfer from one server state to the next
Architecture

Scheduler

task arrival rates, priority of tasks, task deadlines

Task1

Workload and Energy monitoring

Task runtime, frequency and duration of accessed resources

Power mode adaptation

Hardware profile *operating points*
Outline

• Motivation
• Aspects of power consumption
• Dynamic Power Management
• Selective Switching
• Dynamic scaling
• Research Issues
Selective Switching

- Power state machine for the StrongARM-1100 processor

Source: Benini, 2000
Selective Switching

<table>
<thead>
<tr>
<th>Sleep Mode</th>
<th>Active clock domains</th>
<th>Oscillators</th>
<th>Wake up sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clk<sub>CPU</sub></td>
<td>clk<sub>FLASH</sub></td>
<td>clk<sub>IO</sub></td>
</tr>
<tr>
<td>Idle</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ADC noise red.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power save</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. standby</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Active Clock Domains and Wake Up Sources in the Different Sleep Modes

Source: ATMEL, Atmega 128: 2008
Selective Switching

- Memory access

Source: Ellis, 2003
Selective Switching

- Memory access

Source: Ellis, 2003

1. MMU: Memory Management unit
Selective Switching

<table>
<thead>
<tr>
<th>Power Mode</th>
<th>StrongARM</th>
<th>Memory</th>
<th>MEMS & ADC</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td>Sleep</td>
<td>Sleep</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>P₁</td>
<td>Sleep</td>
<td>Sleep</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>P₂</td>
<td>Sleep</td>
<td>Sleep</td>
<td>On</td>
<td>RX</td>
</tr>
<tr>
<td>P₃</td>
<td>Idle</td>
<td>Sleep</td>
<td>On</td>
<td>RX</td>
</tr>
<tr>
<td>P₄</td>
<td>Active</td>
<td>Active</td>
<td>On</td>
<td>TX, RX</td>
</tr>
</tbody>
</table>

Source: Sinha and Chandrakasan, 2001
Selective Switching

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{on}</td>
<td>10 W</td>
</tr>
<tr>
<td>P_{off}</td>
<td>0 W</td>
</tr>
<tr>
<td>$P_{\text{on} \rightarrow \text{off}}$</td>
<td>10 W</td>
</tr>
<tr>
<td>$P_{\text{off} \rightarrow \text{on}}$</td>
<td>40 W</td>
</tr>
<tr>
<td>$t_{\text{on} \rightarrow \text{off}}$</td>
<td>1 s</td>
</tr>
<tr>
<td>$t_{\text{off} \rightarrow \text{on}}$</td>
<td>2 s</td>
</tr>
<tr>
<td>t_R</td>
<td>25 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy</th>
<th>Energy</th>
<th>Avg. Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always on</td>
<td>250 J</td>
<td>1 s</td>
</tr>
<tr>
<td>Reactive greedy</td>
<td>240 J</td>
<td>3 s</td>
</tr>
<tr>
<td>Power-aware</td>
<td>140 J</td>
<td>2.5 s</td>
</tr>
</tbody>
</table>

Source: Pedram, 2003
Selective Switching

![Diagram showing power (W) vs. time (s) with points Pi and Pj and t_{th,j} highlighted]
Selective Switching

\[E_j^{\text{saved}} = P_i \left(t_j + t_{i,j} + t_{j,i} \right) - \left[P_{i,j} \times t_{i,j} + P_{j,i} \times t_{j,i} + P_j \times t_j \right] \]

\[t_{th,j} \geq \max \left(0, \frac{(P_i - P_{i,j}) t_{i,j}}{P_i - P_j} \right) \]
Selective Switching

<table>
<thead>
<tr>
<th>Power Mode</th>
<th>StrongARM</th>
<th>Memory</th>
<th>MEMS & ADC</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td>Sleep</td>
<td>Sleep</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>P₁</td>
<td>Sleep</td>
<td>Sleep</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>P₂</td>
<td>Sleep</td>
<td>Sleep</td>
<td>On</td>
<td>RX</td>
</tr>
<tr>
<td>P₃</td>
<td>Idle</td>
<td>Sleep</td>
<td>On</td>
<td>RX</td>
</tr>
<tr>
<td>P₄</td>
<td>Active</td>
<td>Active</td>
<td>On</td>
<td>TX, RX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Mode</th>
<th>P (mW)</th>
<th>Trans. Latency (ms)</th>
<th>Threshold, T_{th}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₄</td>
<td>1,040</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P₄</td>
<td>400</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>P₂</td>
<td>270</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>P₁</td>
<td>200</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>P₀</td>
<td>10</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Source: Sinha and Chandrakasan, 2001
Selective Switching

1. Process event and compute Resource Consumption
2. Observation time is up?
 - Yes: For c, c = 1, 2, ..C: Compute \(\lambda_c \);
 Compute \(t_{th,c} \);
 Calculate \(t_{agg} \).
 - No: \(m = M-1 \)
3. If \(m > 0 \):
 - Yes: If \(t_{agg} \geq t_{h,m} \):
 - Yes: power mode = \(P_m \);
 pmDirty = true;
 - No: \(m = M-1 \)
 - No: \(m = M-1 \)
4. If(pmdirty)
 - Yes: Set power;
 pmDirty = false;
 - No:

Diagram
Selective Switching

• Selective switching should be application dependent

• Weissel et al. demonstrate that long beacon periods in IEEE 802.11 wireless local area networks do not necessarily result in power saving for some applications
 – Continuous-aware mode, power-saving mode and adaptive power saving mode
 • Periodical activation to synchronise with the server
 • The length of the sleep interval is called beacon period (default value = 100 ms)
Selective Switching

Mode Transition	Time	Energy
PSP to CAM | 320 ms | 280 mJ
CAM to PSP | 317 ms | 283 mJ
Beacon interval adjustment | 333 ms | 300 mJ

Application Without PM With PM
---|---|---
Beacon = Not applicable | Beacon ≥ 100 ms; period
NFS | Task: Negligible runtime | Task: 250 ms runtime

Source: Weissel et al., 2004: The runtime and energy cost of a dynamic power Management: Application: NFS; OS: Linux; Network interface: Cisco Aironet
Selective Switching

• Mitigation
 – Power management should take into account the type of application, the send/receive characteristics and the user sensitiveness and tolerance

<table>
<thead>
<tr>
<th>Application-specific DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average size of packets received</td>
</tr>
<tr>
<td>Ratio of average length of inactive to length of active periods</td>
</tr>
<tr>
<td>Ratio of average size of packets received to size of packets sent</td>
</tr>
<tr>
<td>Ratio of traffic volume received to traffic volume sent</td>
</tr>
<tr>
<td>Average size of packets sent</td>
</tr>
</tbody>
</table>
Outline

• Motivation
• Aspects of power consumption
• Dynamic Power Management
• Selective Switching
• Dynamic Scaling
• Research Issues
Dynamic Scaling

• Refers to runtime change in the supply voltage and clock frequency of the hardware components

\[P \propto C_L V_{dd}^2 f \]

\[\tau = k C_L \frac{V_{dd}}{(V_{dd} - V_{th})^2} \]

Where

- \(C_L \): Load capacitance
- \(V_{dd} \): Supply voltage
- \(f \): Clock frequency
- \(V_{th} \): Threshold voltage
- \(\tau \): Switching delay
- \(k \): Boltzmann’s constant
Dynamic Scaling

1. Normalized Energy

DPM without voltage scaling

Efficient DVS

DPM with ideal voltage scaling
Outline

• Motivation
• Aspects of power consumption
• Dynamic Power Management
• Selective Switching
• Dynamic scaling
• Research Issues
Research Issues

• The cost of power management
• Workload arrival estimation as a basis for decision making
• Side effects of DPM
Cost

• Performance cost
• Resource cost
 – For example, MMU requires associative memory that is accessed whenever memory is referenced
 – Size and computational cost
Workload Estimation

• Given an observation period, T, and an average normalized workload, $w(n)$, in the interval $(n-1)T \leq t \leq nT$, the task is to decide the power mode for the next cycle.
Workload Estimation

- **FIR Filter**

\[W_p[n] = \sum_{k=0}^{N-1} h_n[k]w[n - k] \]

<table>
<thead>
<tr>
<th>Filter</th>
<th>Filter Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving Average (MAW)</td>
<td>(h_k(i) = \frac{1}{N})</td>
</tr>
<tr>
<td>Exponential weighted average (EWA)</td>
<td>(h_k(i) = a^{-i})</td>
</tr>
<tr>
<td>List Mean Square (LMS)</td>
<td>(h_{n+1}(k) = h_n(k) + \mu w_e(n) w(n - k))</td>
</tr>
</tbody>
</table>

- **Expected workload state (EWS)**

\[w[n_i] = E\{w[n_i]\} = \sum_{j=0}^{L} w_j p_{i,j} \]
Workload Estimation

Source: Sinha and Chandrakasan, 2001
Workload Estimation

• Often task estimation is made from within the system but should consider external factors as well
 – For example in audio and video streaming, knowledge of bandwidth and data rate should be helpful
• Rich context information (operation condition) is to tackle side-effects
Side Effects

• Scaling latency
 – Power supplies require a finite amount of time to settle to the new operating voltage
 – The delay is a function of load on the supply voltage
 – Comparatively, the clock-generator requires negligible time

• Unreliable operation during transition
 • The CPU should be halted during a transition
 • Requires an external hardware
Commercial Product

Source: Lattice Semiconductor (ispPAC-POWR1208P1), 2005
Conclusion

- Most of the subsystems of an embedded system are not equally active at the same time.
- Dynamic scaling is preferred over selective switching if the long term task arrival pattern is known.
- This requires a comprehensive model for task arrival rate estimation.
- The resource cost of power management is so far the least addressed issue.
Journals and Conferences

- ACM Transactions on Embedded Computing Systems
- IEEE Transaction on VLSI Systems
- IEEE Journal of Solid-State Circuit
- IEEE Transaction on Computer-Aided Design
- IEEE Design and Test of Computers
- DATE (2010 Dresden)
- DAC (US Dominated)
- ASP-DAC (Asia-Pacific)
- ARCS (2010 Hannover)
Thanks for Listening
Significant Contributions

• Sinha and Chandrakasan (IEEE Design and Test of Computers, 2001)
 – Mathematical model (DVFS) and task arrival estimation
• Su et al. (ISLPED1 2003)
 – Leakage estimation under power supply and temperature variations
• Weissel et al. (ARCS2, 2004)
 – Application-aware DPM
• Kang et al. (DAC3 2007)
 – Variation resilient circuit design technique
• Jung and Pedram (DATE4 2008)
 – Stochastic process model as a tuple (S (power), A (V-F value), O (temperature), T, Z, c)

1. ISLPED: International Symposium on Low Power Electronics and Design
2. ARCS: International conference on architecture of computing systems
3. DAT: Design automation conference
4. DATE: Design automation and test in Europe
Scheduling

• Most research concentrates on finding optimal combinations of tasks, but does not discuss how a multiprocessor scheduler in a real system can succeed in combining tasks accordingly.
Scheduling

• It does not pay-off to co-schedule memory-bound tasks in order to be able to profit from lower chip frequencies
 – Combining tasks in order to reduce resource contention is more important than combining tasks that share a common optimal frequency.

• Co-scheduling policy that avoids contention for bottleneck resources.

• Migration policy that balances resource utilization across execution contexts